
A Fast Network Flows Heuristic
for Cell Suppression in Positive Tables

Jordi Castro�

Department of Statistics and Operations Research
Universitat Politècnica de Catalunya

Pau Gargallo 5, 08028 Barcelona, Catalonia, Spain
jcastro@eio.upc.es

http://www-eio.upc.es/˜jcastro

Abstract. Current network flows heuristics for cell suppression in pos-
itive tables (i.e, cell values are greater or equal than zero) rely on the
solution of several minimum-cost subproblems. A very efficient heuristic
based on shortest-paths was also developed in the past, but it was only
appropriate for general tables (i.e., cell values can be either positive or
negative), whereas in practice most real tables are positive. The method
presented in this work overcomes the lacks of previous approaches: it is
designed for positive tables and only requires the solution of shortest-
paths subproblems. It follows that it is orders of magnitude faster than
previous network flows heuristics. We report an extensive computational
experience in the solution of two-dimensional tables, either with or with-
out hierarchical rows, of up to 250000 and 500000 cells, respectively.

Keywords: statistical disclosure control, cell suppression problem, lin-
ear programming, network optimization, shortest-paths.

1 Introduction

Cell suppression is a widely used technique by national statistical institutes for
the protection of confidential tabular data. Given a list of cells to be protected,
the purpose of the cell suppression problem (CSP) is to find the pattern of ad-
ditional (a.k.a. complementary or secondary) cells to be suppressed to avoid the
disclosure of the sensitive ones. This pattern of suppressions is found under some
criteria as, e.g., minimum number of suppressions, or minimum value suppressed.

Because of the NP-hardness of CSP [11], most of the former approaches
focused on heuristics for approximate solutions. This work deals with them,
presenting a new one for positive tables (i.e., cell values are greater or equal
than zero) based on shortest-paths, which turned out to be orders of magnitude
faster than alternative methods. A recent mixed integer linear programming
(MILP) method [5] was able to solve until optimality nontrivial CSP instances.
� Supported by the EU IST-2000-25069 CASC project and the Spanish MCyT Project

TIC2003-00997. The author thanks Narćıs Nabona for providing him with the im-
plementation of the Dijkstra’s shortest-paths algorithm.

J. Domingo-Ferrer and V. Torra (Eds.): PSD 2004, LNCS 3050, pp. 136–148, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 137

The main inconvenience of this approach, from the practitioner point of view,
is that the solution of very large instances (with possibly millions of cells) can
result in impractical execution times [6]. It is noteworthy that improvements in
new heuristics also benefit the above exact procedure, since they provide it with
a fast, hopefully good, feasible starting point.

Most current heuristic methods for CSP are based on the solution of network
flows subproblems [1]. Other approaches, as the hypercube method [7], focus on
geometric considerations of the problem. Although very efficient, the hypercube
method provides patterns with a large number of secondary cells or value sup-
pressed (i.e., it suffers from over-suppression). Network flows heuristics for CSP
usually exploit more efficiently the table information and provide better results.

There is a fairly extensive literature on network flows methods for CSP. For
positive tables, they rely on the formulation of minimum-cost network flows sub-
problems [3, 4, 11]. Such approaches have been successfully applied in practice
[10, 13]. These heuristics require the table structure to be modeled as a network,
which can only be accomplished for two-dimensional tables with, at most, one hi-
erarchical dimension (either rows or columns). Although minimum-cost network
flows algorithms are fast compared to the equivalent linear programming for-
mulations [1, Ch. 9–11], for large tables they still require large execution times.
Instead, the approach suggested in [2] formulated shortest-paths subproblems,
a particular case of minimum-cost network flows that can be solved much more
efficiently through specialized algorithms [1, Ch. 4–5]. The main drawback of
that approach based on shortest-paths was that it could only be applied to gen-
eral tables (i.e., cell values can be either positive or negative), which are the less
common in practice.

To avoid the above lacks of current network flows heuristics (namely, the
efficiency of those based on minimum-cost flows subproblems, and the suitability
of that based on shortest-paths for positive tables) we present a new method
that sensibly combines and improves ideas of previous approaches (mainly [2]
and [4]). The resulting method applies to positive tables and formulates shortest-
paths subproblems. As shown by the computational results, it is much faster than
previous network-flows heuristics for positive tables. The new approach has been
included in the τ -Argus package [8] in the scope of the European Union funded
“CASC” project IST-2000-25069, for the protection of two-dimensional tables
with at most one hierarchical dimension.

