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Abstract. Minimum-distance controlled perturbation is a recent family
of methods for the protection of statistical tabular data. These methods
are both efficient and versatile, since can deal with large tables of any
structure and dimension, and in practice only need the solution of a linear
or quadratic optimization problem. The purpose of this paper is to give
insight into the behaviour of such methods through some computational
experiments. In particular, the paper (1) illustrates the theoretical results
about the low disclosure risk of the method; (2) analyzes the solutions
provided by the method on a standard set of seven difficult and complex
instances; and (3) shows the behaviour of a new approach obtained by
the combination of two existing ones.

Keywords: statistical disclosure control, controlled perturbation meth-
ods, linear programming, quadratic programming.

1 Introduction

The safe dissemination of tabular data is one of the main concerns of national
statistical agencies. The size and complexity of the data to be protected is con-
tinuously increasing, which results in a need for more efficient and versatile
protection procedures. This work deals with minimum-distance controlled per-
turbation, a recent family of methods that meets the above requirements.

Currently, one of the widely used techniques in practice is cell suppression,
which is known to be a NP-hard problem [15]. Although exact mixed integer
linear programming procedures have been recently suggested [11], the main in-
convenience of this approach is that, due to its combinatorial nature, the solution
of very large instances (with possibly millions of cells) can result in impractical
execution times [13]. Several heuristics have also been suggested to obtain fast
approximate solutions [1, 4, 7, 10, 15]. Those approaches are based on the solution
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of several network optimization subproblems. Unfortunately, although fast, they
can only be applied to certain classes of tables, e.g., two and three-dimensional,
and two-dimensional with hierarchies in one dimension.

To avoid the above lacks of cell suppression, alternative approaches have been
introduced. One of them is the minimum-distance controlled perturbation family
of methods. Given a set of tables to be protected, they find the closest ones (ac-
cording to some distance measure) that, guaranteeing confidentiality, minimize
the information loss. Members of that family of methods were independently
suggested in [9] (the controlled table adjustment method, which uses a L1 dis-
tance) and [3] (the quadratic minimum-distance controlled perturbation, based
on L2). Specialized interior-point methods [2] were used in [5] for the solution
of large-scale instances. A unified framework for those methods was presented
in [6], including a proof of their low disclosure risk.

This paper is organized as follows. Section 2 outlines the minimum-distance
controlled perturbation framework. Section 3 illustrates the theoretical results
about the disclosure risk of the method. Section 4 shows the behaviour of three
particular distances on a set of seven complex instances. Finally, Section 5 reports
the results obtained with an approach that combines the L1 and L2 distances.

2 The Minimum-Distance
Controlled Perturbation Framework

This section only outlines the general model, and the particular formulations for
the L1, L2 and L∞ distances. More details can be found in [9] and [6].

Any problem instance, either with one table or a number of (linked or hier-
archical) tables, can be represented by the following elements:

– A set of cells ai, i = 1, . . . , n, that satisfy some linear relations Ma = b
(a being the vector of ai’s). The method will look for the closest safe val-
ues xi, i = 1, . . . , n, according to some particular distance measure L, that
satisfy the above constraints. The distance can be affected by any positive
semidefinite diagonal metric matrix W = diag(w1, . . . , wn).

– A lower and upper bound for each cell i = 1, . . . , n, respectively ai and ai,
which are considered to be known by any attacker. If no previous knowledge
is assumed for cell i, ai = 0 (ai = −∞ if a ≥ 0 is not required) and ai = +∞
can be used.

– A set P = {i1, i2, . . . , ip} of indices of confidential cells.
– A lower and upper protection level for each confidential cell i ∈ P , respec-

tively lpli and upli, such that the released values satisfy either xi ≥ ai +upli
or xi ≤ ai − lpli. To add the above “or” constraint to a mathematical model
we need a binary variable yi and two extra constraints for each confidential
cell:

xi ≥ −S(1 − yi) + (ai + upli)yi i ∈ P ,
xi ≤ Syi + (ai − lpli)(1 − yi) i ∈ P ,
yi ∈ {0, 1} i ∈ P ,

(1)
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S in (1) being a large value. That results in a large combinatorial opti-
mization problem which would constrain the effectiveness of the approach
to small and medium sized problems. Therefore, in practice, we will assume
the sense of the protection for each confidential cell (i.e., the values of the yi

variables) is a priori fixed. This simplifying assumption permits to protect
the table by the solution of a single continuous optimization problem. If the
particular choice of protection senses (i.e., yi values) results in an infeasible
problem, we can solve an alternative one by relaxing the constraints Ma = b
with a large penalization for possible perturbations in the right-hand-side
(see Section 5 for details).

