
Automatic Structure Detection in Constraints of
Tabular Data

Jordi Castro1,�,�� and Daniel Baena2

1 Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya,

Jordi Girona 1–3, 08034 Barcelona, Catalonia
jordi.castro@upc.edu

http://www-eio.upc.es/~jcastro
2 Institut d’Estad́ıstica de Catalunya,

Via Laietana 58, 08003 Barcelona, Catalonia
dbaena@idescat.net

Abstract. Methods for the protection of statistical tabular data—as
controlled tabular adjustment, cell suppression, or controlled rounding—
need to solve several linear programming subproblems. For large multi-
dimensional linked and hierarchical tables, such subproblems turn out
to be computationally challenging. One of the techniques used to reduce
the solution time of mathematical programming problems is to exploit
the constraints structure using some specialized algorithm. Two of the
most usual structures are block-angular matrices with either linking rows
(primal block-angular structure) or linking columns (dual block-angular
structure). Although constraints associated to tabular data have intrin-
sically a lot of structure, current software for tabular data protection
neither detail nor exploit it, and simply provide a single matrix, or at
most a set of smallest submatrices. We provide in this work an efficient
tool for the automatic detection of primal or dual block-angular struc-
ture in constraints matrices. We test it on some of the complex CSPLIB
instances, showing that when the number of linking rows or columns is
small, the computational savings are significant.

Keywords: statistical disclosure control, cell suppression, controlled
tabular adjustment, linear constraints, multilevel matrix ordering algo-
rithms.

1 Introduction

From an algorithmic point of view, one of the main differences between disclo-
sure control techniques for microdata and tabular data is that the latter must
deal with many linear constraints, associated to total and subtotal cells. Cur-
rent methods for tabular data protection, such as, e.g., cell suppression [4,9,14],
controlled tabular adjustment [6,12] and controlled rounding [10,20], deal with

� Supported by the Spanish MCyT Project TIC2003-00997.
�� Corresponding author.

J. Domingo-Ferrer and L. Franconi (Eds.): PSD 2006, LNCS 4302, pp. 12–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automatic Structure Detection in Constraints of Tabular Data 13

those linear additivity constraints through mathematical programming technol-
ogy. Unfortunately, the resulting optimization problems turn out to be compu-
tationally expensive, even for continuous variables. For instance, the simplex
algorithm, which is the preferred option for many linear programming prob-
lems [2], has shown to be inefficient compared to polynomial-time interior-point
algorithms [21] when dealing with tabular data constraints [6,20].

One of the most used techniques in mathematical programming for reducing
the computational cost of a problem is to exploit its structure, either through
decomposition or partitioned basis factorization. Two of the most relevant struc-
tures are primal block-angular

A =

⎡
⎢⎢⎢⎢⎢⎣

A1
A2

. . .
Ak

L1 L2 . . . Lk

⎤
⎥⎥⎥⎥⎥⎦

, (1)

where k is the number of diagonal blocks, A ∈ IRm×n, Ai ∈ IRmi×ni , Li ∈
IRl×ni , i = 1, . . . , k, and dual block-angular

A =

⎡
⎢⎢⎢⎣

A1 L1
A2 L2

. . .
...

Ak Lk

⎤
⎥⎥⎥⎦ , (2)

k, A, Ai being as before, and Li ∈ IRmi×l. Structures (1) and (2) appear in prob-
lems with l linking constraints and l linking variables, respectively, and have been
extensively studied in the literature [3, Chapter 12]. Classical decomposition
procedures, based on the simplex method, are Dantzig-Wolfe for primal block-
angular structures [13], and Benders for dual block-angular ones [1]. Specialized
interior-point approaches for structured problems have also been recently sug-
gested [8,15]; these are promising approaches for tabular data protection, since,
as noted above, interior-point methods outperform simplex implementations in
this class of problems. It is worth noting that homogeneous sizes for diagonal
blocks Ai benefit the performance of any decomposition approach, mainly if
some sort of parallelism is going to be applied.

