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Abstract. Several network flows heuristics have been suggested in the
past for the solution of the complementary suppression problem. How-
ever, a limited computational experience using them is reported in the
literature, and, moreover, they were only appropriate for two-dimensional
tables. The purpose of this paper is twofold. First, we perform an em-
pirical comparison of two network flows heuristics. They are improved
versions of already existing approaches. Second, we show that exten-
sions of network flows methods (i.e., multicommodity network flows and
network flows with side constraints) can model three-dimensional, hier-
archical and linked tables. Exploiting this network structure can improve
the performance of any solution method solely based on linear program-
ming formulations.
Keywords: Complementary cell suppression problem, linear program-
ming, network optimization, network flows with side constraints, multi-
commodity network flows.

1 Introduction

Cell suppression is a widely used technique by statistical agencies to avoid the
disclosure of confidential tabular data. Given a list of primary cells to be pro-
tected, the objective of the cell suppression problem (CSP) is to find a set of
complementary cells that have to be additionally suppressed. This pattern of
suppressions is found under some criteria as, e.g., minimum number of suppres-
sions, or minimum value suppressed.

CSP was shown to be NP-hard in [19]. This motivated that most of the for-
mer approaches focused on heuristic methods for approximate solutions. Meth-
ods based on graph theory were suggested for two-dimensional tables in [4], and
extended for three dimensions in [8]; they were designed for general tables. The
hypercube method, currently under consideration by the Federal Statistical Of-
fice of Germany, was also based in geometric considerations of the problem [14].
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A different kind of techniques was obtained by using linear programming (LP),
in particular, network optimization. This paper is devoted to this kind of meth-
ods. We will perform an empirical evaluation of two network flows heuristics.
It will also be shown how three-dimensional, linked and hierarchical tables can
be modeled as multicommodity network flows and network flows with side con-
straints [1]. This allows the use of specialized LP codes that exploit the network
structure of the problem [5,6,13].

There is a fairly extensive literature on network flows methods for CSP. In
[19] an algorithm for sliding protection was suggested, but it was only applied
to small scale two-dimensional tables. In [7] several alternative network methods
were reviewed, some of them successfully applied in practice in U.S. [18] and
Canada [21] (although in this latter case a pure LP formulation was considered).
However, these heuristics were only appropriate for two-dimensional tables, since
they relied on a minimum cost network flows solver. Multi-dimensional, linked
and hierarchical tables had to be split into several two-dimensional tables, which
forced some kind of backtracking procedure. This inconvenient could be removed
by using general LP solvers. However, limitations of past LP technology resulted
in inefficient implementations [18]. As noted in [3] this drawback has been over-
come by current LP solvers, and some steps have been performed for including
them in CSP production codes [20]. Exploiting that three-dimensional, linked
and hierarchical tables can be modeled through multicommodity networks and
networks with side constraints opens the possibility of using a new range of
solvers for CSP.

Recently, an exact procedure based on state-of-the-art mixed integer linear
programming (MILP) techniques (i.e., branch-and-cut and Bender’s decomposi-
tion) was proposed in [9,10]. This method has been able to solve large non-trivial
CSP instances very efficiently. As stated in [10], the exact algorithm developed
includes an initial LP-based heuristic phase, which is similar to those suggested
in the past using network flows codes. Therefore, the exact procedure can also
take profit of recent improvements in heuristic methods. Moreover, the Bender’s
decomposition subproblems could also benefit of the underlying network with
side constraints structure of the constraints matrix.

This paper is organized as follows. Section 2 shows the exact formulation and
a linear relaxation of CSP. The two heuristics considered in this work are based
on the exact and relaxed formulations, respectively. These heuristics are outlined
in Section 3 and compared in Section 4. Section 5 shows the extension of net-
work flows models for three-dimensional, linked and hierarchical tables. Finally,
Section 6 presents some preliminary computational results with a network flows
heuristic for three-dimensional tables.

