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Abstract : An specialized algorithm for solving the nonlinear network flow problem with linear side constraints has
been developed and applied to solve the Short Term Hydrothermal Coordination problem. This paper covers a basic
description of the algorithm and the problem, the computational results corresponding to a set of reservoir systems for
hydroelectric generation located in Spain, and a first analysis of the computational solutions.
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1. INTRODUCTION.

The Short Term Hydrothermal Coordination of Elec-
tricity Generation problem (HTC problem) deals with the
study of a reservoir system for hydroelectric generation that
must supply certain amounts of electric energy at time in-
tervals of a given short period of time for wich water inflows
in reservoirs and thermal plant availability is known and
considered deterministic. Due to the special structure of
HTC problem two different approaches have been used tra-
ditionally to solve it : dynamic programming and network
flow methods.

The use of dynamic programming (ref. 1) is justified
by the multi-stage modellization of the temporary evolu-
tion of the resevoir system. The evolution in time of this
system is modelled by dividing the whole period of time
into a certain number n of intervals each one correspond-
ing to a stage of dynamic programming. The advantages of
these methods are the ability to deal with any noncontin-
uous objective functions and contraints and the simplicity
of the algorithm. Its main drawbacks are :

e An initial feasible point must be provided by the
user.

e The variables are discretized.

e Constraints over several intervals can not be con-
sidered.

e The optimality condition is tied to the coarseness
of the discretization of the variables.

o The Lagrange multipliers of the constraints are not
known at the solution. (The value of the Lagrange
multipliers of certain constraints at the optimal so-
lution has an useful meaning in the economical un-
derstanding of the results).

e Important computation time and dimensionality
problems.
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The network flow approach is based on the fact that
the structure of the reservoir system and the temporary evo-
lution of each reservoir can be suitably modelled as a net-
work. Nonlinear network flow algorithms (NNF) overcome
most of the drawbacks presented by dynamic progamming :

e NNF algorithms are able to find feasible solutions.

o The state of reservoirs is described through real
variables.

e The optimal solution found by NNF satisfies first
order necessary conditions and, consequently, the
value of the Lagrange multipliers is known.

Many researchers have focused their attention on the
NNF algorithms. The usual way to tackle the problem is to
combine a data structure of the type proposed by Bradley
et al (ref. 2) for the linear network flow problem with the
variant of the active set method with superbasic variables
introduced by Murtagh & Saunders in (ref. 3). Two ex-
emples of the use of this strategy can be found in Dembo
(ref. 4) and Toint & Tuyttens (ref. 5). The aplication of
NNF algorithms to the HTC problem has been reported by
several authors ( Rosenthal (ref. 6), Escudero (ref. 7} ). Ap-
proaches to the inclusion of side constraints not based on
basis partitioning techniques has also been proposed ( Lyra
and Tavares (ref. 8), Brannlund et al (ref. 9)).

2, THE MODEL

2.1. Description

The reservoir system at interval 7 can be viewed as a
directed graph §; with a node associated to each reservoir
and arcs that represent water inflows and discharges. The
connexion of graphs §;, ¢ = 1,...,n by arcs of initial/final
volumes provides a directed graph known as the replicated
network .

The goal of HTC is the minimization of the sum of
costs of thermal generation at each interval by the best



438

policy of hydrogenerations over the period studied. Hydro-
generation is a nonlinear function of initial and final vol-
ume and water discharges. Usually the HTC solution must
satisfy additional constraints, such as hydrogeneration lim-
itations and/or irrigation constraints.

2.2. Objective function

There are may possible objective functions in a HTC
problem. The objective function employed minimizes four
groups of terms. Each group of terms consists in a sum of
variables over all intervals of the period studied.

The first group are the thermal generation savings due
to hydrogeneration, with negative sign. This is expressed
as the product of total hydrogeneration of the interval by
a negative cost constant (one for each interval).

The second group are approximate power loss values
for each hydro-unit generation (at each interval). The losses
of each unit are modelled with just a linear plus a quadratic
term of power generation, without cross terms.

The third group are the economic premiums for hav-
ing a hydro spinning reserve S -difference between maxi-
mum capacity and actual hydro power generation- at each
interval (with negative sign). The economic premium P is
proportional to the total spinning reserve, but only up to
a certain amount P. This truncated linear function is ap-
proximated by a continuous and differentiable exponential
function of the type P(1 — e~ K5).

Finally, there are penalty terms to avoid having flows
at a spillage arc while flow of final volume of the correspond-
ing reservoir is not at maximum capacity. These penalty
terms are usually minimized just after phase I and are zero
thereafter.

