
A Parallel Implementation of an Interior-Point

Algorithm for Multicommodity Network Flows�

Jordi Castro1�� and Antonio Frangioni2

1 Statistics and Operations Research Dept.,
Universitat Politècnica de Catalunya

Pau Gargallo 5, 08028 Barcelona (Spain)
jcastro@eio.upc.es

2 Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa (Italy)

frangio@di.unipi.it

Abstract. A parallel implementation of the specialized interior-point
algorithm for multicommodity network flows introduced in [5] is pre-
sented. In this algorithm, the positive definite systems of each iteration
are solved through a scheme that combines direct factorization and a
preconditioned conjugate gradient (PCG) method. Since the solution of
at least k independent linear systems is required at each iteration of the
PCG, k being the number of commodities, a coarse-grained parallelliza-
tion of the algorithm naturally arises. Also, several other minor steps of
the algorithm are easily parallelized by commodity. An extensive set of
computational results on a shared memory machine is presented, using
problems of up to 2.5 million variables and 260,000 constraints. The re-
sults show that the approach is especially competitive on large, difficult
multicommodity flow problems.

1 Introduction

Multicommodity flows are among the most challenging linear problems, due
to the large size of these models in real world applications (e.g., routing in
telecommunications networks). Indeed, these problems have been used to test
the efficiency of early interior-point solvers for linear programming [1]. The need
to solve very large instances has led to the development of both specialized
algorithms and parallel implementations.

In this paper, we present a parallel implementation of a specialized interior-
point algorithm for multicommodity flows [5]. In this approach, the block-angular

� This work has been supported by the European Center for Parallelism of Barcelona
(CEPBA).

�� Author supported by CICYT Project TAP99-1075-C02-02.

J.M.L.M. Palma et al. (Eds.): VECPAR2000, LNCS 1981, pp. 301–315, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

302 Jordi Castro and Antonio Frangioni

structure of the coefficient matrix is exploited for performing in parallel the solu-
tion of small linear systems related to the different commodities, unlike general-
purpose parallel interior-point codes [2,8,18] where the parallelization effort is
focused on the Cholesky factorization of one large system. This has already been
proposed [17,10,14]; however, all the previous approaches require to compute and
factorize the Schur complement. This can become a significant serial bottleneck,
since this matrix is usually prohibitively dense. Although this bottleneck can
be partly eluded by using parallel linear algebra routines, our approach takes a
more radical route by avoiding to form the Schur complement, and using an iter-
ative method instead. There have been other proposals along these lines [23,15],
but limited to the sequential case; also, so far no results have been shown for
these algorithms. The implementation presented in this paper significantly im-
proves on the preliminary one described in [6]. There, only some of the major
routines were parallelized, and less attention was paid to communication and
data distribution. Working on these details allowed us to obtain new and better
computational results.

From the multicommodity point of view, this approach is different from most
other parallel solvers [7,16,20,26,22,13] in that is not based on a decomposition
approach. The structure of the multicommodity flow problem has led to a num-
ber of specialized algorithms, most of which share the idea of decomposing in
some way the problem into a set of smaller independent problems. These are
all iterative methods, where at each step the subproblems are solved, and their
results are used in some way to modify the subproblems to be solved at the next
iteration. Hence, these approaches are naturally suited for coarse-grained paral-
lelization. Parallel price-directive decomposition approaches have been proposed
based on bundle methods [7,20], analytic center methods [13] or linear-quadratic
penalty functions [22]. Parallel resource-directive approaches are described in
[16]. Finally, experiences with a parallel interior-point decomposition method
are presented in [26]. A discussion of these and other parallel decomposition
approaches can be found in [7]. A general description of the parallelization of
mathematical programming algorithms can be found in [3,24].

The paper is organized as follows. Section 2 presents the formulation of the
problem to be solved. Section 3 outlines the specialized interior-point algorithm
for multicommodity flows proposed in [5], including a brief description of the
general path-following method. Section 4 deals with the parallelization issues of
the algorithm. Finally, Section 5 presents and discuss the computational results.

2 Problem Formulation

The multicommodity flow problem requires to find the least-cost routing of a
set of k commodities through a network of m nodes and n arcs, where the arcs
have an individual capacity for each commodity, and a mutual capacity for all
the commodities. The node-arc formulation of the problem is

An Interior-Point Algorithm for Multicommodity Network Flows 303

min
∑k

i=1 c
ixi

s.t.




E 0 . . . 0 0
0 E . . . 0 0
...

...
. . .

...
...

0 0 . . . E 0
I I . . . I I







x1

x2

...
xk

x0


 =




b1

b2

...
bk

u




0 ≤ x0 ≤ u , 0 ≤ xi ≤ ui i = 1 . . . k.

(1)

Vectors xi ∈ IRn are the flow arrays for each commodity, while x0 ∈ IRn are the
slacks of the mutual capacity constraints. E ∈ IRm×n is the node-arc incidence
matrix of the underlying directed graph, while I denotes the n × n identity
matrix. We shall assume that E is a full row-rank matrix: this can always be
guaranteed by removing any of the redundant node balance constraints. ci ∈ IRn

and ui ∈ IRn are respectively the flow cost vector and the individual capacity
vector for commodity i, while u ∈ IRn is the vector of the mutual capacities.
Finally, bi ∈ IRm is the vector of supplies/demands for commodity i at the
nodes of the network.

