
Computational experience with a parallel implementation
of an interior-point algorithm for multicommodity

network flows

Jordi Castro †
Statistics and Operations Research Dept.

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona

Abstract: A parallel implementation of the specialized interior-point algorithm for multicom-

modity network flows introduced in [6] is presented. In this algorithm, the positive definite

systems of each iteration are solved through a scheme that combines direct factorizations and

a preconditioned conjugate gradient (PCG) method. Although this numerical procedure works

well in practice, it requires the solution of at least k systems of equations at each iteration of

the PCG, k being the number of commodities to be routed through the network.

In order to reduce the time spent by the PCG method, we propose the application of

coarse-grained parallel strategies for computing the k linear systems of equations at each PCG

iteration. Since the number of arithmetic operations to be performed for each commodity is the

same, the load balancing between processors is guaranteed, which avoids unnecessary delays.

An extensive set of computational results on a shared memory machine are presented, using

problems of up to 2.5 million variables and 260,000 constraints. For the largest PDS (Patient

Distribution System) problems, the efficiency of the parallel implementation developed is about

80%, which confirms that it can be a promising tool for very large and difficult multicommodity

instances.

Keywords: interior-point methods, linear programming, multicommodity network flows, par-
allel computing.

1. Introduction

Multicommodity flows are one of the most challenging problems for linear programming
solvers. This is partly due to the large size of these models in real world applications (e.g., rout-
ing in telecommunications networks). The need to solve very large multicommodity instances
has led to the development of both specialized algorithms and parallel implementations. In this
work we introduce a parallel implementation of a specialized multicommodity interior-point
algorithm. The implementation has two main features. From the multicommodity point of
view, it is not based on a decomposition approach, and thus it does not follow the master-slaves
(or coordinator-subtasks) parallel scheme. From the interior-point point of view, unlike other
parallel interior-point codes [4, 8, 15], the parallelization is not focused on the Cholesky factor-
ization to be performed at each iteration —though it could be included— but on the parallel
solution of smaller subsystems related to the various commodities of the problem.

The block angular structure of the multicommodity problem constraints matrix has led to
a number of specialized methods. Among the earlier approaches we could mention primal par-
titioning, and price and resource directive decomposition (see [2, 14] for a general description).
Recent variants of price directive decomposition have successfully applied bundle methods [10]
and analytic centers [11]. Multicommodity problems, such as the PDS ones, were also used
to test the efficiency of the early general interior-point solvers for linear programming (e.g.,

† This work has been supported by Spanish CICYT Project TAP96-1044 and by the Euro-
pean Center for Parallelism of Barcelona (CEPBA).

1

[1]). Attempts to develop specialized interior-point algorithms for multicommodity flows were
presented in [13], [20] and [6], the latter being the most successful. This is the algorithm that
will be parallelized in this work.

Parallel approaches for multicommodity problems have also been widely studied in the
past. As in the sequential case, the parallel implementations make use of several decomposition
strategies, such as bundle methods [7, 17], linear-quadratic penalty terms [19], and, more re-
cently, analytic centers [12]. A discussion of these and other parallel decomposition approaches
is presented in [7]. A general description of the parallelization of mathematical programming
algorithms can be found in [5] and [21].

The paper is organized as follows. Section 2 presents the formulation of the problem to
be solved. Section 3 outlines the specialized interior-point algorithm for multicommodity flows,
including a brief description of the general path-following method. Section 4 deals with the
parallelization issues of the specialized multicommodity algorithm. Finally, Section 5 gives the
computational results obtained with the parallel implementation developed.

2. Problem formulation

In the most general case, the multicommodity network flow problem can be stated as how
to obtain the best routing (that which involves the minimum cost) of a set of k commodities
through a network of m nodes and n arcs, where the arcs have an individual capacity for each
commodity, and a mutual capacity for all the commodities. The resulting problem can be
written as

min
x(1),...,x(k)

k∑

i=1

c(i)T
x(i) (1)

subject to
AN 0 . . . 0 0

0 AN . . . 0 0
...

...
. . .

...
...

0 0 . . . AN 0

1ln 1ln . . . 1ln 1ln

x(1)

x(2)

...
x(k)

smc

=

b(1)

b(2)

...
b(k)

bmc

(2)

0 ≤ x(i) ≤ x(i) i = 1, . . . , k (3)

0 ≤ smc ≤ bmc. (4)

Vectors x(i) ∈ IRn and c(i) ∈ IRn are the flow and cost arrays for each commodity i, i = 1, . . . , k.
smc ∈ IRn denote the slacks of the mutual capacity constraints. AN ∈ IRm×n is the node-arc
incidence matrix. We shall assume that AN is a full row-rank matrix. This can always be
guaranteed by removing any of the (redundant) node balance constraints. b(i) ∈ IRm is the
vector of supplies/demands for commodity i at the nodes of the network. Constraints (3) are
simple bounds on the flows, x(i) ∈ IRn, i = 1, . . . , k, being the upper bounds. bmc ∈ IRn are the
mutual capacities of the arcs for all the commodities. 1ln denotes the n×n identity matrix.

