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LONG-TERM HYDROTHERMAL COORDINATION OF ELECTRICITY GENERATION
WITH POWER AND ENERGY CONSTRAINTS
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Abstract - Optimizing the thermal production of electricity in the long term means optimizing both the fuel procurement
policies and the use of fuels for generation at each thermal unit throughout the time period under study. A fundamental constraint to
be satisfied at each interval into which the long time period is subdivided, is the exact covering of its load duration curve with
thermal and hydro-generation. The solution found indicates how to distribute the hydro-electric generation (cost-free) throughout the
period of time and the acquisition and use of fuels for each unit at each interval, in order to minimize the cost of fuels bought, while

the probabilistic demands of electric energy, expressed by the load duration curves of all intervals, are exactly matched.
Bézier curves that change with hydrogeneration are employed in the constraints to define the load duration curves to be covered

by thermal units at each interval.
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1. INTRODUCTION

Long-term hydrothermal coordination is one of the most
important problems to be solved periodically in the
management of a power utility with an integrated power plant,
i.e: with thermal and hydraulic power stations.

The solution sought indicates how to distribute the
hydroelectric generation (cost-free) in each reservoir of the
reservoir system over a long period of time (e.g.: one year) , s0
that the fuel expenditure during the period is minimized. When
some thermal units can use more than one fuel or share the
same fuel contract with other units, and there are fuel limits for
one or more units over the whole period or parts of it, fuel
acquisition and usage must also be optimized in coordination
with hydrogeneration, which leads to a bigger problem. As
usual, the long time period or horizon under consideration
(e.g.: one year) will be subdivided into several time intervals of
shorter duration (e.g.: one month) for which optimal values of
decision variables are to be found.

The fundamental difference between long term and short
term hydrothermal optimization, aside from the length of the
time period studied, lies in the fact that, the availability of
thermal plant, the demand for electricity and the water inflows
in the reservoirs are not deterministic, but only known as
probability density functions. Start-up and shut-down costs of
thermal units are not accounted for directly in long-term
coordination.

When considering the long-term problem it is important
to optimize, taking into account the whole set of probable
water inflows. This has been done with a model based on
nonlinear multicommodity network flows to optimize the
long-term hydroscheduling (ref. 1). It assumes unlimited fuel
suplies, which is much simpler than the limited supply case.
A long-term hydro-optimization model using curves of
expected thermal production cost with respect to hydro-
generation, derived from the load duration curve (1.d.c.) of each
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interval (refs. 2,3), could provide a reasonably good answer to
the long-term hydro-thermal coordination problem without fuel
limits.

The literature on long-term hydrothermal coordination is
rich. However, only a few papers on this subject describe
methods that deal with stochastic inflows and that balance
thermal and hydro-generation through the 1.d.c. and not just
with the peak load or through the total energy demand of the
interval. Sherkat et al. (ref.4) consider at each interval a
staircase 1.d.c. with a few load segments. These 1.d.c’s are peak
shaved with the expected values of the generations
corresponding to the releases of all reservoirs but one in turn,
and optimizes with dynamic programming the releases of the
remaining reservoir considering the thermal cost curves of the
load segments of the ld.c. for a series of river inflow
sequences. Contaxis and Kavatza (ref.5) optimize the stored
volumes of the reservoirs with dynamic programming,
obtaining for each reservoir at each interval a probability
distribution function of hydrogeneration from the stochastic
water inflows (while satisfying the reservoir balance equations
with expected values of inflows and outflows) and convolve
(ref. 6) the probability distribution functions of
hydrogeneration, substituting the most expensive thermal units
to cover the Ld.c. of each interval. Neither the method of
Sherkat et al (ref. 4) nor that of Contaxis and Kavatza (ref. 5)
deals with fuel limits.

Ranjit Kumar et al. (ref. 7) optimize the long-term fuel
procurement and use with fuel limits. They use probabilistic
production costing methods (ref. 6) with a given priority list to
determine the maximum limits on the energies generated by
each unit for each interval, and then a network flow solution
(ref. 8) for the entire period is used to generate a new priority
list for each interval, correcting priorities according to capacity
factors in the network solution. System and unit fuel limits
are modified to correct the mismatches between generation and
the Ld.c.. This method does not consider hydrogeneration.
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The work presented here describes a new model for long-
term hydrothermal coordination with fuel limits. It employs
generalized network flows (ref. 8) with nonlinear side
constraints to exactly cover the lLd.c's of all intervals.
Hydrogeneration is also optimized because the expected value
of hydroenergy at each interval contributes to fill up the L.d.c..
A model like that in ref. 1, or a simpler one, can be used
together with the thermal model and the treatment of the Ld.c.
described below.