The multicommodity flow problem is a linear program with m̄ = km + n
constraints and n̄ = (k+1)n variables. In some real-world models, k can be very
large: for instance, in many telecommunication problems a commodity represents
the flow of data/voice between two given nodes of the network, and therefore k ≈
m2. Thus, the resulting linear program can be huge even for graphs of moderate
size. However, the coefficient matrix of the problem is highly structured: it has
a block-staircase form, each block being a node-arc incidence matrix. Several
methods have been proposed which exploit this structure; one is the specialized
interior-point algorithm described in the next section.

3 A Specialized Interior-Point Algorithm

In [5], a specialized interior-point algorithm for multicommodity flows has been
presented and tested. This algorithm, and the code that implements it, will be
referred to as IPM.

IPM is a specialization of the path-following algorithm for linear program-
ming [27]. Let us consider the following linear programming problem in primal
form

min { cx : Ax = b, x+ s = u, x, s ≥ 0 } , (2)

where x ∈ IRn̄ and s ∈ IRn̄ are respectively the primal variables and the slacks
of the box constraints, u ∈ IRn̄, c ∈ IRn̄ and b ∈ IRm̄ are respectively the upper
bounds, the cost vector and the right hand side vector, and A ∈ IRm̄×n̄ is a full
row-rank matrix. The dual of (2) is

max { yb− wu : yA+ z − w = c, z, w ≥ 0 } , (3)

where y ∈ IRm̄, z ∈ IRn̄ and w ∈ IRn̄ are respectively the dual variables of the
structural constraints Ax = b, the dual slacks and the dual variables of the box
constraints x ≤ u.

304 Jordi Castro and Antonio Frangioni

Replacing the inequalities in (2) by a logarithmic barrier in the objective
function, with parameter µ, the KKT optimality conditions of the resulting
problem are

rxz ≡ µe−XZe = 0
rsw ≡ µe− SWe = 0
rb ≡ b−Ax = 0
rc ≡ c− (yA+ z − w) = 0
ru ≡ u− x− s = 0

(x, s, z, w) ≥ 0 ,

(4)

where e is the vector of 1’s of proper dimension, and each uppercase letter
corresponds to the diagonal matrix having as diagonal elements the entries of
the corresponding lowercase vector. In the algorithm we impose ru = 0, i.e.
s = u− x, thus eliminating n̄ variables.

The (unique) solutions of (4) for each possible µ > 0 describe a continuous
trajectory, known as the central path, which, as µ tends to 0, converges to the
optimal solutions of (2) and (3). A path-following algorithm attempts to reach
close to these optimal solutions by following the central path. This is done by
performing a damped version of Newton’s iteration applied to the nonlinear
system (4), as shown in (5). The steplengths αP and αD are the maximum
allowable values in the range (0, 1] such that the new iterate will keep on being
strictly positive (note that when αP = αD = 1 the algorithm performs a pure
Newton iteration). A more detailed description of the algorithm can be found in
many linear programming textbooks, e.g. [27].

Procedure PathFollowing(A, b, c, u):
Initialize x > 0, s > 0, y, z > 0, w > 0;
while (x, s, y, z, w) is not optimum do

Θ = (X−1Z + S−1W)−1;
r = S−1rsw + rc −X−1rxz;
(AΘAT)∆y = rb +AΘr;
∆x = Θ(AT∆y − r);
∆w = S−1(rsw +W∆x);
∆z = rc +∆w −AT∆y;
Compute αP ∈ (0, 1], αD ∈ (0, 1];
x← x+ αP∆x;
(y, z, w)← (y, z, w) + αD(∆y,∆z,∆w);

(5)

The main computational burden of the algorithm is the solution of the system

(AΘAT)∆y = rb +AΘr ≡ b̄ . (6)

Note that AΘAT is symmetric and positive definite, as Θ is clearly a posi-
tive definite diagonal matrix. Usually, interior-point codes solve (6) through a
Cholesky factorization, preceeded by a permutation of the columns ofA aimed at

An Interior-Point Algorithm for Multicommodity Network Flows 305

minimizing the fill-in effect. Several effective heuristics have been developed for
computing such a permutation. Unfortunately, when A is the constraints matrix
of (1), the Cholesky factors of AΘAT turn out to be rather dense anyway [5].

However, the structure of A can be used to solve (6) without computing
the factorization of AΘAT . Note that Θ is partitioned into the k blocks Θi,
i = 1 . . . k, one for each commodity, plus the block Θ0 corresponding to the
slack variables x0 of the mutual capacity constraints. Hence,

AΘAT =
[
B C
CT D

]
=



EΘ1ET . . . 0 EΘ1

...
. . .

...
...

0 . . . EΘkET EΘk

Θ1ET . . . ΘkET Θ0 +
∑k

i=1 Θ
i


 , (7)

i.e., B is the block diagonal matrix having the m ×m matrices Bi = EΘiET ,
i = 1 . . . k, as diagonal elements, and

CT =
[
CT

1 . . . CT
k

]
=
[
Θ1ET . . .ΘkET

]
.