2 Formulation of CSP

Given a (usually) positive table (i.e., a set of cells ai ≥ 0, i = 1 . . . n, satisfying
some linear relations Aa = b), a set P of |P| primary cells to be protected, and
upper and lower protection levels Ui and Li for each primary cell i = 1 . . . |P|,
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the purpose of CSP is to find a set C of additional complementary cells whose
suppression guarantees that, for each p ∈ P ,

ap ≤ ap − Lp and ap ≥ ap + Up, (1)

ap and ap being defined as

ap = min
xi,i=1...n

xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ C
xi = ai i 	∈ P ∪ C

and

ap = max
xi,i=1...n

xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ C
xi = ai i 	∈ P ∪ C.

(2)

ap and ap in (2) are the lowest and greatest possible values that can be deduced
for each primary cell from the published table, once the entries in P ∪ C have
been suppressed. Imposing (1), the desired level of protection is guaranteed. CSP
can thus be formulated as an optimization problem of minimizing some function
that measures the cost of suppressing additional cells subject to that conditions
(1) and (2) are satisfied for each primary cell.

CSP was first formulated in [19] as a large MILP problem. For each entry ai a
binary variable yi, i = 1 . . . n is considered. yi is set to 1 if the cell is suppressed,
otherwise is 0. For each primary cell p ∈ P , two auxiliary vectors xl,p ∈ IRn and
xu,p ∈ IRn are introduced to impose, respectively, the lower and upper protection
requirements of (1) and (2). These vectors represent cell deviations (positive or
negative) from the original ai values. The resulting model is

min
n∑

i=1

aiyi

s.t.
Axl,p = 0

−aiyi ≤ xl,p
i ≤ Myi i = 1 . . . n

xl,p
p = −Lp

Axu,p = 0
−aiyi ≤ xu,p

i ≤ Myi i = 1 . . . n
xu,p

p = Up




for each p ∈ P

yi ∈ {0, 1}

(3)

Inequality constraints impose the bounds of xl,p
i and xu,p

i when yi = 1 (M being a
large value), and prevent deviations in nonsuppressed cells (i.e., yi = 0). Clearly,
the constraints of (3) guarantee that the solutions of the linear programs (2) will
satisfy (1). A similar formulation was used in [10].

The first heuristic of Section 3 was inspired by the above formulation, since
it attempts to find a “good” (i.e., close to the optimum) feasible point for (3)
considering the combinatorial nature of the objective function. However, most
network flows heuristics consider a linear objective function. They can thus be
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seen as derived from a linear relaxation of (3). This linear relaxation can be
obtained by replacing the binary variables yi in (3) by two variables zl

i and zu
i ,

i = 1 . . . n, that represent the minimum deviation required in a cell to guarantee,
respectively, the lower and upper protection levels of the primary cells. This
linear relaxation model can be stated as

min
n∑

i=1

ai(zl
i + zu

i )

s.t.
Axl,p = 0

−zl
i ≤ xl,p

i ≤ zu
i i = 1 . . . n

xl,p
p = −Lp

Axu,p = 0
−zl

i ≤ xu,p
i ≤ zu

i i = 1 . . . n
xu,p

p = Up




for each p ∈ P

zl, zu ≥ 0

(4)

The term “partial cell suppression problem” was coined in [11] for (4).
As noted in [10], (3) and (4) give rise to very large MILP and LP problems

even for tables of moderate sizes and number of primary cells. However, their
constraints matrices are highly structured. For instance, Figure 1 shows the
structure of the constraints matrix for problem (4). This dual-block structure
is similar to that of stochastic programming problems [2]. Such structure can
be exploited through decomposition schemes, as done in [10] using Bender’s
method. As noted in [2], alternative decomposition approaches based on interior-
point methods [16] could be attempted, although, in principle, and from the
computational experience reported in [10], they don’t look like a promising choice
for CSP.

The second level of structure in (3) and (4) comes from the table linear
relations matrix A. This structure has only been exploited up to now for two-
dimensional tables, which can be modeled as a bipartite network. The two heuris-
tics described in the next section belong to this category. In Section 5 it will be
shown how more complicated structures can also be exploited through extended
network flows formulations.