The general minimum-distance controlled perturbation method, using some
L distance, can be formulated as the following optimization problem:

min
x

||x − a||L
subject to Mx = b

ai ≤ xi ≤ ai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P .

(2)

The general problem (2) can also be formulated in terms of deviations or
perturbations from the current cell values. Defining zi = xi − ai, i = 1, . . . , n,
(2) can be transformed to

min
z

||z||L
subject to Mz = 0

zi ≤ zi ≤ zi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ P .

(3)

where z ∈ IRn is the vector of deviations, zi = ai − ai ≤ 0 and zi = ai − ai ≥ 0.
A benefit of (3) is that it can be solved without releasing the confidential data
vector a.

Using the L1 distance, and after some manipulation, (3) can be written as

min
z+,z−

n∑

i=1

wi(z+
i + z−i )

subject to M(z+ − z−) = 0
0 ≤ z+

i ≤ zi i = 1, . . . , n
0 ≤ z−i ≤ −zi i = 1, . . . , n{

z+
i ≥ upli

z−i = 0

}
or

{
z−i ≥ lpli
z+

i = 0

}
i ∈ P ,

(4)

z+ and z− being the vector of positive and negative deviations in absolute value.
For L2, (3) is

min
z

n∑

i=1

wiz
2
i

subject to Mz = 0
zi ≤ zi ≤ zi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ P .

(5)
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Finally, for L∞, the general model (3) can be formulated as

min
z+,z−,z∈P ,z �∈P

z∈P + z �∈P

subject to M(z+ − z−) = 0
0 ≤ z+

i ≤ zi i = 1, . . . , n
0 ≤ z−i ≤ −zi i = 1, . . . , n{

z+
i ≥ upli

z−i = 0

}
or

{
z−i ≥ lpli
z+

i = 0

}
i ∈ P

z∈P ≥ wi(z+
i + z−i ) i ∈ P

z �∈P ≥ wi(z+
i + z−i ) i �∈ P ,

(6)

z∈P and z �∈P being extra variables that store the maximum deviation for, re-
spectively, the sensitive and nonsensitive cells.

An appropriate choice for the weights in (4–6) is wi = 1/ai, making the
deviations relative to the cell value. These weights will be used in the com-
putational results of the paper. (4) is a fixed version of the controlled tabular
adjustment suggested in [9]. L2 provides the smallest optimization problem, al-
though it is quadratic. L1 and L∞ provide linear problems, with a larger number
of variables and constraints. Effective approaches for the solution of (4–6) were
discussed in [6].

3 Illustrating the Disclosure Risk of the Method

The theoretical results about the disclosure risk of the method were presented
in [6]. This section summarizes them, and illustrates the low disclosure risk of
the method through an example.

To retrieve the original table, the attacker should compute the deviations
applied by solving the optimization problem (3). In practice the only term known
by the attacker is the M matrix provided by the table structure. However, assume
the attacker has partial information, upli, i ∈ P , being the only unknown terms
(without loss of generality we consider all the protection senses were “upper”).
The problem to be solved to disclose the deviations is then

min
z′

||z′||L
subject to Mz′ = 0

z′i ≥ upli + ei, i ∈ P ,

(7)

upli+ei being the approximate values used by the attacker to obtain the approx-
imate deviations z′. The protection of the table thus depends on how sensitive
the solution z′∗ is to possible small ei values. This relation is explained by the
next proposition [6]:

Proposition 1. If z′∗(e) ∈ IRn is the solution of (7) for a particular vector of
e = (e1, . . . , e|P|) values, and µ ∈ IR|P| is the Lagrange multipliers vector of the
bounds of z′ in (7) for e = 0 (i.e., the multipliers obtained when protecting the
table), then

∇e||z′∗(e)||L
∣∣
e=0

= µ. (8)