Exploiting (7), and partitioning the vectors ∆y and b̄ accordingly, the solution
of (6) is reduced to(

D −
k∑

i=1

CT
i B

−1
i Ci

)
∆y0 = b̄0 −

k∑
i=1

CT
i B

−1
i b̄i ≡ β0 (8)

Bi∆y
i = (b̄i − Ci∆y

0) ≡ βi, i = 1 . . . k . (9)

The matrix

H = D − CTB−1C = D −
k∑

i=1

CT
i B

−1
i Ci (10)

is known as the Schur complement.
Thus, (6) can be solved by means of (8), involving the Schur complement H ,

followed by the k subsystems (9) involving the matrices Bi. The latter step can
be easily parallelized. However, solving (8) with a direct method, as advocated in
[17,10], requires forming and factorizing H . As shown in [5], this matrix typically
becomes rather dense, hence such a direct approach may become computation-
ally too expensive. Furthermore, it represents a formidable serial bottleneck for
a parallel implementation of the code. As suggested in [17], this bottleneck can
be reduced by using parallel linear algebra routines [2,8,18]. However, it is also
possible to avoid forming H at all, solving (8) by means of an iterative algorithm.

Since H is symmetric and positive definite, a preconditioned conjugate gra-
dient (PCG) method can be used. In [5], a family of preconditioners is proposed,
based on the following characterization of the inverse of H :

H−1 =

(∞∑
i=0

(D−1Q)i
)
D−1 where Q =

k∑
i=1

CT
i B

−1
i Ci (11)

306 Jordi Castro and Antonio Frangioni

A preconditioner for (8) can be obtained by truncating the above power series at
the h-th term. Clearly, the higher h, the better the preconditioning will be, and
the fewer PCG iterations will be required. However, preconditioning one vector
requires solving k×h linear systems involving the matrices Bi, thereby increasing
the cost of each PCG iteration. The best trade-off between the reduction of the
iterations count and the cost of each iteration is h = 0, corresponding to the
diagonal preconditioner D−1 [5].

The IPM code, implementing this algorithm, has shown to be competitive
with a number of other sequential approaches [5]. It is written mainly in C,
with only the Cholesky factorization routines (devised by E. Ng and B. Peyton
[21]) coded in Fortran. Both the sequential and parallel versions can be freely
obtained for academic purposes from

http://www-eio.upc.es/~jcastro/software.html.

4 Parallelization of the Algorithm

The solution of (6) is by far the most expensive procedure in the interior-point
algorithm, consuming up to 97% of the total execution time for large problems.
With the above approach, this can be accomplished by means of the following
steps:

– Factorization of the k matrices Bi; note that the current implementation
uses sequential Cholesky solvers, but parallel Cholesky solvers could be used
for increasing the degree of parallelism of the approach.

– Computation of β0 = b̄0 −∑k
i=1 C

T
i B

−1
i b̄i, which requires k backsolves on

the factorizations of Bi and matrix-vector products of the form CT
i v

i.
– For each iteration of the PCG, computation of (D−∑k

i=1 C
T
i B

−1
i Ci)v, which

requires backsolves on the factorizations of Bi and matrix-vector products
of the form Civ

i and CT
i v

i.
– Computation of βi = b̄i − Ci∆y

0, which requires matrix-vector products of
the form Civ

i.
– Solution of the systems Bi∆y

i = βi.

Hence, most of the parallelization effort boils down to performing in parallel
the factorization of the Bis, backward and forward substitution with these fac-
torizations and matrix-vector products involving Ci or CT

i . Thus, there is no
need for sophisticated implementations of parallel linear algebra routines. Note
that higher-order preconditioners (h > 0) would complicate somehow the above
scheme, but the basic blocks would remain the same.

Although the above procedures are by far the most important, a number
of other minor steps can be easily parallelized, such as the computation of the
other primal and dual directions (∆xi, ∆zi, ∆wi), the computation of the primal
and dual steplenghts αP and αD, the updating of the current primal and dual
solution, the computation of the primal and dual objective function values and so
on. It is easy to see that all the data concerning one given commodity i (xi, ci, ui,
yi, wi . . .) can be stored in the local memory of the one processor that is in charge

An Interior-Point Algorithm for Multicommodity Network Flows 307

of that commodity, and it is never required by other processors. This ensures a
good “locality” of data, and a low need for inter-processor communication. It
should also be noted that the number of operations required for each commodity
is the same, which guarantees the load balancing between processors, at least as
long as the number of commodities assigned to each processor is the same.

4.1 Parallel Programming Environment

The parallel version of the IPM code, pIPM, has been developed on the Sili-
con Graphics Origin2000 (SGI O2000) server located at the European Center
for Parallelism of Barcelona (CEPBA), running an IRIX64 6.5 Unix operat-
ing system. The SGI O2000 offers both message-passing and shared-memory
programming paradigms, although the main memory is physically distributed
among the processors. The server has 64 MIPS R10000 processors running at
250Mhz, each of them with 32+32Kb L1 cache and 4Mb L2 cache and credited
of 14.7 SPECint95 and 24.5 SPECfp95. A total of 8Gb of memory is distributed
among these processing elements. This computer appeared at position 275 of the
TOP500 November 1998 supercomputer sites list [11].