Unfortunately, current methods and software for tabular data protection do
not exploit constraints structure in general tables. Structure has only been ex-
ploited for two-dimensional tables with at most one hierarchical variable, whose
constraints are modeled as a network [7,9], and for three-dimensional tables,
that provide multicommodity network models [5]. For general tables, state-of-
the-art protection software, as τ -Argus [17], provide a single constraints matrix,
or at most a set of linked submatrices, without detailing each matrix structure.
Indeed, the constraints structure is particular to each kind of table, and it is
not clear that fully exploiting such structure would be worthy for an optimiza-
tion algorithm. In addition, writing software for the detection of the particular

14 J. Castro and D. Baena

structure of any table would be a cumbersome task. The purpose of this work
is to overcome such difficulties, i.e., to develop and test a tool for automatic
detection of structures (1) and (2) in constraints matrices derived from tabular
data. The tool developed is based on the multilevel matrix ordering algorithm
for unsymmetric matrices of [16]. Unlike other highly recognized and efficient
algorithms, such as that implemented in METIS [18], the former is tailored for
unsymmetric matrices, which is the case for tabular data constraints. The pro-
cedure is applied to a set of standard tabular data instances, being its behaviour
instance dependent: for most instances and k = 2 a small linking block (i.e.,
l/m (l/n) for primal (dual) block-angular structures is less than 0.2), whereas
for others the relative size of the linking block can be up to 0.4 (for k > 2 these
relative sizes of the linking block grow). When the relative size of the linking
block is small it makes sense to apply a decomposition approach, and we pro-
vide preliminary computational results comparing the performance of a linear
programming solver depending on whether structure is exploited.

The paper is organized as follows. Section 2 outlines the multilevel matrix re-
ordering algorithm and gives details about its implementation. Section 3 reports
results using this algorithm on a standard set of tabular data instances. Finally,
Section 4 analyzes the computational savings due to using the reordered matrix
in a mathematical programming solver.

2 The Matrix Reordering Algorithm

Given any matrix, obtaining the optimal reordering that transforms the matrix
into either the primal block-angular structure (1) or the dual one (2) is a difficult
combinatorial optimization problem (in this context, “optimal” means “with the
smallest linking block”). Several heuristics have been provided in the past for
this problem. We have chosen the recent multilevel approach of [16], which is
among the most efficient ones for unsymmetric matrices, and it is implemented in
commercial libraries (e.g., in routine HSL MC66L of the HSL archive, formerly
the Harwell Subroutine Library). A comprehensive description of such algorithm
is out of the scope of this work, and it will just be outlined; details can be found
in [16] and references therein.

We first define some concepts to be used later in the overview of the algorithm.
Given a sparse matrix A ∈ IRm×n, the net of column j is the number of rows
associated to such column, i.e, {i ∈ {1, . . . , m} : aij �= 0}. A row partition is a
partition of the set of rows {1, . . . , n}, i.e., R1, R2 such that R1 ∩ R2 = ∅ and
R1 ∪ R2 = {1, . . . , m}. A net is cut by a row partition if there are rows of the
net in both R1 and R2. The net-cut of a row partition is the number of nets cut
by this row partition. Note that in a block-diagonal matrix, i.e, without neither
linking constraints nor linking columns, the net-cut is zero. Therefore this is the
value to be reduced by any heuristic in order to obtain close-to-block-angular
structures. The gain is the decrement of the net-cut obtained after moving a
row from R1 to R2 or vice-versa; the gain is negative if the net-cut is increased.

Automatic Structure Detection in Constraints of Tabular Data 15

The edge-weight of rows (i1, i2) is the number of columns shared by these rows,
i.e, the cardinality of {j ∈ {1, . . . , n} : ai1,j �= 0 and ai2,j �= 0}.