Computational Experiments 77

a

10(3) 15 11 9 45
8 10 12(4) 15 45
10 12 11(2) 13(5) 46

28 37 34 37 136

(a)

z

7 0 -6 -1 0
0 0 4 -4 0
-7 0 2 5 0

0 0 0 0 0

(b)

z′

9 0 -8 -1 0
0 0 5 -5 0
-9 0 3 6 0

0 0 0 0 0

(c)

z′′

10 4 -11 -3 0
0 0 6 -6 0

-10 -4 5 9 0

0 0 0 0 0

(d)

Fig. 1. Example of sensitivity of the method to changes in the protection levels. (a)
Original data a to be protected. Sensitive cells are in boldface, and upper protection
levels are given in brackets. (b) Optimal deviations z computed with the L1 distance,
weights wi = 1, and inactive bounds ai = 0 and ai = ∞ for all the internal cells.
Marginal cells were fixed. The Lagrange multipliers of the bounds zi ≥ upli for the
sensitive cells are µ11 = 0, µ23 = 2, µ33 = 4 and µ34 = 4. The objective function – the
sum of deviations in absolute value – is 36. (c) and (d) Deviations z′ and z′′ computed by
the attacker using approximate protection levels with errors e11 = e23 = e33 = e34 = 1,
and e11 = 1, e23 = 2, e33 = 3, e34 = 4, respectively. The objective functions are
respectively 46 and 68 which satisfy (9).

Moreover, for, respectively, the L1 and L∞ distances, problem (7) is linear, and,
for small enough vectors e = (e1, . . . , e|P|), (8) can be recast as

||z′∗(e)||L − ||z∗||L =
∑

i∈P
µiei, (9)

z∗ being the deviations used to protect the table.
To illustrate the above result, consider the example of Figure 1. Table (a)

shows the original data to be protected. Sensitive cells appear in boldface, and
their upper protection levels upli are given in brackets. Using the L1 distance,
weights wi = 1, and bounds ai = 0 and ai = ∞ for all the internal cells, the
optimal deviations computed are shown in Table (b). The objective function
value is ||z||L1 =

∑n
i=1 |zi| = 36. The Lagrange multipliers of the constraints

zi ≥ upli for the sensitive cells are µ11 = 0, µ23 = 2, µ33 = 4 and µ34 = 4.
Since bounds ai = 0 are inactive in the solution, the attacker can use (7) to
disclose the deviations of Table (b). If, for instance, the attacker can adjust all
the original upli protection levels, but for cell a11, (in this case, if e11 ≤ 4,
e23 = e33 = e34 = 0), from (9) and since µ11 = 0, a solution with the same
objective function (and possibly with the same deviations) that for Table (b)
(i.e., 36) will be obtained. However, if all the protection levels are adjusted with
errors, a different solution will be computed. For instance, if problem (7) is
solved with e11 = e23 = e33 = e34 = 1, the deviations z′ obtained are those of
Table (c). The objective function (i.e., sum of deviations) is 46, which satisfies
(9): 46 − 36 = 1µ11 + 1µ23 + 1µ33 + 1µ34. If problem (7) is solved with slightly
larger values e11 = 1, e23 = 2, e33 = 3, e34 = 4, the deviations z′′ obtained
are shown in Table (c). Again, the objective function, 68, satisfies: 68 − 36 =
1µ11 + 2µ23 + 3µ33 + 4µ34.

Note that ||(µi:i∈P )|| (the norm of the Lagrange multipliers of constraints
zi ≥ upli for the sensitive cells) can be used as an indicator of the protection of
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z′
L1

7 0 -6 -1 0
0 0 4 -4 0
-7 0 2 5 0

0 0 0 0 0

(a)

z′′
L1

6 0 -6 0 0
1 0 4 -5 0
-7 0 2 5 0

0 0 0 0 0

(b)

zL2

3.416̂ 3.416̂ -6 −8.3̂ 0

0.083̂ 0.083̂ 4.0 −4.16̂ 0
-3.5 -3.5 2 5 0

0 0 0 0 0

(c)

Fig. 2. Example of alternative solutions with complete information by the attacker. The
original data a to be protected are those of Table (a) of Figure 1. Sensitive cells are
in boldface, and upper protection levels are given in brackets. (a) and (b) Alternative
solutions z′

L1 and z′′
L1 , computed with two different linear programming solvers, using

the L1 distance, weights wi = 1, and bounds ai = 0 and ai = ∞ for all the internal cells.
Marginal cells were fixed. The objective function – the sum of deviations in absolute
value – of both solutions is 36. (c) Unique solution zL2 for the L2 distance, again with
weights wi = 1, and bounds ai = 0 and ai = ∞ for all the internal cells. The 2-norm
of the deviations vector is 12.12.

the table. In theory, the larger this value, the more difficult is for an attacker
to retrieve the original data. Real tables, with a large number of sensitive cells,
often will have a high ||(µi:i∈P )|| value, and thus confidential.

