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1 Introduction and Motivation

Long-term generation planning is a key issue in the operation of an electricity
generation company. Its results are used both for budgeting and planning fuel
acquisitions and to provide a framework for short-term generation planning.

The long-term problem is a well-known stochastic optimisation problem be-
cause several of its parameters are only known as probability distributions (for
example: load, availability of thermal units, hydrogeneration and generations
from renewable sources in general).

A long-term planning period (e.g., a natural year) is normally subdivided
into shorter intervals (e.g., a week or a month), for which parameters (e.g., the
load-duration curve) are known or predicted, and optimized variables (e.g., the
expected energy productions of each generating unit) must be found.

Predicted load-duration curves (LDC’s) — equivalent to cumulative probabi-
lity load distributions — for each interval are used as data for the problem, which
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186 Long-term electric power planning in liberalized markets

is appropriate since load uncertainty can be suitably described through the LDC.
The probability of failure for each thermal unit is assumed to be known.

Bloom and Gallant [2] proposed a linear model (with an exponential number of
inequality constraints) and used an active set methodology [9] to find the optimal
way of matching the LDC of a single interval with thermal units only, when there
are load-matching and other operational non-load-matching constraints. These
could be, for example, limits on the availability of certain fuels, or environmental
maximum emission limits. The optimal loading order obtained with Bloom and
Gallant’s method may include permutations with respect to the merit order and
splittings in the loading of units [2, 8]. In this way the energies generated satisfy
the limitations imposed by the non-load-matching constraints while having the
best possible placement, with respect to generation cost, in the matching of the
LDC.

When the long-term planning power problem is to be solved for a generation
company operating in a competitive market, the company has not a load of its
own to satisfy, but it bids the energies of its units to a market operator, who
selects the lowest-price ones among biding companies to match the load. In this
case, the scope of the problem is no longer that of the generation units of a
single generation company but that of all units of all companies biding in the
same competitive market, matching the load of the whole system. This makes
planning problems much larger than before and is a reason for developing more
efficient codes to solve them.

The Bloom and Gallant model has been successfully extended to multi-interval
long-term planning problems using either the active-set method [9], the Dantzig-
Wolfe column-generation method [4, 14], or the Ford-Fulkerson column-generation
(FFcg) method [5, 12]. The FFcg and the Dantzig-Wolfe procedures have many
common steps. The model has also been coded using the modeling language
AMPL [6] and has been solved with a linear/quadratic programming package
Cplex 7.5 [3] as carried out in [11] for a single interval.

A quadratic model is put forward here to formulate the long term profit maxi-
mization of generation companies in a liberalized electricity market [10] and the
performance of several solutions procedures for solving this problem is compared
[13].

2 The load-duration curve

The LDC is the most sensible way to represent the load of a future interval.
The main features of an LDC (corresponding to the ith interval) can be described
through 5 characteristics: the duration T i, the peak load power P̂ i, the base load
power P i, the total energy Êi and the shape, which is not a single parameter
and is usually described through a table of durations and powers, or through a
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function.
The LDC for future intervals must be predicted. For a past interval, for which

the hourly load record is available, the LDC is equivalent to the load over time
curve sorted in order of decreasing power. It should be noted that in a predicted
LDC, random events such as weather, shifts in consumption timing, etc., that
cause modifications of different signs in the load tend to cancel out, and that the
LDC keeps all the power variability of the load.

3 Thermal Units

As far as loading an LDC is concerned, the relevant parameters of a thermal
unit are:

K power capacity: (Cj for the jth unit) maximum power output (MW) that
the unit can generate

K outage probability: (qj for the jth unit) probability of a unit not being
available when it is required to generate

K linear generation cost: (f̃j for the jth unit) production cost in C /MWh

Other associated concepts are:

K merit order: units are ordered according to their efficiency in generating
electric power ( C /MWh); all units will work at their maximum capacity
since no unit should start to generate until the previous unit in the merit
order is generating at its maximum capacity,

K loading order: units will have load allocated to them in a given order;
loading order and merit order may not coincide when there are other cons-
traints to be satisfied.

4 Matching the load-duration curve

Due to the outages of thermal units (whose probability is >0), the LDC does
not coincide with the estimated production of thermal units. It is usual for the
installed capacity to be higher than the peak load:

∑nu
j=1 Cj>P̂ .

The generation-duration curve is the expected production of the thermal units
over the time interval to which the LDC refers. The energy generated by each
unit is the slice of area under the generation-duration curve which corresponds
to the capacity of the thermal unit.

The probability that there are time lapses within the time interval under
consideration, where, due to outages, there is not enough generation capacity
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to cover the current load, is not null. Therefore, external energy (from other
interconnected utilities) will have to be imported and paid for at a higher price
than the most expensive unit in ownership. The peak power of the generation-
duration curve is

∑nu
j=1 Cj+P̂ and the area above power

∑nu
j=1 Cj is the external

energy.

4.1 Convolution method of finding the generation-duration
curve

The loading of thermal units in an LDC was first formulated in [1] and prac-
tical procedures to compute the expected generation can be found in [15]. Analy-
tically, given the probability density function of load p(x), the cumulative load
distribution function L0(x) (see Fig. 8.1) is calculated as follows:

L0(x) = 1−
∫ x

0

p(y) dy

xp( )

PPxL( )

power(MW)
x

PP

xL( )

power(MW)

0

1

x

Figure 8.1: Probability density function of load p(x) (left), and cumulative load
distribution function L0(x) (right).