(0)A
(0)A

A(1)
A(1)

A(2)
A(2)

A(3)
A(3)

A(4)

C
oa

rs
en

in
g

ph
as

e
U

ncoarsening phase

Initial partitioning

Fig. 1. The three stages of the multilevel ordering algorithm: coarsening, partitioning,
uncoarsening; example with 4 levels

The multilevel ordering algorithm of [16] is made of the three following stages,
which are shown in Figure 1:

Coarsening phase. Matrix A = A(0) is successively transformed in a sequence
of smaller matrices A(1), A(2), . . . , A(r), r being the deepest level, such that
the number of rows is reduced at each transformation, i.e., m = m(0) >
m(1) > m(2) > . . . > m(r). The procedure successively collapses the “closest
rows” in a single one using the notion of edge-weight defined above. In our
particular implementation we used the heavy-edge matching criterion of [18]
(see that reference for details).

Partitioning phase. It is based on the classical Kernighan-Lin (KL) heuristic
[19] for partitioning graphs. Graphs are known to be associated to symmetric
sparse matrices, i.e., aij �= 0 and aji �= 0 if there is an edge joining nodes
i and j in the graph. The KL heuristic can be extended for unsymmetric
matrices if we use the notion of net-cut and gain, instead of the original one
of edge-cut (i.e., number of edges in a graph cut by a node partition) of
the KL algorithm. In short, the KL algorithm is an iterative procedure that
starting from an initial row partition R

(0)
1 , R

(0)
2 , performs two nested loops.

The inner iterations successively look for the row with the largest gain. This
row is obtained from the set R

(0)
1 or R

(0)
2 with the maximum cardinality, in

an attempt to guarantee similar dimensions for diagonal blocks. This row is
moved to the other subset of rows, subsets R

(i)
1 , R

(i)
2 are updated, and the

row is locked. This is performed until all rows have been locked. This ends
the inner iterations. The outer iterations repeat the above sequence of inner
iterations, unlocking all rows at the beginning, until there is no improvement
in the overall net-cut. The procedure records the best partitioning up to now
obtained, which is returned as the solution.

16 J. Castro and D. Baena

If one needs more than two diagonal blocks (i.e., k > 2 in (1) or (2)), the
KL algorithm can be recursively applied to any resulting submatrix defined
by R1 or R2, thus eventually obtaining a row partition R1, R2, . . . , Rk.

Uncoarsening phase. During this phase the partitioning of A(r) is projected
to the original matrix through matrices A(r−1), A(r−2), . . ., A(1), A(0). Two
rows i1 and i2 collapsed in a single one in Ah belonging to Rp, 1 ≤ p ≤ k,
will appear as two different rows of Rp in Ah−1 . Optionally, any new matrix
Ah can be refined with the KL algorithm.

The KL algorithm itself can be applied to the matrix A (i.e., as if we had a
single level algorithm, or equivalently with a coarsening phase with r = 0). How-
ever, as it will be shown in Section 3, it is computationally expensive, because of
the large number of rows m of A, and can provide unsatisfactory partitionings.
On the other hand, applied in combination with a multilevel approach (i.e, coars-
ening and uncoarsening phases) it is extremely efficient, and the partitioning is
significantly improved. Note that the coarsening phase collapses rows with the
largest edge-weight, and such rows are expected to be in the same subset Rp in
a solution, which is exactly what the uncoarsening phase does.

The multilevel algorithm above described has been implemented in C, in
a library named UMOA (unconstrained matrix ordering algorithm), which is
roughly made of 3100 lines of code. The package can be freely obtained from the
authors. It has been optimized using efficient data structures for the coarsening
and uncoarsening phases (i.e., AVL trees), as well as for the computation and
updating of gains and net-cuts in the KL algorithm. Among the several features
of the package, we mention that: (i) when k > 2 the package allows full control to
the user about how to recursively obtain the additional subsets Rp from R1 and
R2; (ii) it can be used to obtain both primal and dual block-angular structures
(1) and (2). (We note that the reordered matrix in primal block-angular form
is not equivalent to the transpose of the reordered matrix in dual block-angular
form.)