2.3. Hydrogeneration calculation.
In a variable-head reservoir, hydrogeneration H dur-
ing an interval can be expressed as the product

H = pxhexd (1)

where p is the efficiency of the mechanical to electrical en-
ergy conversion, h, is the equivalent water head and d is
the discharge. Should H be considered as energy generated
during the interval (in MWh), d would be the volume of
water discharged (in m3®). In case H is considered an av-
erage power throughout the interval (in MW), d is then a
flow (in m3/s). Water head h is related to network variables
through a function that gives reservoir head for stored vol-
ume v, which is a network variable. This function is most
usually a polynomial whose coefficients have been adjusted
beforehand to fit the reservoir shape. In the work reported
this has been done with a third degree polynomial

h=cy+cv+ cqv? +cov® (2)

¢
(A fourth degree polynomial has also been used). Since
the available network variables are, for a given interval i,

the discharge d; and the initial and final stored volumes
v;..| and v;, the equivalent head h., must be calculated from
them. This can be made taking

he(vi —wiy) = cp + v + cgv? + c.v?)dw 3
q

Vi

which leads to

he = ¢y + % (vici+wi) + c—; (vi — viz1)®+
ce
Cyvi-1vi + (vic1® 4+ v:%) (viz1 + ) (4)

which corresponds to the head of the center of gravity of
the water slice between volumes v;_, and v; in the reser-
voir. The efficiency p in hydrogeneration, changes with
water head and discharge flow. It has been modelled as a
quadratic function

p =Py + puthe + pard + prabed + prohe® + pagd?  (5)

Thus His a very high order polynomial function of d;,
v;— and v;. Assuming that there are r reservoirs, the total
hydrogeneration H; over interval i would be

H,‘ :XT:H“; (6)

where H;; stands for the hydrogeneration of reservoir k over
interval z.

2.4, Hydrogeneration side constraints

There can be limitations to hydrogeneration, at all
or some of the intervals, due to load and minimal —or
maximal— thermal power generation. These limits take
the form

Hi SHimax iEI (7)

I being the set of intervals where hydrogeneration lim-
its are placed.

These constraints are thus nonlinear. A possible sim-
plification, which leads to acceptable results, considers fixed
values «;; different for each reservoir k and interval z instead
of the products px h.. This yields the side constraints linear
in dix

Hi>Y viedix < Himax i€T (8)

k=1
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2.5. Mathematical formulation

The HTC problem can be formulated as a nonlinear
network flow problem with linear side constraints (NNS
problem). The mathematical expression of NNS problem
is:

min  f(z) (9)
subj. to: Az=r1r (10)
Te<b (11)

0<z<u (12)

with :

(9) f:IR"® - IR. f(x) is nonlinear and twice continuously
differenciable on the feasible set defined by the con-
straints (10) to (12). The variables z € IR" represent
the values of the flows ( water ) on the arcs of the
replicated network .

(10) Network Equations : express the flow conservation at
the nodes of the replicated network . Matrix A €
IR™*™ is the node-arc incidence matrix and r ¢ R™
is the supply/demand vector.

(11) side constrains : a set of ¢ linear constraints like (8)
that hydrogeneration discharge flows must satisfy (T €
R*™" and b € RY).

(12) » € IR" are the upper bounds imposed to the flows
on each arc.

3. THE ALGORITHM

The algorithm proposed is an extension of the nonlin-
ear network flow algorithms without side constrains (ref. 4,
5) where side constraints are treated by the methods de-
veloped by Kenningion & Helgason (ref 10) for the man-
agement of the basic matrix in the linear version of NNS
problem . An extensive description -of this algorithm were
presented in (ref. 11) and (ref. 12). Our algorithm follows
the general framework of the active set methods with su-
perbasic variables (Murtagh & Saunders (ref. 3) ) and has
the following main features.

3.1. Initial feasible solution
Problem NNS is solved with a two phase method. An

initial feasible solution to NNS problem is found in two

steps.” The first one, called “phase 0”, finds a “pseudo-
feasible” solution that consists of a feasible solution to the
NNS problem without side constraints. This pseudo—feasible
solution is feasible for network constraints but, in general,
will violate some of the side constraints. The minimization
of this infeasibilities ( “phase I” ) is carried out through an
implementation of the Kennington & Helgason algerithm
for linear network flow problem with side constrains .
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3.2. Basic matrix
The basis of the active set constraints B has the fol-
lowing internal partition :

i
Il
5]
Q

D F

where B is the matrix corresponding to a rooted spanning
tree of the graf G, D are the side constraints coefficients of
the arcs of the spanning tree, columns in C contain either
node—arc incidence information or are void, while F con-
tains side constraint coefficient of the arcs in C, or slack
variable coefficients. The basic variable set includes a sub-
set consisting of basic arcs that form a rooted spanning tree
of the network graph, stored as usual via the predecessor,
depth, thread and reverse thread vectors. The basic ma-
trix is stored via the spanning tree vectors and through a
reduced matrix Q = F — DB~1C , called the working basis,
whose order is the number of side constraints. This is all
the information needed for the operations with the inverse
of the basic matrix. The update of the inverse of the basic
matrix is performed by updating the spanning tree and the
inverse of the working basis Q. Numerical implementation
details can be found in (ref. 11) and (ref. 12).