The method calculates the production of each thermal unit, given a loading
order. The load is modeled through its distribution L0(x), which is the probability
of requiring x MW, or more. Let:

Uj : set of unit indices 1, 2, . . . , j
LUj

(x) : probability distribution of load still to be matched after loading
units 1, 2, ..., j − 1, j

x : load in MW

the convolution computes LUj (x) from LUj−1(x) as [1, 15]:

LUj (x) = qj LUj−1(x) + (1− qj) LUj−1(x + Cj) (8.1)

Recalling that E=P ·T , the expected energy generated by unit j is [1]:

Ej = (1− qj) T
∫ Cj

0

LUj−1(x) dx . (8.2)
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4.2 Unsupplied load after a set of thermal units is loaded

Let L0(x) be the cumulative probability distribution of the power load corres-
ponding to the LDC. It is not difficult to derive that, given a set of units whose
indices 1,2, etc. are the elements of the set of indices Ω, the unsupplied load after
loading all the units in Ω will have a cumulative probability distribution LΩ(x)

LΩ(x) = L0(x)
∏
m∈Ω

qm +
∑
U⊆Ω

(
L0(x +

∑
i∈U

Ci)
∏
i∈U

(1− qi)
∏

i∈Ω\U
qi

)
(8.3)

We can thus say that the cumulative probability distribution LΩ(x) of the
unsupplied load is the same no matter the order in which the units in Ω have
been loaded.

The unsupplied energy W (Ω) is computed as:

W (Ω) = T

∫ P̂

0

LΩ(x) dx (8.4)

The integration in (8.4) is to be carried out numerically.

5 Bloom & Gallant’s model for matching the load-
duration curve when there are non-load-mat-
ching constraints

Let the Bloom & Gallant formulation (for a single interval) [2] be given by:

minimize
Ej

nu+1∑
j=1

f̃j Ej (8.5)

subject to
∑
j∈U

Ej ≤ Ê −W (U) ∀ U ⊂ Ω = {1, . . . , nu} (8.6)

A≥E ≥ R≥ (8.7)
A= E = R= (8.8)
nu+1∑
j=1

Ej = Ê (8.9)

Ej ≥ 0 j = 1, . . . , nu, nu + 1 (8.10)

where:
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nu+1 : index representing the external energy
n≥ : total number of non-load-matching inequality constraints
A≥ : ∈IRn≥×nu matrix of non-load-matching inequality constraints
R≥ : rhs of non-load-matching inequality constraints
A= : ∈IRn=×nu matrix of non-load-matching equality constraints
R= : rhs of non-load-matching equality constraints
U : subset of Ω

W (U) : unsupplied energy after loading all units j ∈ U ⊂ Ω

The objective function (8.5) can be simplified using (8.9), which leads to:

nu∑
j=1

fj Ej + f̃nu+1Ê where fj = f̃j − f̃nu+1

with f̃nu+1Ê being a constant.

5.1 The case where no constraint (8.7) is active

Constraints (8.7) and (8.8) are the non-load-matching constraints. The Ap-
pendix of [8] contains a proof that the merit-order loading energies correspond
to a minimum of the formulation (8.5–8.10) when there are no active constraints
(8.7) and in case that there should be no non-load-matching equality constraints
(8.8).

Assuming that units are ordered in order of merit, the active constraints at
the minimizer of the set of inequalities (8.6) would be:

E1 = Ê −W (1)

E1 + E2 = Ê −W (1, 2) (8.11)
. . .

E1 + E2 + E3 + · · ·+ Enu = Ê −W (1, 2, . . . , nu)

5.2 The case with equalities (8.8) or where a constraint
(8.7) or nonnegativity bound (8.10) is active

In this case, the equalities (8.8) or at least one of the constraints in (8.7) or
nonnegativity bound (8.10) will be active, which means that at least one of the
active constraints in (8.11) will not be satisfied as an equality.

5.3 The multi-interval Bloom and Gallant model

As power planning for a long time period cannot take into account changes
over time of some parameters, the time period is subdivided into shorter intervals
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in which all parameters can be assumed to be constant. We will use superscript
i to indicate that variables and parameters refer to the ith interval.

Therefore some constraints refer only to variables of a single interval, while
others may refer to variables in several intervals. E.g., constraints on the minimum
consumption of gas may affect several or all the intervals, while emission limit
constraints, or the constraint associated with the units composing a combined-
cycle unit refer to each single interval.

The overhauling of thermal units must be taken into account. Therefore, there
will be intervals where some units must remain idle. The set of available units
in each interval may be different. Let Ωi be the set of available units in the ith

interval, and let ni
u be ni

u=|Ωi| (the cardinality of this set).
The Bloom and Gallant linear optimization model extended to ni intervals,

with inequality and equality non-load-matching constraints, can thus be expressed
as:

minimize
Eji

ni∑
i=1

nu∑
j=1

fjE
i
j (8.12)

subject to:
∑
j∈U

Ei
j ≤ Êi −W i(U) ∀U ⊂ Ωi i = 1, . . . , ni (8.13)

Ai
≥Ei ≥ Ri

≥ i = 1, . . . , ni (8.14)∑
i

A0i
≥ Ei ≥ R0

≥ (8.15)

Ai
= Ei = Ri

= i = 1, . . . , ni (8.16)∑
i

A0i
= Ei = R0

= (8.17)

Ei
j ≥ 0 j = 1, . . . , nu, i = 1, . . . , ni (8.18)

where:

Ai
≥ : ∈IRni≥×nu matrix of inequalities that refer only to interval i

A0i
≥ : ∈IRn0

≥×nu matrix of inequalities that refer to more than one interval
Ri
≥ : ∈IRni≥ rhs of inequalities that refer only to energies of interval i

R0
≥ : ∈IRn0

≥ rhs of inequalities that refer to more than one interval
Ai

= : ∈IRni=×nu matrix of equalities that refer only to energies of interval i
A0i

= : ∈IRn0
=×nu matrix of equalities that refer to more than one interval

Ri
= : ∈IRni= rhs of equalities that refer only to energies of interval i

R0
= : ∈IRn0

= rhs of equalities that refer to energies of more than one interval
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The number of variables is now
∑ni

i ni
u and there are

∑ni
i (2niu−1) load-

matching constraints plus n==n0
=+

∑
i n

i
= non-load-matching equalities, and n≥

=n0
≥+

∑
i n

i
≥ non-load-matching inequalities. Note that supraindices 0 indicate

constraints which affect variables of more than one interval.
Should constraint sets (8.15) and (8.17), which are the multi-interval cons-

traints, be empty, the problem would be separable into ni subproblems, one for
each interval. Otherwise a joint solution must be found.