3 Reordering Tabular Data Instances

We applied the multilevel reordering algorithm of Section 2 to a subset of the
CSPLIB test suite, a set of instances for tabular data protection (Fischetti
and Salazar 2001), plus to additional large instances (“five20b”, and “five20c”).
CSPLIB can be freely obtained from http://webpages.ull.es/users/casc/-
#CSPlib:. CSPLIB contains both low-dimensional artificially generated prob-
lems, and real-world highly structured ones. Some of the complex instances were
contributed by National Statistical Agencies—as, e.g., Centraal Bureau voor de
Statistiek (Netherlands), Energy Information Administration of the Department
of Energy (U.S.), Office for National Statistics (United Kingdom) and Statistis-
ches Bumdesant (Germany).

Table 1 shows the features of the instances considered. The small CSPLIB
instances were omitted. Column “Name” shows the instance identifier. Columns
“n”, “m” and “N. coef” provide, respectively, the number of columns (cells),

Automatic Structure Detection in Constraints of Tabular Data 17

Table 1. Dimensions of the largest CSPLIB instances

Name n m N.coef
bts4 36570 36310 136912
five20b 34552 52983 208335
five20c 34501 58825 231345
hier13 2020 3313 11929
hier13x13x13a 2197 3549 11661
hier13x7x7d 637 525 2401
hier16 3564 5484 19996
hier16x16x16a 4096 5376 21504
jjtabeltest 3025 1650 7590
nine12 10399 11362 52624
nine5d 10733 17295 58135
ninenew 6546 7340 32920
targus 162 63 360
toy3dsarah 2890 1649 9690
two5in6 5681 9629 34310

rows (additivity constraints) and nonzero coefficients of the constraints matrix
A to be reordered.

Tables 2, 3 and 4 show, respectively, the results obtained reordering the matri-
ces in dual block-angular form for k = 2, in primal block-angular form for k = 2,
and in dual-block angular form for k = 4 and 8. Last two columns of Tables 2
and 3 provide information for the single level algorithm (i.e., KL algorithm was
applied to the whole matrix). Columns “m1”, “n1”, “m2” and “n2” of tables 2
and 3 provide the number of rows mi and columns ni of the two diagonal blocks.
Columns “100·l/n” (“100·l/m”) of Tables 2 and 4 (Table 3) give the relative size
of the linking columns (constraints) block. Columns “CPU” of the three tables
report the seconds of CPU time required to compute the reordering. The runs
were carried on a standard PC running Linux with an AMD Athlon 1600+ at
1.4GHz and 320 MB of RAM. Therefore, the reordered matrix can be efficiently
obtained without the need of sophisticated computational resources.

From Tables 2–4 it can be concluded that:

– The multilevel approach is instrumental in reordering tabular data con-
straints. It is not only one order of magnitude faster that the single level
approach, but also provides much better reorderings (i.e., the linking block
becomes much narrower). In particular, all the matrices could be reordered
in few seconds on a desktop computer.

– The sizes of the diagonal blocks are similar, which may be a benefit for an
optimization solver. This is also instrumental if parallel computations want
to be exploited.

– The size of the linking block is instance dependent (from 7.4% in instance
“bts4” of Table 2 to 59.8% in instance “hier16” of Table 3). Thus, in principle,
not all the reordered matrices are appropriate for a specialized solver for
structured problems.