The default programming style supported by the SGI O2000 is a custom
shared-memory version of C [25], with parallel constructs specified by means
of compiler directives (#pragmas). Both OpenMP and SGI-specific pragmas are
supported by the SGI O2000, but we mainly used the SGI-specific ones for the
current version of pIPM. Placement of the memory on the processors and com-
munication is hidden to the programmer and automatically performed by the
system. The main advantage of this choice is ease of portability: existing codes
can be parallelized with a limited effort. It is even possible to avoid maintain-
ing two different versions (sequential and parallel) of the same code, which is
important to optimize the development efforts.

However, this programming style also has a number of drawbacks, mainly a
limited control over memory ownership and limited support for vector-broadcast
and vector-reduce operations. Placement of the data structures in the local mem-
ory of the processors can be only partly (and indirectly) influenced by the pro-
grammer. Also, the granularity of memory placement is that of the virtual mem-
ory pages (16K) rather than that of the individual data structures. All this can
result in cache misses and page faults from the local memory of each processor,
decreasing the performance of the parallel codes. Although advanced directives
allow a more detailed control over these features, the use of those directives re-
quires a more extensive rewriting of the code, thus loosing part of the benefits in
terms of portability and ease of maintenance. Because of that, the computational
results presented in Section 5 were obtained with the default data distribution
provided by the system (the same used in [2]). However, the assignment of com-
modities to processors was optimized for this distribution, hopefully limiting the
possible negative effects. The limited support for broadcast/reduce operations
is understandable in a shared-memory oriented language; however, it may result
in poorer performances for codes, like pIPM, where these operations amount at
almost the totality of the communication time.

308 Jordi Castro and Antonio Frangioni

5 Computational Results

5.1 The Instances

Three sets of multicommodity instances were used for the computational exper-
iments. The first is made up of 18 problems obtained with an improved version
of Ali and Kennington’s Mnetgen generator [12]. These instances are very large
(up to about 2.5 millions of variables and 260,000 constraints), with a number of
commodities which varies from very few (8) to quite many (512). This is useful
for characterizing the trends in the performances of the code as the number of
commodities varies [7,12].

The second set consists of ten of the PDS (Patient Distribution System)
problems. These problems arise from a logistic model for evacuating patients
from a place of military conflict. The different instances arise from the same
basic scenario by varying the time horizon, i.e., the number of days covered by
the model. The PDS problems have been considered, until recently, essentially
impossible to solve with a high degree of accuracy. Although this has changed,
they are still quite challenging multicommodity instances.

The third set of problems is made of the four Tripart problems and of the
Gridgen1 problem. These instances were obtained respectively with the Tripar-
tite generator and with a multicommodity version of the well-known Gridgen
single-commodity flow generator [4]. These are very difficult multicommodity
flow instances, as shown in Section 5.3.

The dimensions of each problem are reported in Tables 1, 2 and 3. Columns
“m”, “n”, and “k” show the number of nodes, arcs, and commodities. Columns
“n̄” and “m̄” give the number of variables and constraints of the linear problem.
All the instances can be downloaded from

http://www.di.unipi.it/di/groups/optimize/Data.

5.2 Performance Measures

The following well-known performance measures [3] will be considered for assess-
ing the performances of pIPM. Denoting by Tp the execution time obtained with
p processors, the speedup Sp with p processors can be defined as Sp = T1/Tp.
The fraction of the sequential execution time consumed in the parallel region of
the code will be denoted by f ; values of f close to 1 are necessary in order to
obtain good speedups, as demonstrated by Amdahl’s law

Sp ≤ Sp =
1

f/p+ (1− f)
≤ 1

(1 − f)
.

The efficiency with p processors is

Ep =
Sp

p
≤ Ep =

Sp

p
.

Ep represents the fraction of the time that a particular processor (of the p
available) is usefully employed during the execution of the algorithm. Sp and Ep

An Interior-Point Algorithm for Multicommodity Network Flows 309

are respectively the ideal speedup and efficiency, the maximum ones that can be
obtained due to the inherent serial bottlenecks in the algorithm.

Another interesting performance measure is the absolute speedup, obtained
by replacing T1 with the execution time of the best serial algorithm known. This
is usually difficult to obtain, and it will be discussed separately.

5.3 The Results

Tables 1, 2 and 3 show the computational results obtained. Columns “IP” and
“PCG” report the total number of interior-point and PCG iterations, respec-
tively. Column “f” gives the fraction of the total sequential time consumed in
the parallel region of the code. Column “p” gives the number of processors used
in the execution. “Tp” denotes the execution (wall-clock) time, excluding initial-
izations. Columns “Sp” and “Ep” give respectively the observed speedups and
efficiencies, while columns “Sp” and “Ep” report their ideal values.

Analyzing the results, the following trends emerge:

– f is always fairly large, and increases with the problem size; the largest
problems attain very high ideal efficiencies. This indicates that the approach
has a good potential for scalability, at least in theory, for very large scale
problems.