5.4 Approximate model of long-term hydrogeneration

The long term model described is appropriate for thermal generation units but
not for hydrogeneration, which requires additional variables to represent the va-
riability of water storage in reservoirs and discharges necessary for the calculation
of the hydroenergy generated.

A coarse model of hydrogeneration, which does not consider any of the reser-
voir dynamics, can be employed. All or a part of the reservoir systems of one or
several basins are considered as a single pseudo-thermal unit H with cost f̃H=0,
outage probability qH=0 and capacity CH (normally lower than the maximum
installed hydropower capacity), with a constraint binding the intervals’ hydroge-
nerations over the successive intervals so that they add up to a total expected
hydrogeneration R0

H for the whole period:

ni∑
i

Ei
H = R0

H , (8.19)

6 Long-term maximization of profit in a “com-
petitive” market

In the classical electricity markets, utility companies have both generation and
distribution of power. These companies have their own load to supply, correspon-
ding to their clients plus other contracts, and try to minimize their generation
cost. In “competitive” electricity markets, generation companies have no distri-
bution, and therefore no load of their own. Generation companies must bid their
generation to the market operator and a market price is determined for each hour
by matching the demand with the generation of the lowest bids. Generation com-
panies are no longer interested in generating at the lowest cost but in obtaining
the maximum profit, which is the difference between market price and generation
cost for all accepted generation bids. In long-term operation all accepted bids in
a time interval (a week, or a month) must match the LDC of this interval.

There is no specific load to be matched by a specific generation company
(SGC). The only known loads are the predicted LDC’s for the whole market in
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each interval. As all generation companies pursue their maximum profit, it is
natural to attempt to maximize the profit of all generation companies combined.

The SGC must thus solve the problem of the maximization of profit of all
generation companies, taking into account the total market load. The SGC should
introduce its own operation constraints (fuel and emission limits, contracts, etc.)
and may also introduce a market-share constraint for its units in one or several
intervals. (The Lagrange multiplier value of this constraint will tell whether the
market share imposed, though feasible, is reasonable or not.) The long-term
results will indicate how the SGC should program its units so that its profit be
maximized while meeting all its operation constraints.

6.1 Long-term market price function of a given interval

From the records of past market-price and load series (see Fig. 8.2) it is possible
to compute a market-price function for a given interval. This function is to be
used with expected generations that match the LDC of the interval, so market
prices should correspond in duration with the duration of loads, from peak to
base load in the interval.
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Figure 8.2: Hourly loads (continuous curve) and market prices (dashed)
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Both the load and the market price series should be reordered in decreasing
load order obtaining a LDC and a price-duration curve that corresponds to the
loads in the LDC. The price-duration-curve obtained will be nonsmooth and may
even be nondecreasing (see Fig. 8.3). However, fitting a straight line or a low order
polynomial to it, a decreasing line or function will generally be obtained. Given
the variability of the price-duration curve, it seems reasonable to fit a straight
line to it. Let bi and li be the basic and linear coefficient of such line for the ith

interval. (Predictions of bi and li could be obtained taking into account both the
series corresponding to the same interval in several successive years and that of
successive intervals.)

6.2 Maximum profit objective function

In order to determine the maximum-profit objective function, a simplifying
assumption is convenient regarding the shape of the unit contributions in the
generation-duration curve. Instead of having some units (particulary those with
the lowest loading order) with an irregular shape in its right side, it will be
assumed that the contribution of all units will have a rectangular shape with
height Cj (for unit j) and base length Ei

j/Cj as in Fig. 8.4.

The profit (price minus cost) of unit j in interval i will be:

∫ Ei
j/Cj

0

Cj

{
bi + lit− f̃j

}
dt =

(
bi − f̃j

)
Ei

j +
li

2Cj
Ei

j
2

and adding for all intervals and units, taking into account the external energy
and using (8.9) we get the profit function to be maximized:

ni∑
i

[ nu∑
j

{(
bi − fj

)
Ei

j +
li

2Cj
Ei

j
2

}
− f̃nu+1Ê

i

]
(8.20)

with fj=f̃j−f̃nu+1, which is quadratic in the generated energies. Given that
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Figure 8.3: Market prices ordered by decreasing load power (thin continuous
curve) in weekly interval, market-price linear function (thick line), and LDC (das-
hed).

fnu+1Ê
i is a constant, the problem to be solved is:

minimize
Eji

ni∑
i

nu∑
j

{(
fj − bi

)
Ei

j −
li

2Cj
Ei

j
2

}
(8.21)

subject to:
∑
j∈U

Ei
j ≤ Êi −W i(U) ∀U ⊂ Ωi i = 1, . . . , ni (8.22)

Ai
≥Ei ≥ Ri

≥ i = 1, . . . , ni (8.23)∑
i

A0i
≥ Ei ≥ R0

≥ (8.24)

Ai
= Ei = Ri

= i = 1, . . . , ni (8.25)∑
i

A0i
= Ei = R0

= (8.26)

Ei
j ≥ 0 j = 1, . . . , nu, i = 1, . . . , ni (8.27)
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Figure 8.4: Long-term price function for a time interval and contribution of jth

unit.