18 J. Castro and D. Baena

Table 2. Results for dual block-angular ordering with k = 2

Multilevel Single level
A1 A2

Name m1 n1 m2 n2 100 · l/n CPU 100 · l/n CPU
bts4 17838 16898 18472 16937 7.4 2 21.4 53
five20b 25196 14343 27787 15586 13.3 6 48.4 597
five20c 28820 14034 30005 15093 15.5 7 54.3 416
hier13 1656 583 1657 563 43.2 0 45.0 0
hier13x13x13a 1890 774 1659 526 40.8 0 46.0 0
hier13x13x7d 792 419 651 218 46.1 0 37.8 0
hier16 2486 740 2998 1069 49.2 1 55.2 1
hier16x16x16a 2614 1074 2762 1138 45.9 0 45.2 0
jjtabeltest 849 1269 801 1383 12.3 0 15.1 0
ninenew 3007 2115 4333 3085 20.5 0 40.5 1
nine5d 9007 4568 8288 4303 17.3 1 47.1 9
nine12 5880 4249 5482 4098 19.7 3 35.5 3
targus 19 26 44 92 27.1 0 21.6 0
toy3dsarah 741 1118 908 1389 13.2 0 24.7 0
two5in6 5344 1749 4285 1502 42.7 0 56.7 3

Table 3. Results for primal block-angular ordering with k = 2

Multilevel Single level
A1 A2

Name m1 n1 m2 n2 100 · l/m CPU 100 · l/m CPU
bts4 16307 18389 16137 18181 10.5 2 21.7 37
five20b 26006 17735 22576 16817 12.7 4 57.9 50
five20c 26693 17286 26218 17215 17.1 5 60.3 41
hier13 1375 1091 1076 929 42.6 0 53.7 0
hier13x13x13a 1320 1075 1428 1122 36.4 0 51.6 0
hier13x13x7d 483 562 510 621 38.0 0 36.8 0
hier16 1674 1732 1676 1832 59.8 0 60.4 0
hier16x16x16a 1989 2118 1676 1978 41.7 0 44.6 0
jjtabeltest 737 1457 686 1568 7.5 0 16.8 0
ninenew 3181 3239 2721 3307 21.9 1 46.8 1
nine5d 7111 5383 7975 5350 20.5 1 40.5 2
nine12 4846 5206 4666 5193 17.7 1 45.6 2
targus 22 82 22 80 11.7 0 19.1 0
toy3dsarah 534 1446 529 1444 20.2 0 20.2 0
two5in6 3630 2816 3817 2865 38.4 0 37.1 0

– In general, the size of the linking block increases with k, the number of diag-
onal blocks. Although the more diagonal blocks, the more “decomposable”
becomes the solution of linear systems of equations involving that matrix
(see Section 4), the overall solution procedure can become very inefficient
due to a large linking block. This tradeoff is usually optimized by small

Automatic Structure Detection in Constraints of Tabular Data 19

Table 4. Results for dual block-angular ordering with k = 4 and k = 8

k = 4 k = 8
Name 100 · l/n CPU 100 · l/n CPU
bts4 15.4 3 22.9 3
five20b 34.0 7 43.8 9
five20c 26.8 9 44.9 11
hier13 66.9 0 82.8 0
hier13x13x13a 64.1 0 80.8 0
hier13x13x7d 71.7 0 88.6 0
hier16 73.2 1 85.4 0
hier16x16x16a 69.4 0 83.7 0
jjtabeltest 24.6 0 36.9 0
ninenew 34.1 0 54.3 0
nine5d 44.3 1 70.6 1
nine12 31.0 1 47.6 1
targus 53.7 0 54.3 0
toy3dsarah 45.6 0 68.9 0
two5in6 73.9 0 87.2 0

values of k (e.g., k = 2, 3 or 4), unless the information about the data allows
specific larger ones.

– Primal and dual block-angular structures provide linking blocks of different
size. The best (primal or dual) ordering is instance dependent, and it seems
not to be a clear trend.

The above conclusions are consistent with those obtained in [16] for other types
of matrices (for the dual block-angular structure, the only one considered in
[16]).

Figures 2–5 of Appendix A show the original matrix, 2-blocks dual, 2-blocks
primal, and 4-blocks dual reorderings for the four largest instances tested.