In some cases, even if the attacker has complete information, the right per-
turbations can not be disclosed [6]:

Proposition 2. Assume the attacker knows all the terms of problem (7). If the
L2 distance is used, the solution of that problem will provide the deviations used
to protect the table. However, for L1 or L∞, the attacker can obtain alternative
deviations.

For instance, Tables (a) and (b) of Figure 2 show two alternative solutions
with the L1 distance for the data of Table (a) of Figure 1. They were obtained
with two different implementations of the simplex algorithm, using weights wi =
1, and bounds ai = 0 and ai = ∞ for all the internal cells. Marginal cells
were fixed. The sum of deviations is 36 in both solutions. Table (c) of Figure
2 shows, for the same data, the unique solution for the L2 distance. Since L2

involves a quadratic function, the solution attempts to distribute the deviations
among all the cells, obtaining a non-integer solution (valid for magnitude tables).
Proposition 2 means that L1 and L∞ are a bit safer when the attacker knows all
the terms of (7), which in practice is equivalent to that the attacker knows the
original data (thus, very unlikely). Therefore, in practice, it can be concluded
that the three distances have the same low disclosure risk.

4 Computational Comparison

For the computational comparison of models (4–6) (i.e., L1, L2 and L∞) we
used the seven most complex instances of CSPLIB. CSPLIB is the unique cur-
rently available set of instances for tabular data protection [11]. It can be freely
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Table 1. Properties of the seven complex instances.

Name Dimensions Size n |P| m N.coef

bts4 4D, hierarchical 54,54,4,4 36570 2260 36310 136912
hier13 3D, hierarchical 13,13,13 2020 112 3313 11929
hier16 3D, hierarchical 16,16,16 3564 224 5484 19996
nine12 9D, linked 10,6,6,6,6,6,6,6,6 10399 1178 11362 52624
nine5d 9D, linked 4,29,3,4,5,6,5,4,5 10733 1661 17295 58135
ninenew 9D, linked 10,6,6,6,6,6,6,6,6 6546 858 7340 32920
two5in6 6D, linked 6,4,16,4,4,4 5681 720 9629 34310

obtained from http://webpages.ull.es/users/casc/#CSPlib:. These seven
instances were also the choice in [8] and are challenging for other approaches,
as cell suppression. As shown below, they can be solved in few seconds with
the minimum-distance approach. Table 1 provides their main features: identifier
(column “Name”), number of dimensions and structure – linked or hierarchical
– (column “Dimensions”), size for each dimension (column “Size”), number of
total cells and sensitive cells (columns “n” and “|P|”, respectively), number of
constraints (column “m”), and number of coefficient of the M matrix (column
“N.coef”). The structure and size information was obtained from [8].

Problems (4–6) were implemented using the AMPL modelling language [12]
and CPLEX 8.0 [14]. All runs were carried on a notebook with a 1.8 GHz proces-
sor and 512 Mb of RAM. For L2 we used the primal-dual interior-point algorithm
[16], which can be considered the most efficient choice. L1 and L∞ were solved
with the two best linear programming algorithms: the simplex method and the
primal-dual interior-point method. Although the optimal objective function is
the same, both algorithms can provide different solutions. In this work we used
those of the simplex method, which, in practice, provided better deviations.

For each of the three distances, Table 3 of Appendix A show the following in-
formation. Row “CPU” gives the CPU time in seconds for each algorithm. Rows
“Abs. dev.” provide the mean (columns “mean”), standard deviation (columns
“std”) and maximum (columns “max.”) of the absolute deviations (i.e., |zi|), for
all the cells (row “all”), for the sensitive cells (row “∈ P”), and for the non-
sensitive cells (row “ �∈ P”). A similar information is provided for the percentage
absolute deviations (i.e., 100|zi|/ai) in rows “Perc. dev.”. Finally, rows “2-norm”
report the 2-norm of the deviations (i.e., ||z||2), again for sensitive, nonsensitive,
and all the cells.