It should be noted that, should all bi and li be zero, the solution of the
maximum profit problem (8.24) would be the same as that of the minimum cost
problem (8.12-8.18). Otherwise, the cost of the maximum profit solution is higher
than that of the minimum cost solution.

Given that li<0 , the quadratic of the objective function of (8.24) is positive
definite, thus problem (8.24) has a unique global minimizer.

Rect@ Monográfico 2 (2004)
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7 Coding the load-matching constraints

The main difficulty of the direct solution of the Bloom and Gallant model is the
exponential number of load-matching inequality constraints (8.13). These cons-
traints are avoided in the application of the Ford-Fulkerson [13] or the Dantzig-
Wolfe column generation method [14, 12, 13], or are generated as they are required
in the active set method [9]. In a direct solution by linear or quadratic program-
ming all ni×(2nu−1) constraints must be explicitly created.

Leaving aside the storage and processing time for these many load-matching
inequality constraints, their creation has two parts: the linear coefficients, which
is fast [10], and the rhs’s, which is very time consuming as it requires lots of
calculation.

For each interval i and for the units of each subset U of the set Ωi we must
first calculate Li

U (x) starting from Li
0(x) by successive convolution for all units j

in U using (8.1), and then compute

Êi −W i(U) = Êi − T i

∫ P̂ i

0

Li
U (x)dx

using numerical integration. This means a lot of arithmetic operations.

8 The Ford-Fulkerson column-generation method
applied to the multi-interval problem

Constraints (8.22) and (8.27) define, for each interval, a convex polyhedron
whose vertices can be easily calculated. To apply the Ford-Fulkerson procedure,
energies Ei∈IRnu must be expressed as convex combinations of all vertices V i

k of
the ith interval polyhedron:

Ei = V iΛi , V i ∈ IRnu×niV Λi ≥ 0, II′Λi = 1 ∀ i

II′=
[

1 1 . . . 1
]

being the all one vector.
The number ni

V of vertices of one such polyhedron is very high as the number
of constraints (8.22) that define it, jointly with the nonnegativity bounds (8.27),
is exponential: 2nu (which is over a million for nu=20). Note that no account is
made of extreme-rays as the nature of the constraints and nonnegativity bounds
prevents these.

Subtracting surpluses Si∈IRni≥ , i=0, 1, . . . , ni in the inequalities, problem
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(8.21-8.27) can be rewritten as:

minimize
S0, Si, Λi

ni∑
i=1

{
(f − bi)′V iΛi +

1
2
Λi′V i′QiV iΛi

}
(8.28)

subject to: II′Λi = 1 i = 1, . . . , ni (8.29)
Ai

=V iΛi = Ri
=

Ai
≥V

iΛi − Si = Ri
≥

}
i = 1, . . . , ni (8.30)

ni∑
i=1

A0 i
= V iΛi = R0

= (8.31)

ni∑
i=1

A0 i
≥ V iΛi − S0 = R0

≥ (8.32)

S0 ≥ 0 Si ≥ 0 , Λi ≥ 0 i = 1, . . . , ni . (8.33)

which is quadratic in Λi and lends itself to being solved by the column-generating
method of Ford-Fulkerson [5].

The convex coefficients Λi∈IRniV , i=1, . . . , ni and the surpluses Si∈IRni≥ ,
i=0, 1, . . . , ni of the inequalities are the variables in the problem. In (8.29-8.33)
there are linear equality constraints and non-negativity bounds only.

9 Murtagh and Saunders algorithm using a Co-
lumn Generation procedure

Given a problem such as (8.28-8.33) we apply the Murtagh and Saunders
algorithm [7] using the column generation procedure. The outline of the method
is:

0.- k := 0; Given an initial feasible point Λ0, S0, classify each variable as basic,
superbasic or nonbasic. Let nU be the number of superbasic variables.

1.- Compute the projected gradient, ‖Z ′G‖

2.- If ‖Z ′G‖ ≤ ε

· Compute the Lagrange multipliers Σ of the active non-negativity bounds.

· Look for a constraint cl, having a negative multiplier, σl < 0

· If there is any σl < 0 then

- nU := nU + 1
- Update ‖Z ′G‖
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else
END

3.- If ‖Z ′G‖ > ε

· Compute a descent direction for the basic and superbasic variables, dk

· Determine the step length, αk

· Update the variables:
- Λk+1 := Λk + αkdΛk

- Sk+1 := Sk + αkdSk

· Update the basic, superbasic and nonbasic sets
· k := k + 1; go to step 1.-

9.1 Obtaining an initial feasible point

Obtaining a feasible point is not trivial when there are non-load-matching
constraints.

As with the active set methodology [9], the feasible point is obtained from a
point satisfying only the load-matching constraints of all intervals and adding one
constraint at a time, plus either a non-zero surplus for the constraint added or a
new vertex, until all constraints are satisfied. The details of this process can be
found in [12].

9.2 Variable classification

In an active set methodology (such as Murtagh and Saunders is), the active
constraints at a feasible point Λk, Sk are either general linear constraints or simple
bounds.

At a typical iteration, the matrix of active constraints Â will contain all the
general linear constraints and an additional set of rows of the identity matrix that
corresponds to variables at zero.

It is important to mention that in this problem there are only lower (non-
negativity) bounds because the upper bound 1 for the convex coefficients λi

k is
implicit in the convexity constraints (II′Λi = 1 ∀i).