Note that the multicommodity flow problem can be formulated as a linear programming
one with m̃ = km + n constraints and ñ = (k + 1)n variables.

3. Outline of the specialized interior-point algorithm for multicommodity flows

The interior-point algorithm for multicommodity flows introduced in [6] is a specialization
of the path-following algorithm for linear programming (see [23] for a thorough description).

2

Let us consider the following linear programming problem in primal form

min cT x

subject to Ax = b

x + f = x

x, f ≥ 0,

(5)

where x ∈ IRñ and f ∈ IRñ are the primal variables, x ∈ IRñ are the upper bounds, c ∈ IRñ,
b ∈ IRm̃, and A ∈ IRm̃×ñ is a full row-rank matrix. The dual of (5) is

max bT y − xT w

subject to AT y + z − w = c

z, w ≥ 0,

(6)

where y ∈ IRm̃, z ∈ IRñ and w ∈ IRñ are the dual variables.

Replacing the inequalities in (5) by a logarithmic barrier in the objective function, with
parameter µ, it can be seen that the KKT first order optimality conditions of this barrier
problem are equivalent to the following system of nonlinear equations:

rxz ≡ µeñ −XZeñ = 0

rfw ≡ µeñ − FWeñ = 0

rb ≡ b−Ax = 0

rc ≡ c− (AT y + z − w) = 0

(x, z, w) ≥ 0 x ≥ x,

(7)

where eñ is the ñ-dimensional vector of 1’s, X, Z, F , and W are diagonal matrices defined as
M ∈ IRñ×ñ = diag(m1, . . . ,mñ), and the vectors r∗ define the left-hand side terms of (7). Note
that we did not include the slacks equation x + f = x in (7). Instead we replaced the slacks f

by x− x (thus, F = X −X in (7)), reducing by ñ the number of equations and variables. The
solutions of system (7) —considering inequalities as strict inequalities— for different µ values
give rise to an arc of strictly feasible points known as the central path. As µ tends to 0, the
solutions of (7) converge to that of the original primal and dual problems. A path-following
algorithm attempts to follow the central path. Figure 1 shows a damped version of Newton’s
iteration applied to the nonlinear system (7). We use it for the multicommodity specialization.
Note that the matrix Θ computed at step 3 is a positive definite diagonal matrix, because of the
way it is formed from positive definite diagonal matrices. A more comprehensive description of
the algorithm can be found in [23].

The main computational burden of the algorithm is the solution of the positive definite
system

(AΘAT)dy = b̄ (8)

at step 5 of Figure 1 (b̄ in (8) denotes the right-hand side rb + AΘr of the system). General
interior-point codes attempt to solve (8) through a Cholesky factorization LLT = P (AΘAT)PT ,
where P denotes a permutation matrix obtained by some heuristic. However, even for such
good permutation matrices as those obtained by the minimum degree ordering or minimum
local fill-in heuristics, when A is the multicommodity constraints matrix defined in (2), the
Cholesky factorization LLT turns out to be fairly dense, making this procedure computationally
expensive. This is shown in Figure 2, in which the sparsity patterns of both A and L + LT are
depicted for a multicommodity problem with 64 nodes, 524 arcs and 4 commodities, using the
state-of-the-art interior-point code BPMPD [16].

3

Algorithm path-following(A, b, c, x, ξ)
1 Initialize ξ, where ξ = (xT , fT , yT , zT , wT)T

2 whileξ is not optimal do
3 Θ = (X−1Z + F−1W)−1

4 r = F−1rfw + rc −X−1rxz

Compute direction:
5 (AΘAT)dy = rb + AΘr

6 dx = Θ(AT dy − r)
7 dw = F−1(rfw + Wdx)
8 dz = rc + dw −AT dy

9 Update µ

10 Compute α

11 ξ ← ξ + α dξ

12 end while

Figure 1. Path-following algorithm.

(a) (b)

Figure 2. (a) Sparsity pattern of a multicommodity constraint matrix.
(b) Sparsity pattern of the factorization of P (AΘAT)P T .

The specialized interior-point method suggested in [6] considers the structure of A presented
in (2), and the following partitioning for the diagonal matrix Θ

Θ =

Θ(1)

. . .

Θ(k)

Θmc

, (9)

where Θ(i) ∈ IRn×n and Θmc ∈ IRn×n are related to the flows x(i) of commodity i and the
slacks smc respectively. It is straightforward to see than the structure of AΘAT is

AΘAT =

ANΘ(1)AT
N . . . 0 ANΘ(1)

...
. . .

...
...