– For fixed p and k, Ep almost always increases with the size of the underlying
network, in all three groups of instances. This is reasonable: the computa-
tional burden of the PCG iteration grows quadratically with the number
of nodes, while the communication cost grows only linearly. This seems to
indicate that the approach is especially suited for problems where the size
of the network is large w.r.t. the number of commodities. Remarkably, IPM
has been shown to be particularly efficient, at least w.r.t. decomposition
approaches, exactly for this kind of instances [12].

– Keeping p and the size of the network fixed, Ep initially increases with k;
however for “large” values of k Ep stalls, and may even decrease. This phe-
nomenon, clearly visible in the Mnetgen results, is difficult to explain. For
fixed p, increasing k can, in theory, only increase the fraction of time that is
spent in the parallel part of the algorithm, while the sequential bottleneck
and the communication requirements should remain the same. Indeed, Ep

is monotonically nondecreasing with k. This decrease in efficiency is most
likely an effect of the page-based memory placement, which may cause data
logically pertaining to one processor to be physically located on another.

– For any fixed instance, Ep obviously decreases as p increase; unfortunately,
the decrease is much faster than that predicted by Ep, so that the gap
between Ep and Ep increases with p. However, for fixed p the gap decreases
when the size of the network increase, and a similar—although less clear—
trend seems to exist w.r.t. k. Thus, whatever mechanism be responsible for
this discrepancy between Ep andEp, its effects seem to lessen as the instances
grow larger.

310 Jordi Castro and Antonio Frangioni

Table 1. Dimensions and results for the Mnetgen problems.

m n k n̄ m̄ f IP PCG p Tp Sp Sp Ep Ep

128-8 128 1089 8 9801 2113 92.2 42 831 1 3.2 1.0 1.0 1.0 1.0
8 2.1 1.5 5.2 0.2 0.6

128-16 128 1114 16 18938 3162 95.1 48 2530 1 14.3 1.0 1.0 1.0 1.0
8 7.7 1.9 6.0 0.2 0.7

16 8.0 1.8 9.2 0.1 0.6
128-32 128 1141 32 37653 5237 95.4 56 2355 1 32.1 1.0 1.0 1.0 1.0

8 12.9 2.5 6.1 0.3 0.8
16 13.8 2.3 9.5 0.1 0.6
32 19.6 1.6 13.2 0.1 0.4

128-64 128 1171 64 76115 9363 97.1 72 5480 1 139.2 1.0 1.0 1.0 1.0
8 39.7 3.5 6.7 0.4 0.8

16 34.7 4.0 11.1 0.3 0.7
32 28.6 4.9 16.9 0.2 0.5
64 40.3 3.5 22.6 0.1 0.4

128-128 128 1204 128 155316 17588 96.6 85 5033 1 409.2 1.0 1.0 1.0 1.0
8 74.4 5.5 6.5 0.7 0.8

16 122.8 3.3 10.6 0.2 0.7
32 122.7 3.3 15.6 0.1 0.5
64 73.3 5.6 20.4 0.1 0.3

256-8 256 2165 8 19485 4213 95.6 57 2713 1 20.7 1.0 1.0 1.0 1.0
8 8.3 2.5 6.1 0.3 0.8

256-16 256 2308 16 39236 6404 96.5 59 3465 1 58.0 1.0 1.0 1.0 1.0
8 21.0 2.8 6.4 0.3 0.8

16 21.3 2.7 10.5 0.2 0.7
256-32 256 2314 32 76362 10506 97.3 67 5438 1 252.2 1.0 1.0 1.0 1.0

8 52.6 4.8 6.7 0.6 0.8
16 44.2 5.7 11.4 0.4 0.7
32 54.6 4.6 17.4 0.1 0.5

256-64 256 2320 64 150800 18704 98.0 80 7644 1 757.3 1.0 1.0 1.0 1.0
8 128.5 5.9 7.0 0.7 0.9

16 93.7 8.1 12.3 0.5 0.8
32 99.1 7.6 19.8 0.2 0.6
64 169.3 4.5 28.3 0.1 0.4

256-128 256 2358 128 304182 35126 98.8 98 12535 1 2672.1 1.0 1.0 1.0 1.0
8 351.3 7.6 7.4 1.0 0.9

16 298.7 8.9 13.6 0.6 0.8
32 257.0 10.4 23.3 0.3 0.7
64 263.5 10.1 36.4 0.2 0.6

256-256 256 2204 256 566428 67740 98.9 107 16901 1 6725.1 1.0 1.0 1.0 1.0
8 1219.7 5.5 7.4 0.7 0.9

16 763.4 8.8 13.7 0.6 0.9
32 502.0 13.4 23.9 0.4 0.7
64 477.9 14.1 37.8 0.2 0.6

512-8 512 4373 8 39357 8469 96.4 66 3870 1 90.5 1.0 1.0 1.0 1.0
8 22.9 4.0 6.4 0.5 0.8

512-16 512 4620 16 78540 12812 97.6 73 5364 1 322.3 1.0 1.0 1.0 1.0
8 72.0 4.5 6.8 0.6 0.9

16 63.1 5.1 11.8 0.3 0.7
512-32 512 4646 32 153318 21030 98.8 103 22460 1 2721.4 1.0 1.0 1.0 1.0