This paper is organized as follows. Section 2 outlines the formulation of CSP.
Section 3 briefly shows how to model a two-dimensional table with at most one
hierarchical dimension as a network. Section 4 shows the heuristic introduced in
this work. Finally, Section 5 reports the computational experience in the solution
of large instances, showing the efficiency of the method.

2 Formulation of CSP

Given a positive table (i.e., a set of cells ai ≥ 0, i = 1 . . . n, satisfying some linear
relations Aa = b), a set P of p primary sensitive cells to be protected, and upper

138 Jordi Castro

and lower protection levels upli and lpli for each primary cell i = 1 . . . p, the
purpose of CSP is to find a set S of additional secondary cells whose suppression
guarantees that, for each p ∈ P,

ap ≤ ap − lplp and ap ≥ ap + uplp, (1)

ap and ap being defined as

ap = min
xi,i=1...n

xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ S
xi = ai i �∈ P ∪ S

and

ap = max
xi,i=1...n

xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ S
xi = ai i �∈ P ∪ S.

(2)

ap and ap in (2) are the lowest and greatest possible values that can be deduced
for each primary cell from the published table, once the entries in P ∪ S have
been suppressed. Imposing (1), the desired level of protection is guaranteed. CSP
can thus be formulated as an optimization problem of minimizing some function
that measures the cost of suppressing additional cells subject to that conditions
(1) and (2) are satisfied for each primary cell.

CSP was first formulated in [11] as a large MILP problem. For each entry ai a
binary variable yi, i = 1 . . . n is considered. yi is set to 1 if the cell is suppressed,
otherwise is 0. For each primary cell p ∈ P, two auxiliary vectors xl,p ∈ IRn and
xu,p ∈ IRn are introduced to impose, respectively, the lower and upper protection
requirements of (1) and (2). These vectors represent cell deviations (positive or
negative) from the original ai values. The resulting model is

min
n∑

i=1

wiyi

s.t.
Axl,p = 0

−aiyi ≤ xl,p
i ≤ Myi i = 1 . . . n

xl,p
p ≤ −lplp

Axu,p = 0
−aiyi ≤ xu,p

i ≤ Myi i = 1 . . . n
xu,p

p ≥ uplp






for each p ∈ P

yi ∈ {0, 1},

(3)

wi being the information loss associated to cell ai. In practice they are usually
set to wi = ai (minimize the overall suppressed value) or wi = 1 (minimize the
overall number of suppressed cells). Inequality constraints of (3) with both right
and left-hand sides impose the bounds of xl,p

i and xu,p
i when yi = 1 (M being a

large value), and prevent deviations in nonsuppressed cells (i.e., yi = 0). Clearly,
the constraints of (3) guarantee that the solutions of the linear programs (2)
will satisfy (1). (3) gives rise to a very large MILP problem even for tables of

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 139

moderate sizes and number of primary cells. If matrix A can be modeled as a
network, we can find a feasible non-optimal (but hopefully good) solution to (3)
through a network-flows heuristic.

3 Modelling Tables as Networks

It is well-known that he linear relations of a two-dimensional (r + 1) × (c + 1)
table defined by system Ax = b can be modeled as the network of Figure 1.
Arcs are associated to cells and nodes to constraints; row r +1 and column c+1
correspond to marginals.

.
.

.

1

2

.
.

.

2

c

r+1c+1

1

r

Fig. 1. Network representation of a (r + 1) × (c + 1) table

Two-dimensional tables with one hierarchical dimension can also be modeled
through a network [10]. Without loss of generality we will assume that hierar-
chies appear in rows. Before presenting the overall algorithm for computing the
network, we first illustrate it through the example of Figure 2. Row R2 of table
T1 has a hierarchical structure: R2 = R21 + R22. The decomposition of R2 is
detailed in T2. And row R21 of table T2 is also hierarchical; T3 shows its struc-
ture. Although in the example all the tables have the same number of rows, this
is not required in general. However, the number of columns must be the same
for all the tables; otherwise, we would not preserve the hierarchical structure in
only one dimension. Clearly every subtable can be modeled through a network
similar to that of Figure 1.