Looking at Table 3 we see that most of the optimization problems were solved
until optimality in few seconds on a standard personal computer. L∞ provides
the slowest executions, due to the large number of constraints considered in
(6). L2, solved through a quadratic interior-point solver, was always the most
efficient choice (except for the smallest instance hier13). In most instances the so-
lution time of the L2 was about half the time of the second fastest option. This
is because, first, the complexity of solving a quadratic separable optimization
problem is the same that for a linear one, if we use an interior-point algorithm;
and second, problem (4) involves the double of variables that (5). The solu-
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tion times obtained with the interior-point algorithm, for the three objectives,
can even be improved using specialized solvers that exploit the tables structure
[2, 5].

For the absolute deviations, L2 provides the lowest means and, mainly, the
lowest standard deviations. Such lowest standard deviations are not surprising,
since L2, due to its quadratic nature, attempts to evenly distribute the required
deviations among all the cells. As for the other two distances, L∞ provided better
absolute deviations than L1, but for instances hier13 and hier16. That was, a
priori, an unexpected result, since only two cells appear in the objective function
of (6), whereas all the perturbations are considered in (4). The distribution of
the absolute deviations (not reported in the tables) showed that L1 provided the
greater number of cells with small deviations.

For the percentage deviations, L1 must clearly provide the best mean values,
since its objective function is exactly the sum of percentage absolute devia-
tions. However, L2 provides similar mean percentage deviations, and, for most
instances, with slightly better standard deviations. L∞ provided worser means
and standard deviations, but, as a consequence of its objective function, the
lowest maximum values.

Finally, the lowest 2-norms of the deviations vector are provided in all the
instances by L2 . This is a consequence of L2 being the only quadratic objective
of the three tested. Except for instance hier13, L∞ always provides deviations
with better 2-norms than L1.

From the above comments, we can conclude that L1 provides the best results
when a first-order comparison measure, as the mean percentage deviation, is
considered. However, when a second-order measure is used, as the 2-norm of the
deviations or the standard deviation of the percentage deviations, L2 seems to
be the best choice. The above is an immediate result of the objective functions
(linear or quadratic) of the respective optimization problems. That suggests that
a method combining L1 and L2 could provide fairly good values for the first and
second-order comparison measures. This alternative is exploited in next section.

5 Combining the L1 and L2 Distances

The optimization problem that results from the combination of the L1 and L2

distances can be written in a general form as

min
z+,z−

ω1

n∑

i=1

w1,i(z+
i + z−i ) + ω2

∑

i∈S
w2,i(z+

i + z−i )2

subject to M(z+ − z−) = 0
0 ≤ z+

i ≤ zi i = 1, . . . , n
0 ≤ z−i ≤ −zi i = 1, . . . , n{

z+
i ≥ upli

z−i = 0

}
or

{
z−i ≥ lpli
z+

i = 0

}
i ∈ P ,

(10)

z+ and z− being the vector of positive and negative deviations in absolute value,
ω1 and ω2 weights for the overall contribution to the objective function of re-
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x2

a2a( )1,

x1

)ω = 1 (L1

)ω = 0 (L2

7

7.5

8

8.5

9

9.5

10

11 12 13 14 15 16 17

Fig. 3. Solutions of the L1 and L2 distances for the one dimensional table a1 + a2 =
a3, imposing a perturbation z3 ≥ 4 for the marginal cell. Point (a1, a2) = (12, 8)
corresponds to the original internal cell values. The other eleven points are the solutions
obtained with the objective function of (4) using ω1 = ω and ω2 = 1 − ω, for ω =
0, 0.1, 0.2, . . . , 0.9, 1, which combines the L1 and L2 distances through the weight factor
ω. The L2 solution (computed with ω = 0) is closer to (a1, a2), but the L1 point (ω = 1)
preserves the value of a2.

spectively the linear and quadratic terms, S a subset of cells affected by L2, and
w1,i and w2,i cell weights for respectively L1 and L2. This formulation is general
enough to accommodate to several situations. For instance, it provides an always
feasible problem if we apply the L1 and L2 terms to respectively the internal
and marginal cells (i.e., S is the set of marginal cells), with a large penalization
for changes in marginal values (i.e., w2,i � 0).