0 . . . ANΘ(k)AT
N ANΘ(k)

Θ(1)AT
N . . . Θ(k)AT

N Θmc +
∑k

i=1 Θ(i)

=
B C

CT D
, (10)

where B ∈ IRkm×km is the block diagonal matrix

B = diag(ANΘ(i)AT
N , i = 1, . . . , k), (11)

4

each block being a square matrix of dimension m, where C ∈ IRkm×n is defined as

C =
[
Θ(1)AT

N . . . Θ(k)AT
N

]T

, (12)

and where D ∈ IRn×n corresponds to the lower diagonal submatrix of AΘAT :

D = Θmc +
k∑

i=1

Θ(i). (13)

Since Θ is diagonal and positive definite, it follows that D is also a positive definite diagonal
matrix.

Using the above structure of AΘAT , and partitioning vectors dy and b̄ accordingly, the
solution of (8) is reduced to

(D − CT B−1C)dy2 = (b̄2 − CT B−1b̄1) ≡ β2 (14)

Bdy1 = (b̄1 − Cdy2) ≡ β1, (15)

where β2 and β1 denote the right-hand sides of (14) and (15) respectively. The matrix

S = D − CT B−1C. (16)

is known as the Schur complement. To solve (14) and (15) efficiently, we only need to deal with
systems involving B and S. Systems with the matrix B can be decomposed into k smaller ones
of dimension m with matrices ANΘ(i)AT

N , i = 1, . . . , k, according to (11).

The system (14) cannot be solved using a direct method (e.g., factorization of the Schur
complement), since this would mean forming the matrix S, which is computationally prohibitive.
Instead, we suggest using a conjugate gradient method, in virtue of the following result (see [6]
for a proof).
Proposition 1. The Schur complement matrix S = D−CT B−1C defined in (16) is symmetric
and positive definite at each iteration of the path-following algorithm.

The main drawback of the conjugate gradient method is its slow convergence, especially when (5)
and (6) are close to their solution point (the Schur complement becomes more ill-conditioned).
It seems more reliable to use a preconditioned conjugate gradient (PCG) algorithm. The pre-
conditioner that will be used consists of an approximation of the inverse of S, and it is based
on Proposition 2. A proof of this result can be found in [6].
Proposition 2. The inverse of S = D − CT B−1C can be computed as

S−1 =
(∞∑

i=0

(D−1Q)i
)
D−1, (17)

where
Q = CT B−1C. (18)

The preconditioner is then obtained by truncating the power series (17) at the term with index
i = φ, say. Clearly, the higher φ the better the preconditioning, and the fewer iterations of
the PCG will be required. However, each new term in the preconditioner, after the first one,
means solving one additional system with matrix B, which increases the cost of each PCG
iteration. Therefore, we must balance two objectives: reducing the number of PCG iterations
and the number of systems to be solved. Several numerical experiments have shown that the
best results are obtained for φ = 0 (in this case the preconditioner is D−1, thus being diagonal)
and, in some problems, for φ = 1. The algorithm uses φ = 0 as the default value. The extensive

5

computational experience reported in [6] proved the efficiency of this specialized interior-point
algorithm.

4. Parallelization of the algorithm

Computing the direction of the dual variables dy at step 5 of the path-following method in
Figure 1 is by far the most costly procedure to be performed by the specialized multicommodity
algorithm. Figure 3 summarizes the steps required to compute dy, according to (14) and (15).
Looking at Figure 3 we see that all of the steps require either a factorization of B, or a backward
and forward substitution with this factorization, or products of vectors with matrices C or CT .
In fact, these will be the only four procedures to be run in parallel, following a coarse-grained
scheme. Considering the partitioning of B and C defined in (11) and (12), these four procedures
are implemented as follows:

1. Factorization of B. Perform in parallel the k factorizations of ANΘ(i)AT
N . Note that the

current implementation uses sequential Cholesky solvers. Using parallel implementations of
Cholesky decompositions, such as those described in [4, 8, 15], each of the k factorizations
could itself be performed in parallel, improving the efficiency of the code.

2. Solution of system Br = s, for any s ∈ IRkm. Solve in parallel for each diagonal block
ANΘ(i)AT

N of B.

3. Computation of w = Cv, for any v ∈ IRn. Using (12), we compute in parallel w(i) =
ANΘ(i)v, i = 1, . . . , k, so w(i) has the components of w related to commodity i.

4. Computation of v = CT w, for any w ∈ IRkm. Using (12), we compute in parallel the
temporary vectors v(i) = Θ(i)AT

Nw(i), i = 1, . . . , k. We then add the temporary vectors
sequentially (v =

∑k
i=1 v(i)), obtaining v. Due to its low computational cost, the addition

of the k v(i) vectors has not been parallelized.

Procedure AΘAT dy = b̄(A, Θ, b̄, dy)
1 Factorize the k blocks of B

2 Compute β2 = b̄2 − CT B−1b̄1

3 PCG: Solve (D − CT B−1C)dy2 = β2

3.1 while dy2 is not optimal do
...

...
3.i Compute w = (D − CT B−1C)v
...

...
3.n end while
4 Compute β1 = b̄1 − Cdy2

5 Solve Bdy1 = β1

6 Return: dy = (dyT
1 dyT

2)T

Figure 3. Procedure for computing systems (14) and (15).