The hierarchical structure tree of the example is shown in Figure 3. That tree
has three levels, and one table per level. In general, we can have hierarchical
tables of any number of levels, and any number of tables per level (i.e., any
number of hierarchical rows for each table).

The procedure first computes a list of all the tables in the hierarchical struc-
ture tree, using a breadth-first order. If we denote it by BFL, we have for the
example BFL = {T1, T2, T3}. Next, the first table of the list is extracted (T1),
which is always the top table of the tree (i.e., that with the highest level of ag-
gregation). An initial network is created for T1. This is the hierarchical network,
which will be successively updated. It is depicted in table a) of Figure 4. For the
rest of tables in BFL, we start an iterative procedure that extracts one table
per iteration, creates its network, and updates the hierarchical network. When

140 Jordi Castro

T1

C1 C2 C3

R1 5 6 11
R2 10 15 25
R3 15 21 36

T2

C1 C2 C3

R21 8 10 18
R22 2 5 7
R2 10 15 25

T3

C1 C2 C3

R211 6 6 12
R212 2 4 6
R21 8 10 18

Fig. 2. Two-dimensional table with hierarchical rows made up of three (2+1)× (2+1)
subtables, T1, T2 and T3

T1

�
R2

T2

�
R21

T3.

Fig. 3. Hierarchical structure tree of the example of Figure 2

BFL is empty, the hierarchical network models the hierarchical table. In the
example, the first iteration extracts T2, and creates the network b) of Figure 4.
To update the hierarchical network we only need the parent table of T2 (i.e., T1)
and the row in the parent table expanded by T2 (i.e., R2). The node associated
to row R2 of table T1 in the hierarchical network will be the linking node for
the insertion of the network of T2. We now have (1) to remove node R2 and the
grand total arc in the network of T2; and (2) to replace node R2 of T1 in the
hierarchical network by the previously updated network of T2. This insertion
procedure is shown in network c) of Figure 4. Table T3 would be inserted in a
similar way in the last iteration. The overall algorithm is shown in Figure 5.

More complex tables (e.g., two-dimensional tables with hierarchies in both
dimensions) can be modeled as a network with additional side constraints. Al-
though the structure of such side constraints is simple (xi = xj , i.e., the value of
cell i is equal to the value of cell j), we can have a fairly large number of them.
In that case, specialized algorithms for network flows with side constraints can
show a similar performance than general state-of-the-art dual simplex imple-
mentations. Network-flows heuristics for CSP will, in general, not show a good
performance in these situations.

4 The Shortest-Paths Heuristic

The heuristic sensibly combines and improves the approaches suggested in [2]
and [4]. We will use the notation a = (s, t) for an arc a with source and target
nodes s and t. After modelling the table as a network, for each cell ai two
arcs x+

i = (s, t) and x−
i = (t, s) are defined, which are respectively related to

increments and decrements of the cell value. Arcs x+ are clockwise, and are those

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 141

R2

C1

C2

C3 R3

R1

R22

C1’

C2’

C3’ R2’

R21

C1

C2

C3 R3

R1

C3’

R21 C1’

C2’R22

11 6

5

1025
15

36

15

21

18

8

5

10

15

25

2

10

7

11 6

5
15

21

36

25

7

18

10

15

8

10

5

2

a) T1
b) T2

T1 T2c) +

Fig. 4. First iteration of the procedure for computing the network associated to the
example of Figure 2. a) Network of table T1. b) Network of table T2. c) Network after
including T2 in T1. Nodes of T2 with the same name in T1 are marked with a “′”

Algorithm Compute hierarchical network(tree of 2D tables)
1 Compute BFL, breadth-first list of tables in tree;
2 T0 = extract first(BFL);
3 N = network2D(T0); // N is the hierarchical network
4 while BFL is not empty do
5 T = extract first(BFL);
6 NT = network2D(T);
7 P= parent table of(T);
8 r= row in parent table(P ,T);
9 Update NT removing grand total arc and node of row r;
10 Update N replacing node of row r of P by NT ;
11 end while
End algorithm

Fig. 5. Algorithm for computing the network of a two-dimensional table with at most
one hierarchical dimension

that appear in the Figures 1 and 4. Arcs x− would be obtained in those figures
by changing the sense of the arrows of the arcs.