Before presenting results for the seven instances of Section 4, we first illustrate
the behaviour of (10) on the small example of Figure 3. The table considered
is a1 + a2 = a3, with a1 = 12 and a2 = 8. We imposed z1 + z2 = z3 and
z3 ≥ 4, i.e., an upper protection level of 4 is forced for the marginal sensitive
cell. We set S = {1, 2, 3} (i.e., the three cells appear in the quadratic term of
the objective function), and ω1 = ω, ω2 = 1 − ω, ω ∈ [0, 1] being a predefined
parameter. For ω = 1 and ω = 0 the combined objective of (10) corresponds to
the L1 and L2 distances, respectively. Using w1,i = 1/ai the optimal solution
obtained with L1 is z1 = 4, z2 = 0 and z3 = 4. With the same weights w2,i =
1/ai, the optimal solution provided by L2 is z1 = 2.4, z2 = 1.6 and z3 = 4.
If integer values were required, the z1 and z2 values could be rounded through
some heuristic postprocess (in that case the most reasonable choice would be
z1 = 2 and z2 = 2). Figure 3 shows the perturbed internal cell values obtained
for ω = 0, 0.1, . . . , 0.9, 1, and the original ones (a1, a2). Clearly, the L2 point
is closer to (12, 8), but the L1 solution preserves the value of cell a2. This is
consistent with the results of Section 4. The combined L1−2 objective provides
solutions on a curve joining the L1 and L2 points. Because of the larger costs of
the quadratic term, the optimal solution was only far enough from the L2 point
for ω = 0.8 and ω = 0.9.
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Table 2. Results for the seven complex instances, for L1, L2 and L1−2.

L1 L2 L1−2

name CPU %Dev. 2-norm CPU %Dev. 2-norm CPU %Dev. 2-norm

bts4 16.5 0.74 18243 11.5 0.83 7912 45.0 0.76 10217
hier13 3.3 0.81 2609 3.8 0.87 2149 7.1 0.82 2306
hier16 19.9 0.83 3203 17.1 0.90 2706 31.0 0.84 2845
nine12 382.1 1.35 5840 18.3 1.53 4878 43.7 1.38 5234
nine5d 126.7 1.67 8316 20.4 1.90 5468 30.9 1.72 5845
ninenew 27.0 1.55 5448 11.1 1.76 4444 26.3 1.56 4731
two5in6 13.6 1.46 4917 9 1.65 3749 16.8 1.50 4045

In the computational results of this section we used S={1, . . . , n} (i.e., all
the cells are involved in the quadratic term) and w1,i = w2,i = 1/ai, i = 1, . . . , n.
According to the previous small example, we also set ω1 = 0.99 and ω2 = 0.01.
Table 2 shows the results obtained with L1, L2 and the combined L1−2 objective.
For each distance, the execution time (columns “CPU”), average percentage de-
viation for all the cells (columns “%Dev.”), and 2-norm of the deviations vector
(columns “2-norm”) are provided. Executions were carried on the same hard-
ware and with the same software (i.e., AMPL+CPLEX 8.0) than in Section 4.
The results reported for L1 were obtained with the simplex method, while the
quadratic interior-point algorithm was used for L2 and L1−2. Looking at Table 2
we see the combined L1−2 distance provides average percentage deviations close
to those of L1, while the 2-norm has been significantly reduced. As expected,
the combined L1−2 distance inherited the good properties of L1 and L2.

6 Conclusions

As shown by the computational experiments of this work, the minimum-distance
approach is efficient, versatile and safe. The three methods tested, for L1, L2

and L∞, provided different patterns of deviations, each of them with a clear
behaviour. As done in the paper with L1 and L2, it is possible to combine them
in a new approach with the good features of the original methods.

One of the fields of research to be be explored deals with the optimization
solvers. In a static environment, the final goal might be the protection, in a single
run, of all the tables derived from the same microdata. The resulting problem
is huge. In a dynamic environment, the goal would be the online protection of
particular tables (e.g., obtained from end-user queries from a data-warehouse).
Speed is instrumental in that case. In both situations, we may need highly-
efficient implementations of the optimization methods used in this work, which
exploit the problem structure. Some steps have already been done in this direc-
tion for large (i.e., one million cells) three-dimensional tables and L2 [5], where a
specialized implementation was two orders of magnitude faster than the CPLEX
8.0 solver. Extending those achievements to general tables is part of the future
work to be done.
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Appendix

A Tables with Results for the Seven Instances

Table 3. Results for the seven complex instances, for L1, L2 and L∞.