From our computational experience, it can be stated that for large problems the above
four procedures represent more than 97% of the execution time (see Figure 6 in Section 5).
This guarantees that the fraction of the sequential region will be small enough for it not to be
a major bottleneck. It should also be noted that, in each of the four parallelized procedures,
the number of floating point operations for each commodity (and thus for each processor) will
be the same, which guarantees the load balancing between processors and avoids unnecessary
delays.

6

4.1. Parallel programming environment

The parallel implementation of the multicommodity interior-point algorithm was developed
on a Silicon Graphics Origin2000 (SGI O2000) server. The SGI O2000 is a shared memory
machine, main memory being physically distributed across several processors. In addition,
each processor has a first level cache memory of 64Kb (32Kb for instructions, 32Kb for data),
and a secondary data cache memory of 4Mb (for both instructions and data).

The main advantage of using a shared memory machine such as the SGI O2000 is the
ease with which an existing sequential code can be ported, in comparison with distributed
parallel environments. The latter require the use of one of the message passing communication
standards (e.g., MPI or PVM), whereas the SGI O2000 provides a more user-friendly system
based on including special directives in sequential C or Fortran codes [22]. These directives,
usually located at the beginning of loops, create different threads of execution that will run in
parallel different sections of the iterative region. Moreover, unlike distributed systems, which
force the programmer to allocate data structures between processors and to keep communication
low, the parallel environment of the SGI O2000 automatically attempts to perform these tasks.
The default data distribution provided, however, can result in an excessive number of cache
misses and page faults from the local memory of each processor, the performance of the parallel
executions thus being severely impaired. Although advanced directives enable this feature to
be controlled, the computational results presented in Section 5 were obtained with the default
data distribution across processors provided by the system. This default distribution was also
used in [4]. Further details about the use of the parallel directives of the SGI O2000 can be
found in [22].

4.2. Performance measures

The performance measures presented below will be considered in Section 5 when reporting
the computational results obtained. All of these performance measures are widely used in the
field of parallel computing [5]. Considering a particular parallel implementation of an algorithm,
we will denote the execution time obtained with p processors by Tp. The speedup Sp obtained
with p processors can thus be defined as

Sp =
T1

Tp
. (19)

The fraction of the total execution time consumed in the sequential version by the parallel region
will be denoted by f . Values of f close to 1 guarantee good theoretical speedups, whereas the
bottleneck represented by the sequential region increases with 1 − f . This is summarized by
Amdahl’s law, which provides a theoretical upper bound Sp for the best possible speedup

Sp =
1

f/p + (1− f)
≤ 1

(1− f)
. (20)

Finally, we can define the efficiency with p processors as

Ep =
Sp

p
≤ Ep =

Sp

p
. (21)

The efficiency represents the fraction that a particular processor (of the p available) is usefully
employed during the execution of the algorithm. Note than when f = 1, we have Sp = p and
Ep = 1.

5. Computational results

The sequential code of the algorithm outlined in Section 3 was implemented and named
IPM in [6]. The parallel version developed in this work will be denoted as pIPM. It is written

7

mainly in C, with only the Cholesky factorization routines (devised by E. Ng and B. Peyton [18])
coded in Fortran. Both the sequential and parallel versions can be freely obtained for academic
purposes from http://www-eio.upc.es/~jcastro/software.html. All the runs were carried
out on the SGI Origin2000 server located at the European Center for Parallelism of Barcelona
(CEPBA), running an IRIX64 6.5 Unix operating system. The main characteristics of the
server are shown in Figure 4, as reported by the hinv (hardware inventory) command. This
computer appears at position 275 of the TOP500 supercomputer sites list [9].

64 250 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 3.4
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Main memory size: 8192 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 4 Mbytes

Figure 4. Characteristics of the SGI Origin2000 server used for the executions.

Two sets of multicommodity instances were used for the computational experiments. The
first is made up of 18 problems obtained with Ali and Kennington’s Mnetgen generator [3].
Table 1 shows the dimensions and optimal solutions of the Mnetgen problems. The pa-
rameters used to generate the instances can be found in [10], and can be retrieved from
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html#MNetGen. Columns “m”,
“n”, and “k” show the number of nodes, arcs, and commodities. Columns “ñ” and “m̃”
give the number of variables and constraints of the linear problem (where ñ = (k + 1)n and
m̃ = km + n). Finally, column “cT x∗” gives the exact optimal objective function value. For
the last two problems no exact objective value has been computed (an approximate solution
obtained with IPM is reported in Table 3).

Table 1. Dimensions and optimal solutions of the Mnetgen problems.