3 Network Flows Heuristics

Network flows heuristics attempt to find approximate solutions to (3) or (4). In
fact, they can only guarantee a (hopefully good) feasible solution, i.e., a pattern
of complementary suppressions C satisfying the lower and upper protection levels.
Before outlining the two approaches considered in this work, we present the
framework for CSP network flows heuristics. In this section we will mainly focus
on two-dimensional tables.
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xl,1 . . . xl,|P| xu,1 . . . xu,|P| zl zu

A
. . .

A
I I
I −I

. . .
. . .

I I
I −I

A
. . .

A
I I
I −I

. . .
. . .

I I
I −I

Fig. 1. Constraints matrix structure for problem (4)

3.1 General Framework

Heuristics for two-dimensional CSPs exploit that the linear relations of a (m +
1)× (n + 1) table defined by system Ax = b can be modeled as the network of
Figure 2. Arcs are associated to cells and nodes to equations; row m + 1 and
column n + 1 correspond to marginals. For each cell two variables x+

i and x−
i

are defined, denoting respectively a positive or negative deviation from the cell
value ai. Clearly, the feasible deviations must satisfy

A(x+ + x−) = 0, (5)

which can be modeled as a nonoriented version of the network of Figure 2.

.  
.  

.

1

2

.  
.  

.

2

nm

m+1n+1

1

Fig. 2. Network representation of a (m + 1)× (n + 1) table

CSP heuristics perform one iteration for each primary cell p ∈ P , as shown
in Figure 3. At each iteration the protection levels of p are satisfied through the
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solution of one or two successions of network flows problems. Some heuristics
(e.g., that of Section 3.3) only need to solve a single network flows problem for
each succession, while others (e.g., that of Section 3.2) can require a few ones to
guarantee the protection levels. This is stated at line 5 of Figure 3. Two (suc-
cessions of) network flows problems are solved when we allow different patterns
of complementary suppressions for the upper and lower protection levels of p.
This is in principle the best option, since it is closer to the original formulations
of CSP (3) and (4) (where different vectors xl,p and xl,p were also considered).
On the other hand, one (succession of) network flows problem(s) is solved when
we look for a pattern of suppressions that satisfies both the upper and lower
protection levels. This was the choice in [18]. Although the maximum number of
network flows problems to be solved halves, this heuristic can not be considered
a good approximation to (3) and (4), and therefore, in theory, it should not be
able to provide good solutions. As in [19] and the heuristic method of [10], we
considered the two-networks-flows (successions) approach, as shown at line 3 of
Figure 3. The structure of the network flows problems solved at line 6 of the
algorithm (i.e., injections, costs, and lower and upper capacities) depends on the
particular heuristic being used.

Algorithm CSP Heuristic Framework(Table,P , U, L)
1 C = ∅; CLPi = 0, CUPi = 0, i ∈ P ;
2 for each p ∈ P do
3 for each type of protection level X ∈ {U, L} do
4 if CXPp < Xp (X = L or X = U) then
5 repeat /* some heuristics only require one repeat iteration */
6 Solve network problem with flows x+ and x−;
7 Obtain set T = {i : x+

i + x−
i > 0} of positive flows;

8 C := C ∪ T \ P ;
9 Update current protection levels CXP (X = L or X = U);
10 until protection level Xp is achieved (X = L or X = U);
11 end if
12 end for each
13 end for each
End algorithm

Fig. 3. General framework of heuristic procedures

After the solution of the network flows problem, additional suppressions are
obtained, which are added to the current set C of complementary cells (lines 7
and 8 of Figure 3). The new suppressions can also satisfy the protection levels of
the following primary cells. To avoid the solution of unnecessary network flows
problems, we maintain two vectors CLPi and CUPi, i ∈ P , with respectively
the current lower and upper protection achieved for all primary cell. Primary
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cell p is thus not treated if its protection levels are satisfied (line 4). This is
a significant improvement of the methods described in [7,19]. The particular
updating of CLP and CUP at line 9 of the algorithm is heuristic dependent. It
is noteworthy that the algorithm of Figure 3 is also valid for three-dimensional,
linked, and hierarchical tables. We only need to substitute the optimization
problem at line 6 of the algorithm.