4 Using the Reordered Matrices

The numerical kernel of any optimization algorithm is to deal with linear systems
of equations derived from the constraints matrix. If the block bordered structure
of the constraints matrix is exploited, significant savings can be obtained. This is
valid for both simplex and interior-point methods, which have been extensively
used for cell-suppression, controlled tabular adjustment, and controlled round-
ing. We will focus on the use of primal block-angular matrices in interior-point
methods (which have shown to be the most efficient option for tabular data),
and will test them for the controlled tabular adjustment problem.

The main computational burden of an interior-point method [21] is to solve
systems of equation with matrix AΘAT , where Θ is a diagonal positive definite
matrix. For our purposes, and without loss of generality, we will assume Θ = I,
thus, the system to be solved is

20 J. Castro and D. Baena

(AAT)Δy = g. (3)

This system is named the “normal equations” and it is usually solved by a sparse
Cholesky factorization. If A has the structure of (1), we can recast the matrix
of system (3) as

AAT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1A
T
1 A1L

T
1

. . .
...

AkAT
k AkLT

k

L1A
T
1 . . . LkAT

k

∑k
i=1 LiL

T
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

B C
CT D

]
, (4)

B, C and D being the blocks of AAT . Appropriately partitioning g and Δy in
(3), the normal equations can be written as

[
B C
CT D

] [
Δy1
Δy2

]
=

[
g1
g2

]
. (5)

By eliminating Δy1 from the first group of equations of (5), we obtain

(D − CT B−1C)Δy2 = (g2 − CT B−1g1) (6)
BΔy1 = (g1 − CΔy2). (7)

Therefore we have reduced the solution of system (3) to the solution of systems
with matrix B (which is made of k smallest subsystems AiA

T
i , i = 1, . . . , k)

and with one system with matrix (D − CT B−1C), which is named the “Schur
complement” of (3). In general, if the solution of systems with AiA

T
i , i = 1, . . . , k

are not too expensive, and the sparsity (the number of nonzero elements) of the
Schur complement is not degraded (i.e, decreased too much), we can obtain
significant computational savings by solving (6)–(7) instead of (3). Moreover,
there are efficient procedures for (6) based on iterative linear solvers [8].

The above procedure, using a preconditioned conjugate gradient (i.e., itera-
tive solver) for (6) with a specialized preconditioner (see [5,8] for details), has
been implemented in an interior-point package for primal block-angular prob-
lems [8]. Such procedure can be used for the efficient solution of controlled tab-
ular adjustment (CTA) problems, once the tabular data constraints have been
previously reordered as shown in Section 3. Table 5 reports preliminary compu-
tational results with an early implementation of CTA based on the specialized
interior-point algorithm of [8]. For each of the instances of Table 1—but the
two largest ones, that failed with the iterative solver—we solved systems (6)–
(7) from some interior-point iterations with a sparse Cholesky factorization (the
standard procedure used by general interior-point solvers, such as CPLEX) and
with the specialized procedure of [8]. Column “Ratio time” of Table 5 show the
ratio between both solution times, i.e., how many times faster is the specialized
procedure compared to the standard one. We note that the problems were not

Automatic Structure Detection in Constraints of Tabular Data 21

Table 5. Ratio time for the solution of CTA by an interior-point method without and
with exploitation of structure

Name Ratio time
bts4 1.5
hier13 12.7
hier13x13x13a 11.6
hier13x13x7d 3.9
hier16 43.5
hier16x16x16a 43.2
jjtabeltest 0.7
ninenew 7.5
nine5d 2.8
nine12 5.1
targus 1.0
toy3dsarah 6.0
two5in6 10.9

solved up to optimality with the approach of [8], since that procedure has still to
be tuned for problems like CTA (which has, for instance, equality linking con-
straints instead of the inequality ones considered in [8]). However those figures
are a good indicator of the expected overall performance in the solution of CTA
by exploiting the constraints structure in an interior-point method.