Problem m n k ñ m̃ cT x∗

M128−8 128 1089 8 9801 2113 1924133.9

M128−16 128 1114 16 18938 3162 4145079.4

M128−32 128 1141 32 37653 5237 9785961.1

M128−64 128 1171 64 76115 9363 19269824.2

M128−128 128 1204 128 155316 17588 40143200.8

M256−8 256 2165 8 19485 4213 9919483.2

M256−16 256 2308 16 39236 6404 20692883.7

M256−32 256 2314 32 76362 10506 45671076.1

M256−64 256 2320 64 150800 18704 92249381.1

M256−128 256 2358 128 304182 35126 190137259.9

M256−256 256 2204 256 566428 67740 397882591.3

M512−8 512 4373 8 39357 8469 46339269.9

M512−16 512 4620 16 78540 12812 96992237.2

M512−32 512 4646 32 153318 21030 192941834.8

M512−64 512 4768 64 309920 37536 412943158.7

M512−128 512 4786 128 617394 70322 828013599.8

M512−256 512 4810 256 1236170 135882 —

M512−512 512 4786 512 2455218 266930 —

8

The second set consists of ten of the PDS (Patient Distribution System) problems. These
problems arise from a logistic model for evacuating patients from a place of military conflict.
They can be retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html-

#Pds. Their dimensions and optimal objective functions can be found in Table 2. The meaning
of the columns is the same as in Table 1.

Table 2. Dimensions and optimal solutions of the PDS problems.

Problem m n k ñ m̃ cT x∗

PDS1 126 372 11 4464 1758 29083930523.0

PDS10 1399 4792 11 57504 20181 26727094976.0

PDS20 2857 10858 11 130296 42285 23821658640.0

PDS30 4223 16148 11 193776 62601 21385445736.0

PDS40 5652 22059 11 264708 84231 18855198824.0

PDS50 7031 27668 11 332016 105009 16603525724.0

PDS60 8423 33388 11 400656 126041 14265904407.0

PDS70 9750 38396 11 460752 145646 12241162812.0

PDS80 10989 42472 11 509664 163351 11469077462.0

PDS90 12186 46161 11 553932 180207 11087561635.0

Before performing all the executions, we studied in detail the performance of pIPM in
two particular instances, M128−128 for the Mnetgen and PDS30 for the PDS problems. The
behavior of the code with these two instances turned out to be fairly representative of the general
behavior for each data set. Figure 5 shows the results obtained. Each plot gives the execution
time Tp (left-hand vertical scale) and the theoretical best speedup Sp, observed speedup Sp, and
observed efficiency Ep (right-hand vertical scale) for different numbers of processors (horizontal
axis). Although both problems have a similar f value (0.88 for M128−128, 0.92 for PDS30), pIPM
behaved very differently in each case. For M128−128, the gap between Sp and Sp increases with
the number of processors, whereas for PDS30 the best theoretical speedup is almost always
achieved. This fact, together with the different maximum number of processors used in the two
problems (64 vs. 11), gives rise to efficiencies of E64 = 0.04 for M128−128 (the best possible
value was E64 = 0.12) and E11 = 0.51 for PDS30 (E11 = 0.56). It can also be observed that
the execution time Tp decreases for PDS30 with p, whereas for M128−128 it remains almost
the same for 8, 16, and 32, and slightly increases for 64 processors. This lack of scalability
of a shared memory machine when using a large number of processors was also stated in [4].
However, we believe that these results can be improved by exploiting the data distribution
between processors, as suggested in Subsection 4.1. This additional work remains to be done.

Number of processors (logscale)p

100

150

200

250

300

350

400

1 2 4 8 16 32 64
0

1

2

3

4

5

6

7

8

Se
co

nd
s

Tp

pS
Sp

pE

(a)

Number of processors (logscale)p

Tp

pS
Sp

pE

100

200

300

400

500

600

700

800

1 2 4 6 8 11
0

1

2

3

4

5

6

7

Se
co

nd
s

(b)

Figure 5. Behavior of the algorithm with the (a) M128−128 problem.
(b) PDS30 problem.

9

On the basis of the results in Figure 5 we decided to execute the Mnetgen problems with
8, 16, and 32 processors (always guaranteeing k ≥ p), whereas 6 and 11 where used for the PDS
ones. Tables 3 and 4 show the results obtained for the two sets of problems. Column cT x∗pIPM

gives the optimal solution computed by pIPM. The relative error with respect to the exact
optimal solutions of Tables 1 and 2 ranges between 10−5 and 10−8 for all the cases. Column f

gives the f value (fraction represented by the parallel region in the sequential version). Column
p is the number of processors used in the execution. Tp denotes the execution time. For p = 1,
this time means CPU time, as reported by the times Unix command, and was obtained by
executing the instances on a single processor to reduce context switches. For p > 1, Tp denotes
wall-clock time, and was obtained by executing pIPM alone on the server to improve the
accuracy of the time measures. Columns Sp and Ep give the observed speedups and efficiencies,
and, enclosed in parentheses, their best theoretical values Sp and Ep respectively. Note that,
for some of the PDS problems, the observed speedups and efficiencies are greater than their
theoretical upper bounds. These superlinear speedups can be explained by: firstly, a lack of
accuracy in the measures of both T1 and Tp, p > 1; and secondly, as suggested in [7], a reduction
of the number of cache misses in the parallel execution with respect to the sequential one due
to the data distribution between processors.