Figure 6 shows the main steps of the heuristic. Through the process, it up-
dates the set of secondary cells S, and two vectors Clpl and Cupl with the

142 Jordi Castro

Algorithm Shortest-paths Heuristic for CSP (Table,P, upl, lpl)
1 S = ∅; Clpli = 0, Cupli = 0, i ∈ P;
2 for each p ∈ P do
3 Find source and target nodes of primary arc x+

p = (s, t);
4 for each type of protection level ∗ ∈ {lpl, upl} do
5 T T = ∅;
6 while (C∗p < ∗p) do
7 Set arc costs;
8 Compute the shortest-path SP from t to s;
9 T = {cells associated to arcs ∈ SP};
10 Update Clpli and Cupli, i ∈ (P ∩ T) ∪ {p};
11 S := S ∪ T \ P;
12 T T := T T ∪ T ;
13 end while
14 end for each
15 end for each
End algorithm

Fig. 6. Shortest-paths heuristic for CSP in positive tables

current lower and upper protection of all the primaries. The heuristic performs
one major iteration for each primary cell p ∈ P (line 2 of Figure 6), and, unlike
other approaches, deals separately with the lower and upper protections (line 4).
If not already done by previous primaries, p is protected through one or possibly
several minor iterations (lines 6–13). At each minor iteration the arc costs of the
network are set. Arcs related to cells that can not be used are assigned a very
large cost. This is the only information to be updated for the network, unlike
previous approaches based on minimum-cost network flows problems, which also
modified node injections and arc bounds. A shortest-path from t to s is com-
puted, where x+

p = (s, t). The set S of secondary cells is updated with the cells
associated to arcs in the shortest-path (line 11). To avoid the solution of un-
necessary shortest-path subproblems for next primaries, we update not only the
protection levels of p, but also of all the primary cells in the shortest-path (line
10). This is a significant improvement compared to other methods. If several
shortest-paths problems are needed for p, cells in previously computed shortest-
paths for this primary must not be used (otherwise we can not guarantee the
protection of the cell). To this end, T T in Figure 6 maintains the list of cells
already suppressed for the protection of p.

We next discuss some of the relevant points of the heuristic.

– Protection Provided by the Shortest-Path. The shortest-path SP from
t to s is a list of l arcs x∗

i1
− x∗

i2
− · · · − x∗

il
, ∗ being + or − depending on the

arc orientation, such that x∗
i1

= (t, ti1), x∗
il

= (si1 , s), and x∗
ij

= (tij−1 , sij+1)
for all j = 2, . . . , l − 1. T = {i1, . . . , il} is the set of cells associated to the
arcs in the shortest-path. Defining

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 143

γ = min{ap, aij : ij ∈ T }, (4)

then we can send a flow γ through the shortest-path in either direction. That
means we can increase or decrease ap by γ without affecting the feasibility of
the table. If γ > max{lplp, uplp}, it follows from (2) that this cell is protected
by this shortest-path. This is basically the approach used in [4].
However, our heuristic exploits better the information provided by the shor-
test-path. It separately computes

γ+ = min{ap, aij : x+
ij

∈ SP} γ− = min{aij : x−
ij

∈ SP}. (5)

If there is no arc x−
ij

in SP , then γ− = ∞. γ+ gives the amount cell p can be
decreased without obtaining a negative cell. It is thus the lower protection of
p provided by this shortest-path. Analogously, the upper protection provided
is γ−. That permits to update separately and with different protections the
lower and upper levels. One immediate benefit of this procedure is that the
heuristic can deal with upper protections greater than the cell value (i.e.,
uplp > ap). Such large protections are often used for very small cell values.
For instance, if only arcs x+

ij
appear in SP , it is possible to infinitely increase

the value of cell p without compromising the feasibility of the table. Indeed,
in this case the upper protection level provided by the heuristic is γ− = ∞.
This can not be done with (4). Current protection levels Clpl and Cupl of p
and primary cells in T are updated using (5) in Figure 6.