5 Conclusions

The structure detection tool used in this work for constraints of tabular data
can provide significant computational savings for CTA, and, in general, for any
tabular data protection method that has to solve a sequence of linear program-
ming subproblems. Many additional tasks have still to be done. Among them,
the main one is to tune the specialized approach of [8] for fully exploiting the
reordered matrix, and for obtaining an optimal solution to CTA in a fraction of
the time needed by a general solver.

References

1. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Computational Management Science 2 (2005) 3–19

2. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress.
Operations Research 50 (2002) 3–15

3. Bradley, S.P, Hax, A.C., Magnanti, T.L.: Applied Mathematical Programming.
Addison-Wesley, Reading (1977).

4. Castro, J.: Network flows heuristics for complementary cell suppression: an em-
pirical evaluation and extensions. Lect. Notes in Comp. Sci. 2316 (2002) 59–73.
Volume Inference Control in Statistical Databases, ed. J. Domingo-Ferrer, Springer,
Berlin

22 J. Castro and D. Baena

5. Castro, J.: Quadratic interior-point methods in statistical disclosure control. Com-
putational Management Science 2 (2005) 107–121

6. Castro, J.: Minimum-distance controlled perturbation methods for large-scale tab-
ular data protection. European Journal of Operational Research 171 (2006) 39–52

7. Castro, J.: A shortest paths heuristic for statistical disclosure control in positive ta-
bles. To appear in INFORMS Journal on Computing. Available as Research Report
DR 2004/10 Dept. of Statistics and Operations Research, Universitat Politècnica
de Catalunya, 2004

8. Castro, J.: An interior-point approach for primal block-angular problems. To ap-
pear in Computational Optimization and Applications (2007). Available as Re-
search Report DR 2005/20 Dept. of Statistics and Operations Research, Universi-
tat Politècnica de Catalunya, 2005

9. Cox, L.H.: Network models for complementary cell suppression. J. Am. Stat. Assoc.
90 (1995) 1453–1462

10. Cox, L. H., George, J. A.: Controlled rounding for tables with subtotals. Annals
of Operations Research 20 (1989) 141–157

11. Dandekar, R.A.: personal communication (2005)
12. Dandekar, R.A., Cox, L.H.: Synthetic tabular Data: an alternative to complemen-

tary cell suppression, manuscript, Energy Information Administration, U.S.
13. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations

Research 8 (1960) 101–111
14. Fischetti, M., Salazar, J.J.: Solving the cell suppression problem on tabular data

with linear constraints. Management Science 47 (2001) 1008–1026
15. Gondzio, J., Sarkissian, R.: Parallel interior point solver for structured linear pro-

grams. Mathematical Programming 96 (2003) 561–584
16. Hu, Y.F., Maguire, K.C.F., Blake, R.J.: A multilevel unsymmetric matrix ordering

algorithm for parallel process simulation. Computers and Chemical Engineering
23 (2000) 1631–1647

17. Hundepool, A.: The CASC project. Lect. Notes in Comp. Sci. 2316 (2002) 172–
180. Volume Inference Control in Statistical Databases, ed. J. Domingo-Ferrer,
Springer, Berlin

18. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing 20 (1999) 359–392.

19. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Systems Technical Journal 49 (1970) 291–308

20. Salazar, J.J.: Controlled rounding and cell perturbation: statistical disclosure limi-
tation methods for tabular data. Mathematical Programming 105 (2006) 583–603

21. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997).

Automatic Structure Detection in Constraints of Tabular Data 23

A Sparsity Pattern of Original and Reordered Matrices

a) b)

c) d)

Fig. 2. Results for instance bts4: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

a) b)

c) d)

Fig. 3. Results for instance five20b: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

24 J. Castro and D. Baena

a) b)

c) d)

Fig. 4. Results for instance five20c: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

a) b)

c) d)

Fig. 5. Results for instance nine5d: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

	Introduction
	The Matrix Reordering Algorithm
	Reordering Tabular Data Instances
	Using the Reordered Matrices
	Conclusions
	Sparsity Pattern of Original and Reordered Matrices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