As we are in quadratic programming, there is no a priori number of fixed va-
riables. Let nN denote the number of fixed (=0) variables at the current iteration.
Then the constraints matrix is (conceptually) partitioned as follows

The nB × nB (where nB = n= + n≥ + ni) “basis” matrix B is square and
non-singular, and its columns correspond to the basic variables. The nN columns
of N correspond to the nonbasic variables (those fixed at 0). The nU = (nV +
n≥)− nB − nN columns of the U matrix correspond to the remaining variables,
which will be termed superbasic.
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Figure 8.5: General constraint matrix partitioned into basic, superbasic and non-
basic matrices

9.3 The projected gradient

A necessary (but not sufficient) condition to be at the optimizer is that the
projected gradient vanishes:

‖Z ′G‖ ≤ ε

We define the matrix of the null space Z, such that ÂZ = 0, as

Z =

 −B−1U
1l
00


1l is the identity matrix of size nU , number of superbasics.

G is the gradient of the objective function. As we are dealing with a quadratic
function, the gradient at the point Λk, Sk for each group of variables is:

· GΛB
= (f − b)′VB + V ′BQVBΛB + V ′BQVUΛU + V ′BQVNΛN GSB = 0

· GΛU
= (f − b)′VU + V ′UQVBΛB + V ′UQVUΛU + V ′UQVNΛN GSU = 0

· GΛN
= (f − b)′VN + V ′NQVBΛB + V ′NQVUΛU + V ′NQVNΛN GSN = 0

The terms where ΛN appears, vanish because ΛN = 0. The final expression
of the projected gradient is as follows:

Z ′G = GU − U ′B−1′GB = GU − U ′Π (8.34)

where GB and GU refer to the gradient with respect to the basic and superbasic,
GN to that of the nonbasic, and Π comes from solving system B′Π = GB

9.4 Computation of the multipliers and generation of new
vertices

The overdetermined system Â′
[

Π
Σ

]
= G is compatible when Z ′G = 0. The

detailed subsystem
[

B′

N ′ 1l

] [
Π
Σ

]
=

[
GB

GN

]
is:
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II

(A=VB)′ (A≥VB)′ 00

II

00 −1̂l
′
B

II

(A=VN )′ (A≥VN )′ 1l

II

00 −1̂l
′
N



πΛ

πA=

πA≥

Σ


=



GB

GN


(8.35)

The solution procedure solves first

B′
[

ΠΛ

ΠA

]
= GB

for ΠΛ ∈ Rni , which are the multipliers of the convexity constraints, and ΠA ∈
R

n=+n≥ , which are the multipliers of the non-load-matching constraints. This
calculation is already performed in the projected gradient computation (8.34).

From the equations that yield the multipliers Σ two possible types of equation
follow. Either:

πi
λ + vi′

Nk(A′ΠA)i + σi
k = Gi

Nk i = 1, . . . , ni (8.36)

hence (recall that Gi
Nk = (f − bi)′vi

Nk + vi′

NkQ
iV i

BΛi
B + vi′

NkQ
iV i

UΛi
U ):

σi
k = ((f − bi) + QiV i

BΛi
B + QiV i

UΛi
U − (A′ΠA)i)′vi

Nk − πi
λ (8.37)

i.e., there is a nonbasic vertex of interval i if σi
k<0, and this will be so if for the

modified costs f̂ i = (f−bi)+QiV i
BΛi

B +QiV i
UΛi

U−(A′ΠA)i the vector of energies
vi
Nk yields a cost lower than πi

λ.
The other equation we obtain from the Σ equations is:

−πi
≥ k + σi

k = 0 → σi
k = πi

≥ k i = 0, 1, . . . , ni (8.38)

which tells that the surplus si≥ k i=1, 2, . . . , ni, 0 will become superbasic (relaxing
the active constraint Ai

≥ k) whenever πi
A≥ k<0 .

The problem of finding a (nonbasic) vertex vi
Nk appears to be simple, because

given f̂ i it is straightforward to sort the elements of f̂ i in increasing value determi-
ning a loading order, and compute the elements of vi

Nk by successive convolution
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(8.1) and integration (8.2). (And checking whether f̂ i
′
vi
Nk<πi

λ for some interval
i .)

It is in the calculation of vertices that the nonavailability of units — by pro-
grammed overhauling during the interval — is taken into account.

9.5 Finding a descent direction

If we have not reached the optimizer, we must find another feasible point
that decreases the objective function value. As we are dealing with a constrained
problem, a feasible direction is d = Zpz, for any pz:

d =

 −B−1U
1l
00

 pz =

 −B−1Upz

pz

00

 =

 dB

dU

dN


where the nonbasic variables do not change their value. The projected gradient
direction, pz = −Z ′G′, can be employed or Newton’s method:

Z ′HZpz = −Z ′G′ (8.39)

where H = V ′QV is the Hessian matrix.
Our computational experience is that the projected gradient direction has a

poor convergence. Newton’s direction is computationally harder to obtain but is
much more efficient. When the step length applied is 1, only one iteration is re-
quired to achieve ‖Z ′G′‖ < ε. However, the computational experience shows that,
when applying a step length of 1 using Newton’s direction, sometimes rounding
errors make necessary more than one iteration.

9.6 Computation of the step length

Given a feasible point Λk, Sk and a direction dk, we choose a new point
as Λk+1 := Λk + αkdΛk

and Sk+1 := Sk + αkdSk where dΛk
and dSk are the

components of dk related to Λk and Sk respectively. The optimal step length

α∗k =
−G′Λk

dΛk

d′Λk
V ′QV dΛk

should be α∗k = 1 if we use Newton’s direction. α∗k may lay beyond the upper
limits due to the basic and superbasic variable change.