Some of the information in Tables 3 and 4 is summarized in Figures 6, 7, and 8. Figure 6
shows the evolution of the f value with the number of variables of the problem, for both the
Mnetgen and PDS instances. Clearly, this value increases with the size of the problem, and for
the largest ones it is greater than 0.97, as stated in Section 4 above. Accordingly, the bottleneck
associated with the sequential version is consistently reduced for larger and larger instances,
which results in a (theoretical) good behavior of the parallel implementation.

0.7

0.75

0.8

0.85

0.9

0.95

1

10 100 1000

f

Number of variables (*1000, logscale)

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

100 1000

f

Number of variables (*1000, logscale)

(b)

Figure 6. Fraction f represented by the parallel section in (a) the Mnetgen problems.
(b) the PDS problems.

Figures 7 and 8 show the execution times and efficiencies for the M512−∗ and PDS problems,
for different number of processors. For the M512−∗ problems the best improvements are clearly
obtained when moving from 1 to 8 processors. It is also clear that efficiencies tend to decrease
with the number of processors, and that, for any p, they remain stable with the size of the
problem. These results for the Mnetgen problems are not so good as those observed by parallel
implementations of decomposition approaches for multicommodity flows (e.g., [7]). pIPM has
a better behavior for the PDS problems. For instance, speedups of about 5 are obtained for the
largest problems with p = 6, and execution times are almost reduced to half when moving from
6 to 11 processors. Figure 8(b) shows that, unlike in the M512−∗ problems, efficiencies for 6
and 11 processors are almost the same, and that they become better with the dimension of the
problem. The scalability of the code with the PDS problems is not observed, in general, with
other parallel implementations of interior-point algorithms using a similar number of processors
(e.g., [4], [8], [12]).

10

Table 3. Results obtained for the Mnetgen problems.

Problem cT x∗pIPM f p Tp Sp (Sp) Ep (Ep)

M128−8 1924113.4 0.72 1 3.1 1.0 (1.0) 1.00 (1.00)

8 1.7 1.8 (2.7) 0.22 (0.34)

M128−16 4145089.5 0.86 1 16.2 1.0 (1.0) 1.00 (1.00)

8 7.3 2.2 (4.1) 0.27 (0.51)

16 7.7 2.1 (5.2) 0.13 (0.32)

M128−32 9785902.8 0.87 1 36.4 1.0 (1.0) 1.00 (1.00)

8 15.8 2.3 (4.2) 0.28 (0.52)

16 14.8 2.5 (5.4) 0.15 (0.33)

32 18.8 1.9 (6.4) 0.06 (0.19)

M128−64 19269830.9 0.92 1 195.4 1.0 (1.0) 1.00 (1.00)

8 79.9 2.5 (5.2) 0.30 (0.64)

16 73.9 2.6 (7.3) 0.16 (0.45)

32 71.9 2.7 (9.3) 0.08 (0.29)

M128−128 40143266.0 0.89 1 395.9 1.0 (1.0) 1.00 (1.00)

8 150.1 2.6 (4.4) 0.33 (0.55)

16 137.3 2.9 (5.9) 0.18 (0.36)

32 138.6 2.9 (7.0) 0.08 (0.21)

M256−8 9919478.8 0.88 1 19.4 1.0 (1.0) 1.00 (1.00)

8 7.7 2.5 (4.3) 0.31 (0.54)

M256−16 20692714.5 0.91 1 69.0 1.0 (1.0) 1.00 (1.00)

8 25.4 2.7 (4.9) 0.33 (0.61)

16 23.5 2.9 (6.8) 0.18 (0.42)

M256−32 45671345.2 0.95 1 342.0 1.0 (1.0) 1.00 (1.00)

8 123.5 2.8 (5.8) 0.34 (0.73)

16 91.1 3.8 (8.9) 0.23 (0.55)

32 98.0 3.5 (12.1) 0.10 (0.37)

M256−64 92249411.9 0.94 1 586.2 1.0 (1.0) 1.00 (1.00)

8 199.0 3.0 (5.5) 0.36 (0.69)

16 146.5 4.0 (8.2) 0.25 (0.51)

32 143.8 4.1 (10.8) 0.12 (0.33)

M256−128 190138392.4 0.96 1 3352.8 1.0 (1.0) 1.00 (1.00)

8 627.6 5.3 (6.2) 0.66 (0.76)

16 558.9 6.0 (9.7) 0.37 (0.60)

32 511.9 6.5 (13.7) 0.20 (0.42)

M256−256 397883691.5 0.96 1 7486.0 1.0 (1.0) 1.00 (1.00)

8 1597.0 4.7 (6.3) 0.58 (0.79)

16 1494.0 5.0 (10.3) 0.31 (0.64)

32 1274.5 5.9 (14.9) 0.18 (0.46)

M512−8 46338411.5 0.93 1 109.5 1.0 (1.0) 1.00 (1.00)

8 31.9 3.4 (5.4) 0.42 (0.67)

M512−16 96992142.3 0.96 1 550.9 1.0 (1.0) 1.00 (1.00)

8 140.9 3.9 (6.2) 0.48 (0.77)

16 111.0 5.0 (9.9) 0.31 (0.61)

M512−32 192941650.0 0.97 1 1820.3 1.0 (1.0) 1.00 (1.00)

8 395.1 4.6 (6.7) 0.57 (0.83)

16 318.4 5.7 (11.3) 0.35 (0.70)

32 313.7 5.8 (17.1) 0.18 (0.53)

11

Table 3 (cont.). Results obtained for the Mnetgen problems.