Results for the bts4 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point
CPU 16.46 39.7 11.45 1594.69 207.02

mean std max. mean std max. mean std max.
Abs. all 33.9 89.2 4483.0 all 24.9 33.0 795.9 all 30.1 49.0 947.8
dev. ∈P 56.0 32.2 155.0 ∈P 56.0 32.2 155.0 ∈P 57.0 32.6 168.5

�∈P 32.4 91.5 4483.0 �∈P 22.9 32.0 795.9 �∈P 28.4 49.4 947.8
mean std max. mean std max. mean std max.

Perc. all 0.74 1.97 11.11 all 0.84 1.95 20.23 all 1.10 2.36 11.11
dev. ∈P 7.27 2.60 11.11 ∈P 7.27 2.59 11.11 ∈P 7.46 2.61 11.11

�∈P 0.31 0.83 11.03 �∈P 0.42 0.84 20.23 �∈P 0.68 1.63 11.03
all 18243.0 all 7912.0 all 10997.2

2-norm ∈P 3072.3 ∈P 3070.3 ∈P 3120.5
�∈P 17982.4 �∈P 7292.0 �∈P 10545.2

Results for the hier13 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point
CPU 3.25 6.86 3.83 5.85 35.23

mean std max. mean std max. mean std max.
Abs. all 37.8 44.1 344.0 all 33.9 33.7 313.4 all 52.0 58.2 463.7
dev. ∈P 55.6 28.0 97.0 ∈P 55.2 27.8 97.0 ∈P 59.0 27.8 97.0

�∈P 36.8 44.6 344.0 �∈P 32.7 33.6 313.4 �∈P 51.5 59.4 463.7
mean std max. mean std max. mean std max.

Perc. all 0.81 1.72 9.97 all 0.87 1.95 45.84 all 1.04 1.91 9.97
dev. ∈P 6.20 2.17 9.97 ∈P 6.18 2.19 9.97 ∈P 6.65 2.37 9.97

�∈P 0.49 1.02 8.28 �∈P 0.56 1.42 45.84 �∈P 0.71 1.25 8.28
all 2609.6 all 2149.3 all 3504.9

2-norm ∈P 658.5 ∈P 654.1 ∈P 689.3
�∈P 2525.1 �∈P 2047.4 �∈P 3436.4
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Table 3. (Continued).

Results for the hier16 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point
CPU 19.85 28.36 17.19 66.52 136.86

mean std max. mean std max. mean std max.
Abs. all 35.8 40.0 280.5 all 33.4 30.6 258.3 all 36.8 36.6 300.9
dev. ∈P 48.3 27.4 131.0 ∈P 48.3 27.4 131.0 ∈P 48.7 27.4 131.0

�∈P 34.9 40.6 280.5 �∈P 32.4 30.6 258.3 �∈P 36.0 37.0 300.9
mean std max. mean std max. mean std max.

Perc. all 0.83 1.84 10.00 all 0.90 1.81 10.00 all 1.13 2.05 10.00
dev. ∈P 6.89 2.38 10.00 ∈P 6.89 2.38 10.00 ∈P 7.04 2.41 10.00

�∈P 0.43 0.78 7.59 �∈P 0.50 0.75 7.59 �∈P 0.73 1.26 7.59
all 3203.5 all 2706.3 all 3098.4

2-norm ∈P 830.2 ∈P 830.2 ∈P 836.8
�∈P 3094.1 �∈P 2575.9 �∈P 2983.2

Results for the nine12 instance
Simplex Int. Point Int. Point Simplex Int. Point

CPU 382.13 47.38 18.29 727.28 338.8
mean std max. mean std max. mean std max.

Abs. all 36.3 44.3 490.9 all 34.6 33.0 377.4 all 32.6 36.5 268.0
dev. ∈P 51.7 28.3 154.0 ∈P 51.6 28.2 154.0 ∈P 52.1 28.2 154.0

�∈P 34.4 45.6 490.9 �∈P 32.4 33.0 377.4 �∈P 30.1 36.7 268.0
mean std max. mean std max. mean std max.