3.2 First Heuristic

The first heuristic is derived from that presented in [7]. This heuristic uses a
variant of the objective function of (3), i.e., a suppressed cell has a fixed cost. To
this end, only 0-1 values are allowed for the variables (arcs) x+ and x− that flow
through the nonoriented network of Figure 2. Due to the unimodularity of the
bases of network simplex methods [1], this is guaranteed if we impose bounds
0 ≤ x+ ≤ 1 and 0 ≤ x− ≤ 1. The objective function of the network problem∑n

i=1 ci(x+
i +x−

i ) (ci being discussed later) is then a good approximation of that
of (3).

We force a flow of 1 through arc x+
p , p being the current primary cell selected

at line 2 of Figure 3. This can be done either imposing a lower bound of 1 or
using a high negative cost for x+

p . The upper bound of x−
p is set to 0 to avoid

a trivial cycle. After solving the network flows problem, a cycle T of cells with
1-flows will be obtained and added to the set of complementary suppressions
according to lines 7–8 of Figure 3. If the value γ = min{ai : i ∈ T } is greater
than Xp (X = L or X = U , following the notation of Figure 3), then the (lower
or upper) protection level of p is guaranteed. If γ < Xp, we have only partially
protected cell p; we then set Xp := Xp − γ and repeat the procedure, finding
additional cycles until the protection level is satisfied. This iterative procedure
corresponds to lines 5–10 of Figure 3. In this heuristic only a vector of current
protection level is maintained (i.e., CLPi = CUPi in Figure 3), since the γ value
can be used for both the upper and lower protection of the cells in the cycle.

The behavior of the heuristic is governed by the costs ci of variables x+
i and

x−
i associated to cells ai. Costs are chosen to force the selection of, first, cells

∈ P ∪ C and ai ≥ Xp, second, cells 	∈ P ∪ C and ai ≥ Xp, third, cells ∈ P ∪ C
and ai < Xp, and, finally, cells 	∈ P ∪ C and ai < Xp (X = L or X = U), in an
attempt to balance the number of new complementary suppressions and network
flows problems to be solved. Clearly, for each of the above four categories, cells
with the lowest ai values are preferred.

The above network problem can also be formulated as a shortest-path be-
tween the row and column nodes of primary cell p in the nonoriented network of
Figure 2, which relates this heuristic with the method described in [4] for general
tables.

3.3 Second Heuristic

The second approach is based on [19] and is similar to the heuristics used by
the U.S. Census Bureau [18] and Statistics Canada [21], and the heuristic of



66 Jordi Castro

[10]. Unlike the original method, that solved a single network flows problem [19],
two separate problems are considered for the lower and upper protection of each
primary cell (line 4 of Figure 3). For both problems, we set bounds x+

i ≥ 0 and
ai ≥ x−

i ≥ 0. For lower protection we force a flow Lp through arc x−
p , while

a flow Up is sent through arc x+
p in the upper protection problem. Unlike the

heuristic of Section 3.2, only one network flows problem needs to be solved for
each protection level (lines 5 and 10 of Figure 3 are no longer required). The
objective function

∑n
i=1 ci(x+

i +x−
i ), ci = 0 if i ∈ P ∪C and ci = ai otherwise, is

minimized subject to (5) for each protection level. This objective is related with
that of (4).

As in the first heuristic, after the solution of each network flows problem
we obtain the cycle T and update the complementary suppressions (lines 7 and
8 of Figure 3). Defining γ = min{ai : i ∈ T }, the current protection vectors
are updated at line 9 of Figure 3 as CLPi := max{CLPi, γ, x−

i − x+
i } after the

solution of the lower protection problem, and CUPi := max{CUPi, γ, x+
i − x−

i }
after solving the upper protection problem, for all i ∈ T .

The lower-bounding procedure described in [19] was also applied to obtain an
initial set of complementary suppressions. The clean-up post-process suggested
in [19] to remove unnecessary complementary suppressions was not performed
since it is computationally very inefficient.