Problem cT x∗pIPM f p Tp Sp (Sp) Ep (Ep)

M512−64 412943655.4 0.97 1 4473.1 1.0 (1.0) 1.00 (1.00)

8 1190.8 3.8 (6.8) 0.47 (0.84)

16 896.2 5.0 (11.5) 0.31 (0.71)

32 783.5 5.7 (17.7) 0.17 (0.55)

M512−128 828014985.2 0.98 1 18156.2 1.0 (1.0) 1.00 (1.00)

8 4302.4 4.2 (7.1) 0.52 (0.88)

16 3168.2 5.7 (12.6) 0.35 (0.78)

32 2667.0 6.8 (20.5) 0.21 (0.64)

M512−256 1649358223.7 0.98 1 50178.7 1.0 (1.0) 1.00 (1.00)

8 10745.5 4.7 (7.2) 0.58 (0.90)

16 7982.6 6.3 (13.1) 0.39 (0.81)

32 6346.4 7.9 (21.8) 0.24 (0.68)

M512−512 3487594874.0 0.98 1 145018.9 1.0 (1.0) 1.00 (1.00)

8 33655.5 4.3 (7.1) 0.53 (0.88)

16 21630.5 6.7 (12.6) 0.41 (0.78)

32 18312.8 7.9 (20.5) 0.24 (0.64)

Table 4. Results obtained for the PDS problems.

Problem cT x∗pIPM f p Tp Sp (Sp) Ep (Ep)

PDS1 29083850483.5 0.57 1 0.7 1.0 (1.0) 1.00 (1.00)

6 0.5 1.4 (1.9) 0.23 (0.31)

11 0.5 1.5 (2.1) 0.13 (0.18)

PDS10 26726869329.4 0.79 1 46.2 1.0 (1.0) 1.00 (1.00)

6 19.3 2.4 (2.9) 0.40 (0.49)

11 16.6 2.8 (3.6) 0.25 (0.32)

PDS20 23820311896.6 0.88 1 234.4 1.0 (1.0) 1.00 (1.00)

6 70.1 3.3 (3.7) 0.55 (0.62)

11 55.4 4.2 (5.0) 0.38 (0.45)

PDS30 21385482088.8 0.92 1 799.1 1.0 (1.0) 1.00 (1.00)

6 193.7 4.1 (4.3) 0.68 (0.72)

11 141.9 5.6 (6.2) 0.51 (0.56)

PDS40 18852465159.0 0.92 1 1017.7 1.0 (1.0) 1.00 (1.00)

6 213.4 4.8 (4.3) 0.79 (0.72)

11 141.3 7.2 (6.2) 0.65 (0.56)

PDS50 16601676244.4 0.93 1 2003.1 1.0 (1.0) 1.00 (1.00)

6 390.4 5.1 (4.5) 0.85 (0.74)

11 254.1 7.9 (6.6) 0.71 (0.59)

PDS60 14265869776.2 0.96 1 4924.1 1.0 (1.0) 1.00 (1.00)

6 917.5 5.4 (5.1) 0.89 (0.85)

11 551.5 8.9 (8.2) 0.81 (0.74)

PDS70 12240890481.6 0.97 1 7055.5 1.0 (1.0) 1.00 (1.00)

6 1574.4 4.5 (5.2) 0.74 (0.87)

11 881.5 8.0 (8.5) 0.72 (0.76)

PDS80 11468486724.2 0.97 1 7737.3 1.0 (1.0) 1.00 (1.00)

6 1628.6 4.8 (5.2) 0.79 (0.86)

11 928.4 8.3 (8.3) 0.75 (0.75)

PDS90 11087270971.3 0.97 1 12059.8 1.0 (1.0) 1.00 (1.00)

6 2293.7 5.3 (5.3) 0.87 (0.87)

11 1355.9 8.9 (8.6) 0.80 (0.78)

12

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of variables (*1000)

T
T
T
T

1

8
16

32

(a)

E
E
E

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500

E
ff

ic
ie

nc
y

Number of variables (*1000)

(b)

Figure 7. (a) Execution times for the M512−∗ problems.
(b) Efficiencies for the M512−∗ problems.

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of variables (*1000)

T1
T6
T11

(a)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

E
ff

ic
ie

nc
y

Number of variables (*1000)

E 6

E11

(b)

Figure 8. (a) Execution times for the PDS problems.
(b) Efficiencies for the PDS problems.

6. Conclusions and future research

The parallel code pIPM introduced in this work can be an efficient and promising tool for
the solution of certain types of large and difficult multicommodity problems. We have found
that it is especially appropriate for those instances with large networks and few commodities,
where a small number of processors is required.