The existence of reliable general purpose optimization
packages allows us to make an initial check of the
methodology using the objective function and constraints of
the model proposed. This has been done using the "MINOS"
package (ref. 9) with results which show the consistency of
the model put forward.

2. PRIORITY ORDER
LIMITED UNITS

WITH ENERGY

The model proposed always considers a fixed priority
order of thermal units, based only on unit efficiency and fuel
price. Ranjit Kumar et al. (ref. 7) put forward a changeable
(and optimizable) priority order when there are energy limited
units, placing these units further down in the order so that on
the 1.d.c. they have a slice of area equal to the available energy.

This approach has not been followed because:

* given a limited fuel supply to be shared by several units
over a long time period, the determination of the priority orders
at the intervals which cover their 1.d.c. while satisfying the fuel
limits is a very hard mixed integer problem

» the presence of hydrogeneration further complicates the
issue

* in one such solution, dispatching an efficient base unit
in a low priority position may entail frequent start-ups and
shut-downs, which is unrealistic (and expensive).

In the model with fixed priority presented, units affected
by limited fuel availability behave as any other unit: at some
intervals they may not generate at all, or if they do, the slice of
the Ld.c. they cover cannot be wider than their maximum
power capacity.

3. THE POWER-ENERGY CURVES

Given the load duration curve of a certain interval, such
as the one in Fig. 1.a), one can obtain the curve shown in Fig.
L.b) through integration over the powers, which gives the
relation of the power level achieved when delivering a certain
energy while conforming to the shape of the load duration
curve.

The curve in Fig. 1.b) will be referred to as the Power-
Energy (PE) curve, and has several interesting features.

* its left part is a straight line of slope 1/T through the
origin, corresponding to the energy under the base load of the
load duration profile

¢ the durations of the load duration curve are the inverse
of the derivative of the PE curve: t= 1/(dPE/JE)

» the far right part of the curve has infinite slope.

The procurement and the use of fuels in thermal units can
be modelled as a generalized single or multicommodity network
flow problem, as shown in Figure 2, where a six-interval, three
thermal unit, two-fuel problem is depicted. eji is the energy

a)

b)

A »
E E(Mwh)
Fig. 1 a) Inverted load duration curve of a given interval

b) Power-Energy (PE) curve corresponding to the load
duration curve in a)

(in MWh) generated by thermal unit “j” during interval “i”,
which is affected by the efficiency coefficient g > Tji s the
remainder of fuel of unit “j” at the end of interval “i” and tkj

is the amount of fuel of type “k” acquired for unit “§”. Arcs of
variables ejj are “root arcs”.

4. POWER AND ENERGY CONSTRAINTS
The equations of the covering of the load duration curve

assume a “priority order” (natural order of thermal units 1,2,...)
in loading units 1, 2,..., up to the last unit “Nu”. For interval

@i

i we would have:

PE(e}j) < Py _
PE(eji+e2i) - PE(e1i) < P

PE(C1i+32i+~-+ej-l,i+eji) - PE(eli+e2i+~-+ej-1,i) < Pj 1

~i
PE(ej + ...+ €ji + ... + enyi) =P ®

— ~
where Pj is the maximun capacity of unit “j” and P is the peak
load in interval “i”.
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Fig. 2. Replicated generalized network for long-term fuel procurement and thermal generation optimization over
a time period divided in six intervals, for three thermal units using two fuels.

This is illustrated in Figure 3. Inequality (1) expresses
that the power contribution of unit “j” to cover the load-
duration curve must not exceed its maximum rated capacity.
Equality (2) forces the power obtained through the energies
generated by all units to equal the peak load of the interval. In
this way the power and energy requirements imposed by the
load-duration curve of each interval are met.