4 Computational Comparison

The heuristics of Sections 3.2 and 3.3 have been implemented with the AMPL
modeling language [12], which allows the quick development of algorithm pro-
totypes. The network flows problems were solved with the Cplex 6.5 network
simplex code [17]. Two generators for two-dimensional positive tables were de-
veloped. The first generator follows the description of [19]. Cell values are ran-
domly obtained from an integer uniform distribution [1,1000] with probability
0.8 and are 0 with probability 0.2. The second one is similar to generator 1 of
[9]. Cell values are randomly obtained from integer uniform distributions [1,4]
for primary cells and {0} ∪ [5, 500] for the remaining entries. Primary cells are
randomly chosen from the internal cells in both generators.

We produced 48 instances with each generator. Each instance is defined by
three parameters (m, n, p), which denote the number of rows, columns and pri-
mary suppressions, respectively. The 48 instances were obtained considering all
the combinations for m ∈ {50, 100, 150} and n, p ∈ {50, 100, 150, 200}. In all
the cases the lower and upper protection levels were a 15% of the cell value.
This symmetric range protection slightly benefits the heuristic of Section 3.2,
because one single network flows problem is enough for both the upper and
lower protection requirements.

The results obtained are shown in Figures 4–11. The heuristics of Sections 3.2
and 3.3 are denoted as “first” and “second” heuristic, respectively. Executions
were carried out on a Sun Ultra2 200MHz workstation (approximately equivalent
in performance to a 350 Mhz Pentium PC). The horizontal axes of all the figures
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refer to the instance number, (50, 50, 50) being the first, (50, 50, 100) the second
and so on. The several groups of four points with positive slope correspond to
the same table size for different numbers of primary suppressions.
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for instances of generator 1
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Fig. 9. Network flows problems solved
for instances of generator 2

Clearly, the behavior of the heuristics depends on the set of instances. The
first heuristic is more efficient for instances obtained with generator 1, since it
suppresses less cells, solves less network flows problems, and is faster than the
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Fig. 10. CPU time of network flows
problems for instances of generator 1
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Fig. 11. CPU time of network flows
problems for instances of generator 2

second heuristic (Figures 4, 8 and 10 respectively). However, the total value
suppressed is similar, as shown in Figure 6. On the other hand, the second
heuristic provides slightly better results for the second set of instances, mainly
for the total value suppressed, number of network flows problems solved, and
execution time (Figures 7, 9 and 11 respectively). Therefore, the choice of a
heuristic should consider the particular structure of the tables to be protected.

It must be noted that, in theory, execution times could be improved for the
first heuristic if we used some specialized shortest-path algorithm, instead of a
minimum cost network solver. Unfortunately, this heuristic can not be easily
extended to three-dimensional, linked and hierarchical tables. As shown in next
Section, these tables can be modeled through multicommodity flows and flows
with side constraints, which do not preserve the integrality property of minimum
cost network flows models.

5 Extensions of Network Flows Models

In previous works on CSP, the structure of the table linear relations matrix A
was only exploited for two-dimensional tables, which, as shown in Section 3,
were modeled as a bipartite network. For more complicated structures, A was
considered as the constraints matrix of a general LP problem [10,18]. However
extensions of network models (i.e., multicommodity flows, and flows with side
constraints) can still be applied for three-dimensional, linked and hierarchical
tables.

Multicommodity flows are a generalization of network flows problems. In
these models l commodities have to be routed through the same underlying
network. The set of feasible multicommodity flows is

F1 = {(x1, . . . , xl) : Nxk = bk, lk ≤ xk ≤ uk, k = 1 . . . l,
l∑

k=1

xk ≤ u}, (6)

where xk is the flows vector for each commodity k = 1 . . . l, N is the node-
arc incidence network matrix, bk are the node injections at the network for
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each commodity, uk and lk are respectively the individual lower and upper arc
capacities for each commodity, and u is the mutual arc capacity for all the
commodities. This kind of models have been extensively applied in distribution,
routing, logistic and telecommunications problems [1].