The variables must be nonnegative, thus:

αBk = mı́n
{ λj

Bk

|djΛBk
| ∀j | d

j
ΛBk

< 0 ,
Sj
Bk

|dj
SBk
| ∀j | d

j
SBk

< 0
}

αUk = mı́n{ λj
Uk

|djΛUk
| ∀j | d

j
ΛUk

< 0, Sj
Uk

|dj
SUk
| ∀j | d

j
SUk

< 0}
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The step length is αk = mı́n{αBk, αUk, α
∗
k}. Depending on which one gives

αk, changes in the basic, superbasic and nonbasic sets may occur.

9.7 Changes in the variable sets

Should αk be αk = α∗k, no changes occur in the working set. Should αk be
αk = αUk, a superbasic variables becomes zero and changes to nonbasic.

The case of αk = αBk is more complicated because a basic variable becomes
zero, and changes to nonbasic while a superbasic variable changes to basic to
substitute it. The new basis has to be refactorized.

In theory, the superbasic chosen to be basic has only to be linearly independent
from the remaining basics. In practice, sometimes we can get stuck without any
apparent reason.

9.8 Choosing a superbasic variable to enter the basis

The choice of superbasic to enter the basis is important for the solution accu-
racy and convergence. It is convenient to keep the condition number of B as low
as possible in order to get accurate calculations of Π and dB .

Once known the basic variable l that leaves the basis, which of the superbasic
ones will perform better?

The new basis B̃ will be as the former one B except the leaving column l.
The change using an η matrix, can be expressed

B̃ = Bη

whose column different from the unit matrix is in position l.

η =



1 w1

1 w2

. . .
...
wl

...
. . .

wnB 1


with the components wi obtained from the vector w that solves Bw = Ue. Ue

being the entering column of the superbasic set. It is easy to find an upper bound
to the condition number of the new basis:

cond(B̃) ≤ cond(B) · cond(η)
The eigenvalues of η are all ones except wl, thus its condition number is

cond(η) =
{

if wl ≤ 1 → 1/wl

if wl > 1 → wl
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The calculation of the lth row of B−1U is at no cost if using Newton’s direction,
since the explicit calculation of the upper part of Z is required.

9.9 Management of the nonbasic set. Differences between
Ford-Fulkerson algorithm and Dantzig-Wolfe algorithm

The main advantage of the column-generation procedure is that vertices (co-
lumns) are only generated when they are required. The basic and superbasic
vertices have to be generated and stored properly. At the beginning, there is no
nonbasic vertex but as the procedure evolves some nonbasic vertices are known.
We can do two things with them: get rid of them or store them (and in a next
iteration any known nonbasic vertex can become superbasic again).

The version in which the known nonbasic vertexs are deleted is called the
Ford-Fulkerson algorithm (FF) and the one that keeps them is called the Dantzig-
Wolfe algorithm (DW). In the DW algorithm, before generating a new vertex,
the multipliers of the known nonbasic vertices are computed and if there is any
negative, it is reentered as a superbasic. In the results section both methods are
compared.

10 Computational results

10.1 Test cases

The characteristics of the test cases employed are summarized in Table 8.1.
The fourth column,

∑
i n

i
u , is the number of variables and the last but two co-

lumn contains
∑

i(2
niu − 1), which is the number of load-matching inequality

constraints. All cases except ltp06 correspond to a certain Spanish generation
company together with the rest of the Spanish power pool with a different de-
gree of desaggregation of the generation units; the loads satisfied are those of the
Spanish power pool. Case ltp06 refers to the planning of a single German genera-
tion company considering only its own load. One or more pseudo-units represent,
in all cases, the hydrogeneration of one or several basins using the approximate
hydromodel of section 5.4.

Market-share constraints can be imposed. Cases whose name ends with “a”
do not have any market-share constraint imposed. Cases ending with “b” have
market-share constraints associated to the units of the SGC imposed and active.

As mentioned earlier, the purpose of these problems and computational tests
is twofold:

• to test the models developed, described in this work, and to observe the
influence of several parameters associated with the models, and
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Table 8.1: Test cases for long-term electric power planning

ni nu

∑
i n

i
u

∑
i n

i
= n0

=

∑
i n

i
≥ n0
≥

∑
i(2

niu−1)
∑

i

∑nu+1
j fjE

i
j

case solver ( C )
ltp01a 11 13 140 0 2 0 2 79861 Cplex 4837512292
ltp01b 11 13 140 0 2 1 4 79861 Cplex 4854704625
ltp02a 11 15 162 0 2 33 3 319477 Cplex 3587429530
ltp02b 11 15 162 0 2 34 5 319477 Cplex 3622023526
ltp03a 11 17 183 0 2 54 5 1245173 Cplex 3580260681
ltp03b 11 17 183 0 2 55 7 1245173 Cplex 3624657306
ltp04a 11 18 193 0 2 64 6 2457589 Cplex 3579624419
ltp04b 11 18 193 0 2 65 8 2457589 Cplex 3624160513
ltp06 15 29 416 0 1 15 3 3758096369 ac.set 1070527267
ltp09a 52 18 931 0 0 312 23 13631436 FFcg 5841845922.26
ltp09b 52 18 931 0 0 313 25 13631436 FFcg 5843484929.38
ltp10a 27 25 658 0 0 162 28 905969637 FFcg 7103008363.89
ltp10b 27 25 658 0 0 163 30 905969637 FFcg 7077804321.51

• to have reliable results (obtained with a reliable code for linear and quadra-
tic programming: Cplex 7.5) for the problems posed with which to check
alternative specialised algorithms to solve the same problems, specifically
the Dantzig-Wolfe and Ford-Fulkerson column generation algorithms, the
active set algorithm, and other algorithms to be developed.