– Arc Costs. The behaviour of the heuristic is governed by the costs of arcs
x+

i and x−
i associated to cells ai. Arcs not allowed in the shortest-path are

assigned a very large cost. For instance, this is done for arc x−
p to avoid

a trivial shortest-path from t to s. As suggested in [4], costs are chosen to
force the selection of: first, cells i ∈ P ∪ S and ai ≥ ∗p (∗ = lpl or ∗ = upl,
following the notation of Figure 6); second, cells i �∈ P ∪ S and ai ≥ ∗p;
third, cells i ∈ P ∪ S and ai < ∗p; and, finally, cells i �∈ P ∪ S and ai < ∗p.
This cost stratification attempts to balance the number of new secondary
suppressions and shortest-paths subproblems to be solved. Clearly, for each
of the above four categories, cells with the lowest ai values are preferred.
The particular costs used by the heuristic can be computed in a single loop
over the n cells; those suggested in [4] required two such loops.

– Shortest-Path Solver. Shortest-paths subproblems were solved through an
efficient implementation of the Dijkstra’s algorithm [1, Ch. 4]. Since we are
interested in the shortest-path to a single destination, a bidirectional version
was used. In practice, this can be considered the most efficient algorithm for
these kind of problems. As shown in the computational results of Section 5,
it is orders of magnitude faster than minimum-cost network flows codes for
large instances.

– Lower Bounding Procedure. We also included an improved version of
the lower bounding procedure introduced in [11]. It is used to obtain a lower
bound on the optimal solution. The relative gap between this lower bound
and the solution provided by the heuristic can be used as an approximate

144 Jordi Castro

Fig. 7. CPU time vs. number of cells for two-dimensional instances

measure of how far we are from the optimum. Unlike that of [11], our pro-
cedure includes, for all primary cell p, two constraints that force the value
of the other primary and secondary cells in the same row and column to
be greater than max{lplp, uplp} (otherwise, p is not protected). This new
formulation provides slightly better lower bounds. The procedure, originally
developed for two-dimensional tables, was extended to deal with hierarchical
ones.

5 Computational Results

The heuristic of Section 4 has been implemented in C. It is currently included
in the τ -Argus package [8] for tabular data protection. For testing purposes,
two instances generators for two-dimensional tables were developed, similar to
that of [11] (see [3] for details). A generator for hierarchical tables was also
designed and implemented. They can be obtained from the author on request. We
produced 54 two-dimensional instances, ranging from 62500 to 562500 cells, and
with p ∈ {1000, 2000, 3000}, p being the number of primary cells. Cells weights
were set to wi = ai (i.e., cell value). We also generated 72 two-dimensional
hierarchical tables, ranging from 1716 to 246942 cells and from 4 to 185 subtables,
with p ∈ {500, 1000}. Cells weights were set to wi = ai in half of the instances
and wi = 1 in the remaining ones. In all the cases the lower and upper protection
levels were a 15% of the cell value. Primary cells were assigned a value much
lower than for the other cells, which is usual in real data. All the executions were
carried on a standard PC with a 1.8 GHz Pentium-4 processor. Preliminary runs
on real data sets have only been performed for small two-dimensional tables [12].
In those instances, the shortest-paths heuristic was more efficient and provided
better solutions than the hypercube method [7].

The results obtained are summarized in Figures 7–12. Figures 7–8 show,
respectively for the two-dimensional and hierarchical tables, the CPU time in

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 145

Fig. 8. CPU time vs. number of cells for hierarchical instances

Fig. 9. CPU ratio between CPLEX and Dijkstra vs. number of cells for two-dimensional
instances

seconds vs. the number of cells of the table, for the different number of primary
cells. Clearly, the CPU time increases with both p and the number of cells.
However, the shortest-path heuristic was able to solve all the instances in few
seconds.

Figures 9–10 show, again for the two-dimensional and hierarchical tables, the
efficiency of the shortest-path heuristic compared to other methods. We applied
the heuristic twice, formulating the subproblems as minimum-cost network flows
(as previous approaches did), and as shortest-paths. The minimum-cost network
flows subproblems were solved with the network simplex option of CPLEX 7.5,
a state-of-the-arc implementation. The largest instances were not solved because
CPLEX required an excessive execution time. The vertical axes of the figures
show the ratio of the CPU time of CPLEX 7.5 and the implementation of Di-

146 Jordi Castro

Fig. 10. CPU ratio between CPLEX and Dijkstra vs. number of cells for hierarchical
instances

Fig. 11. Gap vs. number of cells for two-dimensional instances

jkstra’s algorithm used in the heuristic. For the two-dimensional tables we plot
separately the instances for the different p values. Similarly, two lines are plot-
ted in Figure 10, one for each type of weights (tw = 1 and tw = 2 in the figure
correspond to wi = ai and wi = 1, respectively). We observe that the ratio
time increases with the table dimension, and it is of about 1900 for the largest
instance. Therefore, it can be clearly stated that the shortest-paths formulation
is instrumental in the performance of the heuristic.