In networks with side constraints the flows of some arcs must satisfy addi-
tional linear relations. Mutual capacity constraints of multicommodity problems
are a particular case of side constraints. The set of feasible flows is thus defined
as

F2 = {x : Nx = b, b ≤ Tx ≤ b, l ≤ x ≤ u}, (7)

x being the flows vector, N the node-arc incidence network matrix, b the injec-
tions at the nodes of the network, u and l the lower and upper capacities of the
arcs, and T the side constraints matrix.

Although the minimization of a linear cost function subject to constraints
(6) or (7) can be solved with a general algorithm for LP, several specialized
methods that exploit the partial network structure have been developed. Among
them we find simplex-based [6], Lagrangian relaxation [13], interior-point [5]
and approximation methods [15]. Since multicommodity flows and flows with
side constraints can be used to model three-dimensional, linked and hierarchical
tables, as shown in next subsections, these algorithms can also be applied to CSP.
Moreover, unlike most efficient LP solvers, some of these specialized algorithms
are freely available for noncommercial purposes (e.g., [5,6]).

5.1 Three-Dimensional Tables

The linear relations Aa = b of the cell values ai of a (m+ 1)× (n+ 1)× (l + 1)
three-dimensional table can be stated as

m∑
i=1

aijk = a(m+1)jk j = 1 . . . n, k = 1 . . . l (8)

n∑
j=1

aijk = ai(n+1)k i = 1 . . .m, k = 1 . . . l (9)

l∑
k=1

aijk = aij(l+1) i = 1 . . .m, j = 1 . . . n. (10)

Cells a(m+1)jk, ai(n+1)k and aij(l+1) form, respectively, the row-marginal n × l
table, the column-marginal m × l table, and the level-marginal m × n table.

Clearly, putting together in (8) and (9) equations related to the same level
k, (8)–(10) can be written as

Nak = bk, k = 1 . . . l (11)
l∑

k=1

ak = al+1, (12)



70 Jordi Castro

N being the network linear relations of the two-dimensional table associated to
each level (depicted in Figure 2), ak the m×n cells (flows) of level k, bk the row
and columnmarginals of level k, and al+1 the level marginal values. From (6), it is
clear that (11) and (12) define a set of feasible multicommodity flows, by choosing
appropriate upper and lower bounds uk and lk (e.g., uk = ∞ and lk = 0), and
for the particular case of having equality mutual capacity constraints. Therefore,
the heuristic of Figure 3 can be used for three-dimensional tables replacing line
6 by the solution of a multicommodity network flows problem.

5.2 Linked and Hierarchical Tables

Linked tables can be defined as tables that share some common cells or, more
generally, whose entries are linked by some linear relation. Hierarchical tables
(tables with subtotals) can be considered a particular case of linked tables, in
which the common cells correspond to subtotal entries. Standard network flows
models are only useful for hierarchical tables in one dimension, as shown in [18].
We focus on the general linked tables model.

Given a linked table made of t two or three-dimensional tables, and a set of
four-dimensional elements with the information of the common cells,

E = {(u, r, v, s) : cell u in table r must be equal to cell v in table s},

the overall table relations can be written as

Aiai = bi, i = 1 . . . t (13)
ar

u − as
v = 0, (u, r, v, s) ∈ E . (14)

Aiai = bi denote the network or multicommodity network equations, depending
of the dimension of table i, while (14) impose the same value for the com-
mon cells. Clearly, (14) and the mutual capacity equations (12) of all the three-
dimensional tables form a set of linear side constraints, that, together with the
remaining network equations, match the model defined in (7). Therefore, linked
(and hierarchical) tables can be modeled as a network with side constraints.