8 454.7 6.0 7.4 0.7 0.9
16 299.3 9.1 13.6 0.6 0.8
32 289.3 9.4 23.3 0.3 0.7

512-64 512 4768 64 309920 37536 99.2 95 27004 1 9244.5 1.0 1.0 1.0 1.0
8 1271.5 7.3 7.6 0.9 0.9

16 702.8 13.2 14.3 0.8 0.9
32 507.9 18.2 25.6 0.6 0.8
64 563.8 16.4 42.6 0.3 0.7

512-128 512 4786 128 617394 70322 99.3 112 28631 1 19385.9 1.0 1.0 1.0 1.0
8 3237.0 6.0 7.6 0.7 1.0

16 1780.6 10.9 14.5 0.7 0.9
32 1271.5 15.2 26.3 0.5 0.8
64 848.5 22.8 44.4 0.4 0.7

512-256 512 4810 256 1236170 135882 99.5 130 32676 1 43251.2 1.0 1.0 1.0 1.0
8 7401.6 5.8 7.7 0.7 1.0

16 5306.7 8.2 14.9 0.5 0.9
32 2783.7 15.5 27.7 0.5 0.9
64 2205.9 19.6 48.7 0.3 0.8

512-512 512 4786 512 2455218 266930 99.6 194 48229 1 135753.7 1.0 1.0 1.0 1.0
8 25257.7 5.4 7.8 0.7 1.0

16 14198.4 9.6 15.1 0.6 0.9
32 8325.3 16.3 28.5 0.5 0.9
64 5226.0 26.0 51.1 0.4 0.8

An Interior-Point Algorithm for Multicommodity Network Flows 311

Table 2. Dimensions and results for the PDS problems.

m n k n̄ m̄ f IP PCG p Tp Sp Sp Ep Ep

PDS1 126 372 11 4464 1758 83.3 30 169 1 0.7 1.0 1.0 1.0 1.0
6 0.5 1.3 3.3 0.2 0.5

11 0.7 0.9 4.1 0.1 0.4
PDS10 1399 4792 11 57504 20181 94.7 66 1107 1 44.8 1.0 1.0 1.0 1.0

6 25.3 1.8 4.7 0.3 0.8
11 24.6 1.8 7.2 0.2 0.7

PDS20 2857 10858 11 130296 42285 96.6 69 1911 1 254.1 1.0 1.0 1.0 1.0
6 70.9 3.6 5.1 0.6 0.9

11 62.6 4.1 8.2 0.4 0.7
PDS30 4223 16148 11 193776 62601 97.9 92 3835 1 777.1 1.0 1.0 1.0 1.0

6 206.4 3.8 5.4 0.6 0.9
11 189.2 4.1 9.1 0.4 0.8

PDS40 5652 22059 11 264708 84231 97.9 73 1872 1 1288.1 1.0 1.0 1.0 1.0
6 258.4 5.0 5.4 0.8 0.9

11 194.1 6.6 9.1 0.6 0.8
PDS50 7031 27668 11 332016 105009 98.8 100 4711 1 3486.4 1.0 1.0 1.0 1.0

6 727.3 4.8 5.7 0.8 0.9
11 530.1 6.6 9.8 0.6 0.9

PDS60 8423 33388 11 400656 126041 99.0 106 5215 1 6262.0 1.0 1.0 1.0 1.0
6 1252.4 5.0 5.7 0.8 1.0

11 745.4 8.4 10.0 0.8 0.9
PDS70 9750 38396 11 460752 145646 99.2 116 7015 1 10873.8 1.0 1.0 1.0 1.0

6 2112.2 5.1 5.8 0.9 1.0
11 1268.5 8.6 10.2 0.8 0.9

PDS80 10989 42472 11 509664 163351 99.2 107 3768 1 8855.0 1.0 1.0 1.0 1.0
6 1726.3 5.1 5.8 0.9 1.0

11 1093.8 8.1 10.2 0.7 0.9
PDS90 12186 46161 11 553932 180207 99.4 135 9357 1 20784.3 1.0 1.0 1.0 1.0

6 3950.5 5.3 5.8 0.9 1.0
11 2447.8 8.5 10.4 0.8 0.9

Table 3. Dimensions and results for the Tripart and Gridgen problems.

m n k n̄ m̄ f IP PCG p Tp Sp Sp Ep Ep

Tripart1 192 2096 16 35632 5168 93.6 65 3733 1 34.9 1.0 1.0 1.0 1.0
4 21.3 1.6 3.4 0.4 0.8
8 17.9 1.9 5.5 0.2 0.7

16 19.6 1.8 8.2 0.1 0.5
Tripart2 768 8432 16 143344 20720 91.8 63 2652 1 156.6 1.0 1.0 1.0 1.0

4 71.6 2.2 3.2 0.5 0.8
8 55.4 2.8 5.1 0.4 0.6

16 60.3 2.6 7.2 0.2 0.4
Tripart3 1200 16380 20 343980 40380 94.9 84 9343 1 1140.7 1.0 1.0 1.0 1.0