10.2 Performance of the Ford-Fulkerson procedure and com-
parison with the active set method

Both the active set and the FFcg methods require a considerable number of
iterations to reach a feasible solution. Their numbers appear under the heading
“feas. iters.” (feasibility iterations) in Table 8.2; the number of iterations to
achieve the optimizer is shown next. After that, the required CPU time, and the
number of figures of agreement of the objective function value with that obtained
with a different solver are shown, as indicated in the last two columns of Table
8.1. The last three columns in Table 8.2 show the results obtained using an
AMPL plus Cplex 7.5 solution [10], the last column giving the long computation
times required, in hours(!), to have the rhs’s of the

∑
i(2

niu−1) load-matching
constraints (8.13).

Several conclusions can be drawn from the results of Table 8.2. The first
is that the FFcg method is quicker to get to the solution and that the rate of
increase of the time required with problem size is lower in the case of FFcf than
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Table 8.2: Comparison of the active set, and the Ford-Fulkerson column genera-
tion method

active set method Ford-Fulkerson cg Cplex 7.5
feas. total time dig. feas. total time ver. ver. dig. total time rhs

case iters. iters. (s) ag. iters. iters. (s) gen. opt. ag. iters. (s) (h)
ltp01a 193 246 6.6 10 21 79 7.2 147 15 10 781 1.3 0.44
ltp01b 239 312 9.0 9 21 224 16.4 396 18 9 2354 2.35 0.44
ltp02a 450 642 62.5 10 128 357 14.4 254 20 10 3285 11.0 2.28
ltp02b 513 734 80.1 9 128 516 16.1 293 24 10 7646 16.9 2.28
ltp03a 672 964 197.1 10 310 831 20.5 348 23 10 12622 56.8 9.52
ltp03b 781 1096 348.0 9 310 1213 21.6 354 33 9 23213 86.2 9.52
ltp04a 938 1233 508.2 10 400 796 23.7 383 25 9 17447 115.1 19.27
ltp04b 1075 1404 756.6 10 400 1768 38.5 603 45 9 42785 212.0 19.27
ltp06 1803 2646 24.3 – 51 585 5.0 466 31 10 n.a. n.a. n.a.

with the active set or the direct linear programming solution.
The next issue is precision. Direct linear programming, the active set method

and the FFcg procedure reach practically the same optimizer (the number of
agreement digits of these methods’ solution is 9 or more for all cases). Four
agreement digits would be fairly acceptable from an engineering view-point, given
that many data in this problem are approximations or predictions. Therefore
it could be thought that the optimization process could be stopped when the
objective function does not change in the first five or six figures over a number
of iterations. It must be borne in mind that the active set method for a linear
program behaves like linear programming, and obtaining the right set of active
constraints produces exactly the same optimizer. However, the FFcg procedure
generates the optimizer as the convex combination of vertices of the polyhedrons
of feasible points (one for each interval in long-term power planning). Thus the
calculation of the optimizer, and its objective function value, requires many more
arithmetic operations. The column with header “ver. opt.” contains the number
of vertices at the optimizer. On average, we have 2 vertices for each interval.

All test cases have been solved with two different objective functions: the
linear minimum cost (8.12) and the quadratic of maximum profit (8.20). The
linear cost problems have been solved using the linear programming code in Cplex
7.5 package [3], while for the quadratic profit problem the barrier separable QP
solver [16] in Cplex 7.5 package is employed, both through an AMPL [6] model
and data files. Prior to the solution, the rhs’s of the load-matching inequality
constraints (8.13) have been calculated using an separate program, whose required
CPU time is reported in the last column of Table 8.1. The calculated rhs’s are a
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part of the AMPL data files used.
The solutions obtained with the Ford-Fulkerson column generation, which is

the most efficient [13], are compared with those obtained through AMPL plus
Cplex 7.5 quadratic programming and with Dantzig-Wolfe column generation.

Table 8.3: Comparison of AMPL plus Cplex, and the Dantzig-Wolfe and Ford-
Fulkerson column generation methods

AMPL plus Cplex 7.5 Dantz-Wl. Ford-Fulk. column gen.
input b qp b. qp obj. fun. (8.21) D.W. F.F. obj. fun. (8.21)

case (s) iters. (s) ( C ) ites. (s) ites. (s) ( C )
ltp01a 1.3 34 97.56 9552335013 289 12.1 262 11.6 9552335013
ltp01b 46 55.09 9536489728 258 9.1 240 9.5 9536489725
ltp02a 5.69 59 183.5 10986157177 842 41.4 629 36.5 10986157163
ltp02b 56 176.9 10961049191 1248 51.8 893 44.1 10961049198
ltp03a 24.47 781020.3 11004938184 1321 82.3 957 60.4 11004938185
ltp03b 75 977.7 10977720297 1934 97.4 1341 77.9 10977720295
ltp04a 46.88 874393.2 11006374461 1423 91.8 1132 79.1 11006374462
ltp04b 1165787.0 10979064726 2063 109.0 1545 92.0 10979064723
ltp06 1103 558.3 838 423.4 936301399
ltp09a 794924643 733718825 5841845922.26
ltp09b 873931630 698918910 5843484929.38
ltp10a 366612392 283116412 7103008363.89
ltp10b 532319616 4220 9191 7077804321.51

The second column of Table 8.3 has the input times required by the AMPL
data files. These times are important because the data files, due to the rhs’s of
the load-matching constraints, are very large, e.g., the data file for case ltp04a is
over 100Mbyte.

It can be observed that the Ford-Fulkerson column generation proves to be
systematically more efficient in itarations and CPU time than Dantzig-Wolfe’s.
In the table, the enormous time required to calculate the rhs terms of the load-
matching constraints when using AMPL plus Cplex 7.5 is not included.