Hydro-generation is used to peak-shave the load duration
curves, as shown in Figures 4a) and 4b). The form of the
shaving depends on the amount of hydro-energy and also on the
maximun hydro-power capacity available. Fig. 4 shows two
hypothetical cases with hydro-energies Hy and Hp in the
same interval. The shape of the load duration curve and that of
the PE curve seen by thermal units change with hydro-energy

PA(MW) P
B
t(h)
a) b)
Fig. 3 a)Load duration curve

H generated in the interval. Thus the parameters defining the
PE curve to be used for thermal energies are functions of H:
PE[H]. The peak load seen by thermal units is also a function
of H, since the maximum hydro-power generated Py isa

function of H and of the maximum hydro-power capacity Py .
Equations (1) and (2) can thus be recast as follows:

pE [Hi] ( s em) - pE/[Hi] (E eni) <Py j=l...Ny
n=1 n=1
PE [H] (

(3)
Nu ~i .

€hil= P - PHI
1

n=

@

t (h)

b) Load duration curve covered by the first five thermal units in merit order
¢) Power-Energy curve with indications of cumulative powers and energies corresponding to the thermal

units that cover the load duration curve
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Fig. 4 a) Load-duration curve of a given interval covered by hydro-generation Hy and by thermal units
b) Load-duration curve of a given interval covered by hydro-generation Hp > Hy and by thermal units
¢) PE curves seen by thermal units for hydro-generations Hy and Hy,.

5. OBJECTIVE FUNCTION AND NETWORK
CONSTRAINTS

The objective function to minimize with respect to
hydro-generation at each interval and energies generated by each
thermal unit at each interval is the sum of the amounts of the
Nf fuels acquired multiplied by their costs:

Nf MNu

min Yy 2
k=1j=1 _ &
Hydrogeneration H!is supposed to be the expected value
of hydro-generation at interval “i”
As implied by Fig. 2, a balance equation must be
satisfied at the node corresponding to each thermal unit at each

@i,

interval. For thermal umt “* at interval “i

1 ..+, Ni
k .
fip-fi-efdi=0, =1 N
\ k=1, .. Nf ©6)
limits have to be satlsﬁed by flows on arcs:
i=1,..Ni
* & -k .
‘lfx <t ,ei<e, | j=1,.,Nu
\ k=1, .. Nf 7N

and mutual capacity constraints with respect to the different
possible fuels on each arc must be imposed

Nf N
Y K<r, X <, j=1,--Nu, i=l;..Ni
k=1 k=1 ®

6. APPROXIMATING THE POWER-ENERGY
CURVE

The PE curve is approximated here by two connected
segments: a straight line (S1,B1) through the origin and a

Bézier curve (ref. 10) generated with four points (B1, B2, B3
and Bg4), the line uniting B3 and B4 being almost vertical and
with By defined by the peak load (as seen by the thermal units)
and the total thermal energy. Points S1,B1 and B2 are on the
same straight line so that there is continuity in the first
derivative of the curve at the linking point B{.

Assuming that the coordinates (power and energy) of
points By, i=1,2,3,4, in Fig. 6 are (Pp;, Epj) i=1,2,3,4, the
PE curve can be expressed as follows: for power between 0 and
Pp1 (base power of 1.d.c.)

P=E/T ©)

and for power higher than Pg; (or energy greater than Eg =
Pp1*T)

P = Pp1(1-B)3 + 3Pp2B(1-B)? + 3Pp3P2(1-P) + Pp4p3
E = Ep(1-B)? + 3Ep2B(1-P)? + 3Ep3p2(1-B) + Ep4p>

0< Bt (10)

which is a parametric curve in f.

Finding either P or E corresponding to a given E or
P, means finding a root (between O and 1) of a third degree
polynomial (10). In the programs developed this is done using
Cardano's algorithm (refs. 11,12). Expressions of derivatives
of P of (10) w.r.t. E and w.r.t. H are easy to obtain and can be
found in ref. 13. Thus the derivatives of expressions (1) and
(2) with respect to the thermal energy E and those of the
expressions (3) and (4) with respect to E and H can be obtained
without difficulty.

Changes in the PE curve due to hydro-generation are
taken into account changing the extreme points of the
segments (Bi and B4) and the position of the other Bézier
points (B2, B3) as illustrated in Fig. 5a) and 5b). Ep4(H) is

Ep4(H)=E-H and the ordinate Pp4(H) is modelied to change as
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Fig. 5 a) Approximation by two segments of Power-Energy function of load duration curve
b) Approximation by two segments of Power-Energy function of load duration curve seen by thermal

units when there is hydro-generation H.
Paa(H) = P - Py(1- eH) an

B1, B2 and B3 are changed as second degree polynomials of H
Ppi(H) = bp| + IpjH + gpiH?