4 408.4 2.8 3.5 0.7 0.9
10 300.5 3.8 6.9 0.4 0.7
20 304.8 3.7 10.2 0.2 0.5

Tripart4 1050 24815 35 893340 61565 95.6 96 8498 1 3273.2 1.0 1.0 1.0 1.0
5 893.7 3.7 4.3 0.7 0.9
7 721.5 4.5 5.5 0.6 0.8

35 601.1 5.4 14.0 0.2 0.4
Gridgen1 1025 3072 320 986112 331072 99.5 173 49981 1 37234.9 1.0 1.0 1.0 1.0

8 10533.2 3.5 7.7 0.4 1.0
16 7678.7 4.8 14.9 0.3 0.9
32 4426.5 8.4 27.7 0.3 0.9
64 3248.6 11.5 48.7 0.2 0.8

312 Jordi Castro and Antonio Frangioni

Since, except for PDS problems with p = 6, each processor is assigned the
same number of commodities, there can be no load imbalance between the pro-
cessors. Thus, the gap between Ep and Ep can only be explained as being due
to communication time. Indeed, pIPM requires more communication than most
other parallel codes for multicommodity flows. Most of communication occurs
during the computation of

(
D −∑k

i=1 C
T
i B

−1
i Ci

)
v, where v is the current esti-

mate of the solution of (8), at each PCG iteration. This requires first the broad-
cast of v from the “master” processor (the one executing the serial-only part
of the code) to all the other processors, followed by a vector-reduce operation
to accumulate all the partial results CT

i B
−1
i v back to the “master” processor.

The amount of communication is essentially the same as in the decomposition
approaches [7,13,22], and substantially lower than that of the other specialized
parallel interior-point codes [17,10], which need to share the (dense) matrices
CT

i B
−1
i Ci in order to form the Schur complement H . However, in pIPM com-

munication occurs at every PCG iteration, i.e., much more often than in decom-
position codes. The other specialized parallel interior-point codes have a much
smaller number of communication “rounds”, one for each interior-point iteration,
although each round is more expensive.

Thus, pIPM may be inherently more vulnerable to slowdowns induced by
communication costs. Indeed, the efficiency of pIPM seems to be, on average,
somehow worse than that of the approach in [17], even though direct comparison
is difficult due to the different sets of test problems. The instances used in [17]
are much smaller, and the cost of forming and factorizing H grows rapidly with
the size of the problem.

Furthermore, the current implementation of pIPM, using the parallel con-
structs available in the SGI O2000 C compiler [25], is not aggressively optimized
particularly in the two critical operations, i.e., broadcasts and vector-reduces.
Both are currently obtained by means of read/write operations to shared vec-
tors, which are presumably less efficient than the typical system-provided imple-
mentation which exploits information about the topology of the interconnection
network and the available communication hardware. Also, a part of the commu-
nication overhead could be due to a non-optimal placement of the data structures
in the local memory of the processors, especially at the boundaries of the virtual
memory pages. Thus, we believe that there is still room for (potentially large) re-
ductions of the gap between the observed and the theoretical speedup/efficiency
of the code. However, pIPM already attains quite satisfactory efficiencies in some
instances, most notably the largest PDS problems.

As far as the absolute speedup is concerned, IPM is known not to be the
fastest sequential code for some of the test instances. In [12], a bundle-based
decomposition approach has been shown to outperform IPM on the Mnetgen
instances, while IPM was competitive on the PDS problems. Furthermore, re-
cent developments in the field of simplex methods [19] have lead to impressive
performance improvements for these algorithms on multicommodity flow prob-
lems. Nowadays, even the largest PDS problems can be solved in less than an

An Interior-Point Algorithm for Multicommodity Network Flows 313

Table 4. Comparing Cplex 6.5, IPM, and pIPM on the Tripart and Gridgen
problems.

Problem IPM Cplex 6.5 Cplex6.5 / pIPM∗

Tripart1 40 74 3.3
Tripart2 249 627 6.5
Tripart3 1584 2851 6.7
Tripart4 4983 33235 36.3
Gridgen1 126008 ≥ 2.8e+6 253.1
∗ Considering the maximum number of
processors for pIPM

hour of CPU with the state-of-the-art simplex code Cplex 6.5 [9]. However, the
simplex method is not easily parallelized. Furthermore, other multicommodity
problems, like the Tripart and the Gridgen, are much more difficult to solve;
ε-approximation algorithms can approximatively solve them in a relatively short
time [4], but only if the required accuracy is not high. On these instances, the
interior-point algorithm in Cplex 6.5 is far more efficient than the dual simplex,
but it is in turn largely outperformed by IPM, as shown in Table 4. Columns
“IPM” and “Cplex 6.5” show the running time required for the solution of the
problem by IPM and Cplex 6.5, respectively, on a Sun Ultra2 2200/200 worksta-
tion (credited of 7.8 SPECint95 and 14.7 SPECfp95) with 1Gb of main memory.
The last column shows the estimated ratio between the running time of Cplex
6.5 and that of pIPM run on the largest possible number of processors, prov-
ing that, at least for the largest and more difficult instances of the set, pIPM
provides a competitive approach.