10.3 Solutions of long-term maximum profit planning and
comparison with the minimum cost solution

It is clear from the results in Table 8.4 that the maximization of profit with
respect to the minimum cost solution brings about a greater increase in generation
cost than an increase in profits.
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Table 8.4: Minimum cost and maximum profit solutions with an approximate and
linearized full hydromodel (using Cplex)

Minimum expected cost solution Maximum expected profit solution
lp lp cost (8.5) profit (8.21) b qpbar qp profit (8.21) cost (8.5)

case iters. (s) ( C ) ( C ) iters. (s) ( C ) ( C )
ltp01a 781 1.34837512292 9120093218 34 97.56 95523350135414756605
ltp01b 2354 2.354854704625 9097863493 46 55.09 95364897285427534028
ltp02a 328511.003587429530 10364887782 59 183.5 109861571773971181574
ltp02b 764616.923622023525 10291956272 56 176.9 109610491914018697239
ltp03a 1262256.853580260681 10292023819 78 1020.3 110049381843978570531
ltp03b 2321386.163624657306 10287465543 75 977.7 109777202974025913005
ltp04a 17220113.73579624419 10306638029 87 4393.2 110063744613975489971
ltp04b 42785212.03624160513 10296858318 116 5787.0 109790647264025907694

10.4 Effect of market-share constraints

Three market-share constraints have been introduced in cases whose name
ends with “b”: one for the first interval, one for the intervals corresponding to
the rest of the first year (intervals 2 to 7), and a third for the intervals of the
second year (8 to 11). These three sets of successive intervals will be referred to
with the supraindices I , II and III associated to the variables. The market-share
constraints refer to the units of the SGC, and force their generation to add up to
over a given percentage of the load in the corresponding intervals.∑

i∈Ik

∑
j∈SGC

Ei
j ≥ µIk

∑
i∈Ik

Êi Ik : I, II, III , (8.40)

which are of type (8.15), except set I (a single interval) which is of type (8.14).
The criterion employed to fix a market-share µIk for the units in the set SGC

is based on the Lagrange multiplier values of the market-share constraints λIk
m−s

and the expected profit rate in the power pool rIk: total profit over total load.
The Lagrange multipliers λIk

m−s express the rate of change in pool profit due
to a market-share increase by the SGC. The reaction of competitor generating
companies to a market-share increase by the SGC would be proportional to the
resulting λIk

m−s/r
Ik. Therefore, attainable market-shares are those that produce

a small enough value λIk
m−s/r

Ik. In the cases reported in Table 8.5 the market-
shares µIk of the SGC have been pushed up until the ratio λIk

m−s/r
Ik was close

to but did not exceed 1
3 .

There are also cases whose name ends with “a” in Table 8.5. These cases
are the same as those ending in “b” but without the market-share constraints.

Rect@ Monográfico 2 (2004)
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Table 8.5: Effect of market share constraints on the profit of the SGC

µI λI
m−s rI µII λII

m−s rII µIII λIII
m−s rIII total profitSGC profit

case % % % ( C ) ( C )
ltp01a 3.75 0.0 3.36 0.0 3.44 0.0 9552335013 263380937
ltp01b 4.2 8.25 26.12 4.2 8.93 27.39 4.2 8.24 25.10 9538257985 268453956
ltp02a 1.85 0.0 1.94 0.0 2.2 0.0 10986157177 174506646
ltp02b 3.4 9.64 29.31 3.3 10.24 31.12 3.4 9.45 29.1410963147542 206313710
ltp03a 2.08 0.0 2.25 0.0 2.57 0.0 11004938184 205156894
ltp03b 3.6 9.58 29.35 3.6 10.14 31.17 3.8 9.64 29.2010981583153 235282378
ltp04a 2.08 0.0 2.25 0.0 2.59 0.0 11006374461 205051615
ltp04b 3.6 9.35 29.36 3.6 9.84 31.18 3.7 8.94 29.2110985461774 232575618

They are thus equivalent to having imposed a nonactive market share, lower than
the share the SGC gets in the solution. It should be noted that the market-
share constraints imposed slightly decrease the overall profit, but they noticeably
increase the SGC profit.

11 Conclusions

• The long-term hydrothermal planning of the electricity generation problem
has been presented and an extension of the Bloom and Gallant model has
been put forward in order to solve it.

• A new way of formulating the long-term profit maximization of generating
companies in a competitive market has been described.

• An implementation of the Ford-Fulkerson and of Dantzig-Wolfe column ge-
neration procedures for solving a quadratic or a linear problem has been
presented.

• Implementation details of the solution with AMPL of the minimum cost
and the maximum profit long-term planning problems have been given.

• The computational experience with the Ford-Fulkerson and of Dantzig-
Wolfe column generation procedures and with AMPL plus Cplex 7.5 linear
programming and barrier quadratic programming has been reported. This
includes:

– The calculation of the rhs’s of the load-matching constraints for the
data files required by AMPL, which is extremely time-consuming, and
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which is fairly time-consuming to be read in the solution process. This
lengthy calculation, requiring extremely long files to store the results,
makes this procedure impractical to use for real cases (where the num-
ber of units to consider may be well above one hundred).

– The solution of the minimum cost and the maximum profit long-term
problems.

– The comparison of the three procedures implemented for a set of real
cases, using the approximate hydrogeneration representation, showing
that the Ford-Fulkerson column generation is the most efficient except
for case ltp10a, and that AMPL plus Cplex 7.5 is not practical for big
cases.

– The analysis of the effect of market-share constraints for a SGC in the
maximum profit solution.
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