6 Preliminary Computational Results

We implemented an extension for three-dimensional tables of the heuristic de-
scribed in Section 3.3, including a generalization of the lower-bounding procedure
introduced in [19]. It was coded in AMPL [12]. Since no specialized multicom-
modity solver is currently linked to AMPL, we used the network+dual option of
the Cplex 6.5 package [17]. This option finds first a feasible point for the network
constraints using a specialized network primal simplex algorithm; this point is
then used as a warm start for the dual simplex. The two generators of Section
4 were extended for three-dimensional tables. Table 1 reports the dimensions
and results of the instances. Column “gen” shows the generator used. Column
“m × n × l” gives the size of the table. Column “p” is the number of primary
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suppressions. Columns “c.s.” and “v.s.” show respectively the total number of
suppressed cells and of value suppressed (including primary suppressions). Col-
umn “nnf” is the number of multicommodity network flows problems solved,
while column “CPU nf” gives the overall CPU time spent in their solution. For
all the instances the upper and lower protection levels were a 15% of the cell
value. The execution environment was the same that for Section 4. The figures
of the results columns (last four) are significantly greater than those obtained
for two-dimensional tables with a similar number of cells and primary suppres-
sions. This weakness of the heuristic is due to the complex cell interrelations of
three-dimensional tables.

Table 1. Dimensions and results for 3D tables (using network+dual solver)

gen. m × n × l p c.s. v.s. nnf CPU nf

1 10 × 10 × 10 50 254 67082 76 18.7
1 10 × 10 × 10 100 234 75317 110 31.3
1 10 × 10 × 20 50 317 77439 81 31.3
1 10 × 10 × 20 100 362 94765 127 82.9
1 10 × 20 × 10 50 298 79644 69 29.2
1 10 × 20 × 10 100 397 97964 115 102.6
1 10 × 20 × 20 50 473 97753 86 127.1
1 10 × 20 × 20 100 526 118745 144 224.2

2 10 × 10 × 10 50 170 10099 43 7.8
2 10 × 10 × 10 100 191 6194 38 9.1
2 10 × 10 × 20 50 222 14458 65 16.6
2 10 × 10 × 20 100 275 12027 43 24.6
2 10 × 20 × 10 50 222 14192 63 21.7
2 10 × 20 × 10 100 310 16035 89 40.0
2 10 × 20 × 20 50 296 19252 75 54.5
2 10 × 20 × 20 100 398 19841 103 86.9

We also solved the set of instances using the dual simplex option of Cplex
6.5, which does not exploit the network structure of the problem. The results
are shown in Table 2. Clearly, the execution times drastically reduced in most
instances. This is a surprising result, specially because the network+dual Cplex
option is a highly regarded algorithm for multicommodity flows and flows with
side constraints. A possible explanation is that the problem solved by the network
primal simplex method is very degenerate (i.e., many basic variables at bounds)
which means a large number of unproductive iterations. Additional experiments
with larger instances and alternative network flow solvers have to be performed
before concluding that the dual simplex method is the most efficient approach
for three-dimensional tables.
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Table 2. Dimensions and results for 3D tables (using dual solver)

gen. m × n × l p c.s. v.s. nnf CPU nf

1 10 × 10 × 10 50 227 60961 56 7.6
1 10 × 10 × 10 100 259 78641 69 10.1
1 10 × 10 × 20 50 307 74239 74 19.0
1 10 × 10 × 20 100 384 97304 79 26.8
1 10 × 20 × 10 50 292 74327 60 15.5
1 10 × 20 × 10 100 446 103971 82 33.4
1 10 × 20 × 20 50 480 95978 73 64.1
1 10 × 20 × 20 100 608 124817 104 96.4

2 10 × 10 × 10 50 170 10099 38 4.6
2 10 × 10 × 10 100 190 6115 31 4.0
2 10 × 10 × 20 50 222 14458 65 15.5
2 10 × 10 × 20 100 261 10889 24 7.5
2 10 × 20 × 10 50 222 14192 63 14.7
2 10 × 20 × 10 100 306 15656 81 19.7
2 10 × 20 × 20 50 296 19252 75 50.5
2 10 × 20 × 20 100 390 19558 93 50.4

7 Conclusions

From our computational experience, it can be concluded that the efficiency of
the two heuristics evaluated for two-dimensional tables depends on the partic-
ular structure of the instances to be solved. We also reported some preliminary
results with a network flows heuristic for three-dimensional tables. Among the
future tasks to be done we find a comprehensive evaluation of multicommodity
models for three-dimensional tables, including larger instances and alternative
specialized solvers, and the computational study of a heuristic for linked and
hierarchical tables based on network flows with side constraints.
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