However, it can be improved with many additional refinements, that form part of the
further work to be done. Among these we would mention:

• The fraction f of the parallel region should be augmented to guarantee better theoretical
speedups. This would mean parallelizing additional routines while keeping overhead costs
low.

• It would be worth attempting to use higher order preconditioners (e.g., φ > 0) for the
solution of the system with the Schur complement. Although for sequential executions this
would reduce the performance of the algorithm, it could augment the fraction f of the
parallel region, providing better parallel executions.

• The gap between the observed and theoretical efficiencies for problems with many com-
modities, such as the Mnetgen ones, should be reduced. This could be attempted by
considering and exploiting the data distribution across the various processors. The reduc-
tion of the number of cache misses and remote memory access could mean improvements
by a factor of two.

13

References

[1] I. Adler, M.G.C. Resende, and G. Veiga, An implementation of Karmarkar’s algorithm for
linear programming, Mathematical Programming, 44 (1989), pp. 297–335.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Prentice Hall, Englewood
Cliffs, NJ, 1993.

[3] A. Ali, and J.L. Kennington, Mnetgen program documentation, Technical Report 77003,
Dept. of Ind. Eng. and Operations Research, Southern Methodist University, Dallas, 1977.

[4] E.D. Andersen, and K.D. Andersen, A parallel interior-point algorithm for linear program-
ming on a shared memory machine, CORE Discussion Paper 9808, CORE, Louvain-La-
Neuve, Belgium, 1998.

[5] D.P. Bertsekas, and J.N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall,
Englewood Cliffs, 1995.

[6] J. Castro, A specialized interior-point algorithm for multicommodity network flows, SIAM
J. Optim. (to appear). Available from http://www-eio.upc.es/~jcastro.

[7] P. Cappanera, and A. Frangioni, Symmetric and asymmetric parallelization of a cost-de-
composition algorithm for multi-commodity flow problems, Technical Report TR-96-36,
Dip. di Informatica, Università di Pisa, Italy, 1996.

[8] T.F. Coleman, J. Czyzyk, C. Sun, M. Wagner, and S.J. Wright, pPCx: parallel software for
linear programming, in Proceedings of the Eight SIAM Conference on Parallel Processing
in Scientific Computing, SIAM, March 1997.

[9] J.J. Dongarra, H.W. Meuer, and E. Strohmaier, TOP500 supercomputer sites, Technical
Report UT-CS-98-404, Computer Science Dept., University of Tennessee, 1998.

[10] A. Frangioni, and G. Gallo, A bundle type dual-ascent approach to linear multicommodity
min cost flow problems, to appear in INFORMS Journal on Computing (1999).

[11] J. Gondzio, R. Sarkissian, and J.-P. Vial, Parallel implementation of a central decom-
position method for solving large scale planning problems, HEC Technical Report 98.1,
1998.

[12] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, Solving nonlinear multicommodity
flow problems by the analytic center cutting plane method, Mathematical Programming,
76 (1996), pp. 131–154.

[13] A.P. Kamath, N.K. Karmarkar, and K.G. Ramakrishnan, Computational and complexity
results for an interior point algorithm on multicommodity flow problems, Technical Report
TR-21/93, Dip. di Informatica, Università di Pisa, Italy, 1993, pp. 116-122. Extended
abstracts of Netflow’93.

[14] J.L Kennington, and R.V. Helgason, Algorithms for Network Programming, Wiley, New
York, 1980.

[15] I.J. Lustig and E. Rothberg, Gigaflops in linear programming, Operations Research Letter,
18(4) (1996), pp. 157–165.

[16] Cs. Mészáros, The Efficient Implementation of Interior Point Methods for Linear Program-
ming and their Applications, Ph.D. Thesis, Eötvös Loránd University of Sciences, 1996.

[17] D. Medhi, Parallel bundle-based decomposition for large-scale structured mathematical
programming problems, Annals of Operations Research, 22 (1990), pp. 101–127.

[18] E. Ng, and B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor
computers, SIAM J. Sci. Comput., 14 (1993), pp. 1034–1056.

14

[19] M.C. Pinar, and S.A. Zenios, Parallel decomposition of multicommodity network flows
using a linear-quadratic penalty algorithm, ORSA Journal on Computing, 4(1992), pp. 235–
249.

[20] L. Portugal, M.G.C. Resende, G. Veiga, G., and J. Júdice, A truncated interior-point
method for the solution of minimum cost flow problems on an undirected multicommodity
flow network (in Portuguese), in Proceedings of First Portuguese National Telecommuni-
cations Conference, April 1997, pp. 381–384.

[21] J.B. Rosen (editor), Supercomputers and large-scale optimization: algorithms, software,
applications, Annals of Operations Research, 22, (1990).

[22] Silicon Graphics Inc., C Language Reference Manual, 1998.

[23] S. J. Wright, Primal-Dual Interior-Point Methods, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1997.

15