1=1,2,3 (12)
Epi(H) = bg) + IgiH + qgiH?

The coefficient A of the exponential (11) and those of the
polynomials bpy, Ip], qp, bE1, 1E1, AEL 1=1,2,3, of (12) are
estimated beforehand by constrained least squares' fitting with a
series of values of hydrogeneration H for the 1.d.c. of each
interval (ref. 14).
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7. THE POWER-ENERGY CURVE FOR
HYDROGENERATION BEYOND ITS
BOUNDS

The minimization of (5) subject to the generalized
network constraints (6-8) and the nonlinear side constraints (3-
4) goes through an initial stage of finding a feasible point.

Even though lower and upper bounds on Hi are placed:
OSHi_SI_—[—l (i=1,...,Ni), in the initial stage there can be values
of H! well beyond its bounds. In this situation it is necessary

for the power-energy curve generated PE(H) to keep providing
sensible values of P and E. Figure 6 shows the shapes of the

power-energy curve for such values of H ( Hi<0 and Hizﬁl).

PA(MW)

£

a)

(MW £ (h)

b)

Fig. 6 a) Families of power-energy curves for hydrogeneration within (II), and out of range (I and II)
b) Families of load duration curves seen by thermal units for hydrogeneration within (II), and out of

range (I and IIT)
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PE functions for values of Hi within limits are those inside

zone II in Fig. 6. When HI>H' PE functions are in zone 1
and the Bézier curve of the PE function recedes towards the
curve (§1,§4) as HI increases. (§1,§4) is a limit curve used
for Hi>H' increasing and tending to infinity. A curve like
(B1,B4) is the limit curve employed for Hi<0 decreasing and
tending to minus infinity.

8. CONSIDERATION OF FORCED OUTAGE
RATES

Forced outage rates of thermal units (ref.6) can be taken
into account by considering that the L.d.c. to be covered by
hydro and thermal generation has a different shape but the same
energy E. The change in shape must be such that there is a
reduction in the maximum generation time T of the interval
proportional to the mean availability of base units so that, as
shown in Fig. 7, the maximum generation time would be T.
Moreover, the peak load gets to P>P as in Fig. 7, and the

peak units generate for a longer time than they would with the
normal 1.d.c. while keeping the total area under the curve.

[

’L T Lad

TT t(h)

Fig. 7 Equivalent load duration curve taking into account
approximately forced outage rates

9. HYDROGENERATION MODEL

Hydroenergies H at each interval should correspond (o
expected values of hydro-generation, taking into account the
stochasticity of natural water inflows in the reservoir system.

Details of a hydro model that could be employed to
obtain these expected values for reservoir systems with totally
or partially dependent water inflows can be found in ref. 1.
Using simpler hydro-models is possible too. Fig. 8 depicis a
very simple model where a total hydroenergy TH will be
distributed in an optimal way into the hydroenergies Hi.
i=1,..,Ni. Either the simplified or the complete hydro model
must be added to the thermal model described, so that all the

thermal variables and hydroenergies Hi are optimized by the
same program.

int. 1 int. 2 int. 3 int. 4 int. 5 int. 6

Fig. 8 Exemple of simple hydro-generation model with six
intervals

10. NUMERICAL IMPLEMENTATION AND
COMPUTATIONAL RESULTS

The model put forward can be solved with a general
purpose constrained nonlinear optimization package, and many
tests have been carried out using the MINOS package (ref.9).
Some relevant characteristics of the programs developed are:

* Quite long subsidiary programs to prepare data of PE
curves from load duration curves and hydroenergies must be
used. These programs have also been developed.

« In general it can be said that convergence to the
solution is slow, due to nonlinearities in the constraints.

Fig. 9 shows the graphical output of the results obtained
using the model proposed. These results correspond to a 12
interval, 10 thermal unit, long-term hydrothermal coordination
problem with fuel limits. The simplified hydro-model of
Section 9 and only one fuel for each thermal unit have been
considered, and fuel limits are active for units #2 and #4. The
l.d.c’s of the intervals correspond to a real case. There is nuch
information on the picture of the 1.d.c. of each interval:

- Dashed lines show the profile of the total l.d.c. and of
the l.d.c. seen by thermal units.