6 Conclusions and Future Research

The parallel code pIPM presented in this work can be an efficient tool for the
solution of certain types of large and difficult multicommodity problems. Quite
good speedups are achieved in some instances, such as the large PDS problems. In
other cases, a gap between the ideal efficiency and the observed one exists. How-
ever, we are confident that a more efficient implementation of reduce/broadcast
operations and a better placement of data structures—which could mean using
MPI or PVM as parallel environments—can make pIPM even more competitive
on a widest range of multicommodity instances.

References

1. Adler, I., Resende, M.G.C., Veiga, G.: An implementation of Karmarkar’s algorithm
for linear programming. Math. Prog. 44 (1989) 297–335

2. Andersen, E.D., Andersen, K.D.: A parallel interior-point algorithm for linear pro-
gramming on a shared memory machine. CORE Discussion Paper 9808 (1998),
CORE, Louvain-La-Neuve, Belgium

314 Jordi Castro and Antonio Frangioni

3. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation. Prentice-
Hall, Englewood Cliffs (1995)

4. Bienstock D.: Approximately solving large-scale linear programs. I: Strengthen-
ing lower bounds and accelerating convergence. CORC Report 1999–1 (1999),
Columbia University, NY

5. Castro, J.: A specialized interior-point algorithm for multicommodity network flows.
SIAM J. on Opt. 10(3) (2000) 852–877

6. Castro, J.: Computational experience with a parallel implementation of an interior-
point algorithm for multicommodity network flows. In: M. Powell, S. Scholtes (eds.):
System Modelling and Optimization. Methods, Theory and Applications. Kluwer,
New York (2000) 75–95

7. Cappanera, P., Frangioni, A.: Symmetric and asymmetric parallelization of a cost-
decomposition algorithm for multi-commodity flow problems. INFORMS J. on
Comp., to appear (2000)

8. Coleman, T.F., Czyzyk, J., Sun, C., Wagner, M., Wright, S.J.: pPCx: parallel soft-
ware for linear programming. Proceedings of the Eight SIAM Conference on Parallel
Processing in Scientific Computing, SIAM, March 1997

9. ILOG CPLEX: ILOG Cplex 6.5 Reference Manual Library. ILOG (1999).

10. De Silva, A., Abramson, D.A.: A parallel interior-point method and its application
to facility location problems. Computational Optimization and Applications 9(3)
(1998) 249–273

11. Dongarra, J.J., Meuer, H.W., Strohmaier, E.: TOP500 supercomputer sites. Tech-
nical Report UT-CS-98-404 (1998), Computer Science Dept. University of Ten-
nessee

12. Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear multicom-
modity min cost flow problems. INFORMS J. on Comp. 11(4) (1999) 370–393

13. Gondzio, J., Sarkissian, R., Vial, J.-P.: Parallel implementation of a central decom-
position method for solving large scale planning problems. HEC Technical Report
98.1 (1998)

14. Jessup, E.R., Yang, D., Zenios, S.A.: Parallel factorization of structured matrices
arising in stochastic programming. SIAM J. on Opt. 4(4) (1994) 833–846

15. Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.: Computational and com-
plexity results for an interior-point algorithm on multicommodity flow problems.
Technical Report TR-21-93 (1993), Dip. di Informatica, Università di Pisa, Italy

16. Kontogiorgis, S., De Leone, R., Meyer, R.R.: Alternating directions splitting for
block angular parallel optimization. JOTA 90(1) (1996) 1–29

17. Lustig, I.J., Li, G.: An implementation of a parallel primal-dual interior-point
method for block-structured linear programs. Computational Optimization and Ap-
plications 1 (1992) 141–161

18. Lustig, I.J., Rothberg, E.: Gigaflops in linear programming. O.R. Letters 18(4)
(1996) 157–165

19. McBride, R.D.: Advances in Solving the Multicommodity Flow Problem. SIAM J.
on Opt. 8(4) (1998) 947–955

20. Medhi, D.: Parallel bundle-based decomposition for large-scale structured mathe-
matical programming problems. Annals of O.R. 22 (1990) 101–127

21. Ng, E., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM J. Sci. Comput. 14 (1993) 1034–1056

22. Pinar, M.C., Zenios, S.A.: Parallel decomposition of multicommodity network flows
using a linear-quadratic penalty algorithm. ORSA J. on Comp. 4 (1992) 235–249

An Interior-Point Algorithm for Multicommodity Network Flows 315

23. Portugal, L.. Resende, M.G.C.. Veiga, G.. Júdice, J.: A truncated interior-point
method for the solution of minimum cost flow problems on an undirected multicom-
modity flow network. Proceedings of First Portuguese National Telecommunications
Conference, Aveiro, Portugal (1997) 381–384 (in Portuguese)

24. Rosen, J.B. (ed.): Supercomputers and large-scale optimization: algorithms, soft-
ware, applications. Annals of O.R. 22 (1990)

25. Silicon Graphics Inc.: C Language Reference Manual (1998)
26. Schultz, G., Meyer, R.: An interior-point method for block-angular optimization.

SIAM J. on Opt. 1 (1991) 583–682
27. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA (1997)

	Introduction
	Problem Formulation
	A Specialized Interior-Point Algorithm
	Parallelization of the Algorithm
	Parallel Programming Environment

	Computational Results
	The Instances
	Performance Measures
	The Results

	Conclusions and Future Research