Finally, Figures 11–12 show, for respectively the two-dimensional and hier-
archical tables, the quality of the solution obtained. The vertical axes show the
relative gap (ws − lb)/ws, ws being the weight suppressed by the heuristic, and
lb the computed lower bound. Those figures must be interpreted with caution.
At first sight, it could be concluded that the heuristic works much better for

A Fast Network Flows Heuristic for Cell Suppression in Positive Tables 147

Fig. 12. Gap vs. number of cells for hierarchical instances

two-dimensional than for hierarchical tables. However, the lower bounding pro-
cedure could be providing better bounds for two-dimensional tables. It is thus
difficult to know which factor – the quality of the heuristic or the quality of the
lower bounding procedure – explains the much larger gap for hierarchical tables.
Both factors likely intervene, and in that case network flows heuristics (either
formulating minimum-cost or shortest paths subproblems) would behave better
for two-dimensional than for hierarchical tables.

6 Conclusions

From our computational experience, it can be concluded that shortest-paths
heuristics are much more efficient than those based on minimum-cost network
flows formulations. It was also observed that such heuristics seem to work better
for two-dimensional than for hierarchical tables. To avoid over-suppression, the
former would require a clean-up procedure, similar to that of [11]. However,
unlike previous approaches, and for efficiency reasons, this clean-up procedure
would only solve shortest-paths subproblems. This is part of the future work to
be done.

References

1. Ahuja, R.K, Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall (1993)
2. Carvalho, F.D., Dellaert, N.P., Osório, M.D.: Statistical disclosure in two-

dimensional tables: general tables. J. Am. Stat. Assoc. 89 (1994) 1547–1557
3. Castro, J.: Network flows heuristics for complementary cell suppression: an em-

pirical evaluation and extensions. Lect. Notes in Comp. Sci. 2316 (2002) 59–73.
Volume Inference Control in Statistical Databases, ed. J. Domingo-Ferrer. Springer.

4. Cox, L.H.: Network models for complementary cell suppression. J. Am. Stat. Assoc.
90 (1995) 1453–1462

148 Jordi Castro

5. Fischetti, M., Salazar, J.J.: Models and algorithms for optimizing cell suppression
in tabular data with linear constraints. J. Am. Stat. Assoc. 95 (2000) 916–928

6. Giessing, S.: New tools for cell-suppression in τ -Argus: one piece of the CASC
project work draft. Joint ECE/Eurostat Work Session on Statistical Data Confi-
dentiality, Skopje (2001).

7. Giessing, S, Repsilber, D.: Tools and strategies to protect multiples tables with the
GHQUAR cell suppression engine. Lect. Notes in Comp. Sci. 2316 (2002) 181–192.
Volume Inference Control in Statistical Databases, ed. J. Domingo-Ferrer. Springer.

8. Hundepool, A.: The CASC project. Lect. Notes in Comp. Sci. 2316 (2002) 172–
180. Volume Inference Control in Statistical Databases, ed. J. Domingo-Ferrer.
Springer.

9. ILOG CPLEX: ILOG CPLEX 7.5 Reference Manual Library. ILOG (2001)
10. Jewett, R.: Disclosure analysis for the 1992 Economic Census. Manuscript, Eco-

nomic Programming Division, Bureau of the Census (1993)
11. Kelly, J.P., Golden, B.L, Assad, A.A.: Cell Suppression: disclosure protection for

sensitive tabular data. Networks 22 (1992) 28–55
12. Mas, M.: Test report on network solution for large unstructured 2 dimensional

tables in τ–Argus 2.2.2. CASC Project Deliverable 6-D6. Basque Statistics Office
(2003).

13. Robertson, D.: Improving Statistic’s Canada cell suppression software (CONFID).
Proceedings of Compstat 2000.

	1 Introduction
	2 Formulation of CSP
	3 Modelling Tables as Networks
	4 The Shortest-Paths Heuristic
	5 Computational Results
	6 Conclusions
	References