Perc. all 1.35 2.34 12.55 all 1.53 2.32 25.43 all 1.74 2.64 10.00
dev. ∈P 6.71 2.38 10.00 ∈P 6.70 2.39 11.97 ∈P 6.82 2.40 10.00

�∈P 0.67 1.15 12.55 �∈P 0.87 1.23 25.43 �∈P 1.09 1.85 8.95
all 5840.1 all 4878.1 all 4988.1

2-norm ∈P 2022.2 ∈P 2017.2 ∈P 2034.2
�∈P 5478.8 �∈P 4441.5 �∈P 4554.5

Results for the nine5d instance
Simplex Int. Point Int. Point Simplex Int. Point

CPU 126.67 43.03 20.36 784.52 137.33
mean std max. mean std max. mean std max.

Abs. all 41.4 68.8 1010.0 all 37.2 37.5 499.4 all 34.4 38.4 306.5
dev. ∈P 50.6 29.3 156.0 ∈P 50.6 29.3 156.0 ∈P 50.8 29.3 156.0

�∈P 39.7 73.6 1010.0 �∈P 34.7 38.3 499.4 �∈P 31.4 39.1 306.5
mean std max. mean std max. mean std max.

Perc. all 1.67 2.69 10.00 all 1.90 2.53 10.00 all 2.23 3.02 10.00
dev. ∈P 6.83 2.42 10.00 ∈P 6.83 2.42 10.00 ∈P 6.87 2.42 10.00

�∈P 0.73 1.31 9.78 �∈P 1.00 1.11 9.31 �∈P 1.38 2.25 8.79
all 8316.4 all 5468.3 all 5343.4

2-norm ∈P 2383.6 ∈P 2383.2 ∈P 2389.6
�∈P 7967.5 �∈P 4921.7 �∈P 4779.4
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Table 3. (Continued).

Results for the ninenew instance
Simplex Int. Point Int. Point Simplex Int. Point

CPU 27.08 24.02 11.15 199.39 120.52
mean std max. mean std max. mean std max.

Abs. all 41.6 53.0 602.7 all 38.6 39.0 522.8 all 39.0 43.2 439.1
dev. ∈P 52.4 28.6 192.0 ∈P 52.4 28.3 192.0 ∈P 53.0 28.3 192.0

�∈P 39.9 55.5 602.7 �∈P 36.6 40.0 522.8 �∈P 36.8 44.7 439.1
mean std max. mean std max. mean std max.

Perc. all 1.56 2.47 16.16 all 1.76 2.44 22.86 all 2.19 2.93 10.00
dev. ∈P 6.66 2.38 10.00 ∈P 6.66 2.36 10.00 ∈P 6.79 2.39 10.00

�∈P 0.79 1.29 16.16 �∈P 1.02 1.35 22.86 �∈P 1.50 2.32 9.93
all 5447.5 all 4444.3 all 4708.1

2-norm ∈P 1749.6 ∈P 1744.5 ∈P 1759.5
�∈P 5158.9 �∈P 4087.6 �∈P 4366.9

Results for the two5in6 instance
Simplex Int. Point Int. Point Simplex Int. Point

CPU 13.58 16.88 9 83.48 86.47
mean std max. mean std max. mean std max.

Abs. all 38.3 52.8 530.0 all 35.4 34.9 340.1 all 38.3 39.3 281.8
dev. ∈P 49.1 32.0 169.0 ∈P 49.1 32.0 169.0 ∈P 49.7 31.8 169.0

�∈P 36.7 55.0 530.0 �∈P 33.5 34.9 340.1 �∈P 36.7 40.0 281.8
mean std max. mean std max. mean std max.

Perc. all 1.46 2.49 10.00 all 1.65 2.40 17.88 all 2.08 2.81 10.00
dev. ∈P 6.80 2.42 10.00 ∈P 6.80 2.42 10.00 ∈P 6.99 2.42 10.00

�∈P 0.69 1.23 9.69 �∈P 0.90 1.17 17.88 �∈P 1.37 2.04 8.44
all 4917.2 all 3749.3 all 4137.1

2-norm ∈P 1573.0 ∈P 1572.0 ∈P 1582.4
�∈P 4658.8 �∈P 3403.8 �∈P 3822.5
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