- Peak load values are on top of the vertical axis.

- At the upper right comer of each 1.d.c. picture there is

the energy and maximum hydropower generated (PH(I- e‘mb.

- Hydrogenerations peak-shave the 1.d.c’s of the intervals.
The optimal value at each interval is seen in Fig. 9. It should
be pointed out that at interval 6 there is zero hydrogeneration,
and that this is not the interval with the lowest peak load.

- Thermal units with unlimited fuel supply (all but #2
and #4) intervene at rated capacity in a given priority order at
each interval. The units with fuel limits (#2 and #4) are used at
some intervals at less than their rated capacity (e.g.: unit #2 at
intervals 4,5,6,8,9 and 10).

The following remarks are in order:

» There are slight differences between the real and the
approximated L.d.c. (using Bézier’s curves). These differences
are not too important given that the real 1.d.c’s considered are
the result of transforming the 1.d.c’s predicted to account for
tforced outage rates (see Section 8.).

+ At some intervals peaking units or fuel limited units
may have a load at less than their minimum rated capacity
(e.g.: unit #6 at interval 7 or unit #2 at interval 8). Additional
techniques, described in a forthcoming paper, have been
developed to avoid this type of results.
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Fig. 9 Results of problem b’ showing hydro and thermal generations on load duration curves of intervals

451




452

* It must be stressed that the MINOS code employed
could not always find the solution to a given problem, even
when one existed. In this regard the use of the techniques
described in Section 7 proved to be of great help in many cases
to reach a feasible point, but it was not sufficient in other
problems with different data. Work is underway on devising
procedures to obtain initial points from which to reach the
solution, and other minimization packages are being tried.

A sample of required computation times using the
MINOS package is given in the following table. The
computer used is a SUN Sparc 2 Station. (Case b’ corresponds
to the solution described in Fig. 9.)

| | network | nonlinear | fuel | I CPU
case | variab | copstr. | copstr. {limits | iter. |seconds
—a | 107 | 43 | 66 11 11649 | 46.6
b 1 394 164 | 252 - 11665 1 1417
|

| !
b’ 1 394 | 164 252 1 2 13208 | 340.3

11. CONCLUSIONS

A model for long-term hydro-thermal coordination based
on the use of the PE curves to satisfy power and energy
constraints has been presented.

The results obtained using the model put forward are
consistent with the operating experience of hydrothermal
systems and meet the expectations. Many other extensions and
refinements of the methodology proposed are possible and
some are being pursued.

12. GLOSSARY OF SYMBOLS

bpy, Ipy, qp) basic, linear and quadratic coefficient of polynomial
expressing power coordinate of point “I” of Bézier’s
polygone of PE curve

bpy, Ip1, qp) basic, linear and quadratic coefficient of polynomial
expressing energy coordinate of point “1” of
Bézier’s polygone of PE curve

cik cost of fuel “k” for thermal unit “j

E E thermal energy and total thermal energy of load-
duration curve

EgiH) energy coordinate of Bézier’s point B*1”

€ni> €niX  thermal energy used at unit “n” in interval “i” to
generate power, without and with indication of fuel
“K” used

fjk amount of fuel “k” acquired for thermal unit *§”

H, H! hydro-energy, hydro-energy generated in interval *i”

i (subscript or superscript) indicates interval “i”

i (subscript) indicates thermal unit “§” in merit order

k (superscript) indicates fuel “k”

I (subscript) indicates point of Bézier’s polygon

Ldc. load duration curve

n (subscript) indicates one of the thermal units

P, Pl peak load and peak load in interval “i”

Pgi(H) power coordinate of Bézier’s point B“I”

PE,PE(HY) power-energy curve and power-energy as a function
__of hydroenergy at interval *i”
Pu,Py',Py generated hydro-power, generated hydro-power at
interval “i”, and maximum hydor-power capacity
PE power-energy curve

PE(H!Y) power-energy curve as function of hydro-generation
in interval “i”

Tnis rmk fuel remaining at the stockpile of unit “n” at the
end of interval “i”, without and with indication of
fuel type “k”

T duration of interval

B parameter of Bézier curve

€y efficiency in power generation at unit “n”

A constant of exponential expressing increase of

hydrogeneration power with hydroenergy
" (accent) denotes upper limit of vector or variable
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