3.3. Optimization on the null space
A descent direction on the null space p, is obtained
solving the system

H.p. = —g. (13)

where g, is the reduced gradient and H, is the reduced
hessian. Two different techniques to solve this system have
been implemented : a truncated Newton method and a
quasi—-Newton method. The truncated—Newton method fol-
lows the strategy exposed by Dembo & Steihaug in (ref. 13).
It is based on the solution of system (13) by a conjugated
gradient (CG) method. The quasi-Newton method fol-
lows the methodology exposed by Murtagh & Saunders in
(ref. 3). The Cholesky factors R of an approximation to the
reduced Hessian (R'R =~ H,) must be stored, updated and
retriangularized whenever a change in the matrix H, oc-
curs. The algorithm makes use of the quasi—active bounds
strategy ( Toint & Tuyttens, (ref. 5) )for finding the search
direction p. In this strategy the algorithm to calculate
the descent direction p acts only over the components of
p associated with superbasic variables without quasi-active
bounds, and takes the reduced gradient direction for the
other components.

3.4. Linesearch
The linesearch strategy follows the method of Bert-
sekas (ref. 14) in order to reach more than one superbasic
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variable bound with the same descent direction. If such an
step is not possible, the iterated point is found via cubic fit
with backtracking.

4. COMPUTATIONAL RESULTS.

The algorithm described in the previous section has
been coded in FORTRAN, producing the program called
NOXCB. This program has been used to solve a set of real
HTC problems that represent several reservoirs systems lo-
cated in Spain.

4.1. HTC test problems.

The size of the test models is shown in table 1. The
general characteristics of the reservoir systems optimized
with NOXCB are :

1.- The dimension of the replicated network goes from
small to large size.

2.- The number of side constraints ranges from 10% to
66% of the total number of equality constraints.

3.- The side constrains are relatively simple and sparse.
They may consist either in the sum of certain arcs in
certain time intervals or they can be hydropower lim-
its (8) at some or all intervals. In case of hydropower
limits the side constraint has nonzero elements only
in the arcs of discharge with hydrogeneration, of the
interval to which the side constraint refers.

4.- The objective function is higly nonlinear and has a
very costly computational evaluation.

Table 1 : Reservoir system and replicated network dimen-
sion of test problems. ISC and HSC stand for irrigation
side constraints and hydrogeneration side constraints

RESERVOIR SYS. REP. NETWORK
reser. arcs inter. nodes arcs # ISC # HSC % $C
EBRE01| 3 12 26 | 79 390 26 - 33%
EBRET75| 3 12 26 | 79 390 26 1 34%
EBRE78] 3 12 26 79 390 26 3 36%
EBRET7T7| 3 12 26 | 79 390 26 7 42%

3
3

NAME

EBRET76 12 26 | 79 390 26 13 49%
EBRET71 12 26 | 79 390 26 26 66%
SUMAO1 20 69 36 |721 3204 108 - 15%
SUMAT75 20 69 36 |721 3204 54 17 10%

4.2, Computational experiments.

Problem NNS can be solved either with the specialised
code NOXCB or with a general purpose constrained nonlin-
ear optimization package . Tests have been carried out in
these two directions. Both methodologies require quite long

subsidiary programs to prepare data from reservoir charac-
teristics, natural inflows, thermal generation costs and time
period and interval specifications. These programs have
also been developed.

The general purpose code choosen is the well known
MINOS package (ref. 15), an excellent general purpose code
specially for nonlinear problems with linear constraints.
The computer used is a SUN Sparc 2 Station.

4.2.1. Initial feasible solution.

NOXCB implements the phase 0/1 strategy described
in section 3. This implementation is based on the LEXA
and FXCB packages (ref. 16, 17). A first execution of the
LEXA subroutines, wich solves a linear network flow prob-
lem, finds a pseudo—feasible solution {phase 0). From this
point, FXCB subroutines proceed to eliminate the side con-
straint infeasibilities (phase 1). The results obtained are
given in the table 2.

Table 2 : Initial feasible point with NOXCB. # SCI and
sum SCI are the number and sum of the side constraints
infeasibilities at the pseudo-feasible solution. If # SCI =0,
the pseudo—feasible solution is feasible.

iter. sec. # sum iter. sec.

Ph.0 Ph.0 SCI SCI  Ph.1 Ph.l
EBREO1{511 0.68 0 0. - -
EBRE75{511 0.68 0. - -
EBRE78|511 0.68 0. - -

5.7 x 105 37 0.92
6.2 x 10° 39 0.66
8.5x 10° 61 0.97
1.5 x 107 172 11.26

EBRE77|511 0.68
EBRE76| 511 0.68
EBRET71|{511 0.68
SUMAT5/3681 8.10

(Sl o BNV i i )

4.2.2. Optimal solution.

Once a feasible solution has been found, NOXCB be-
gins the phase 2 procedure. Table 3 summarizes the results
achieved for the test probléms. The items shown in this
table are :

OFE : number of objective function evaluations.
f(2°) : objective function at z°, the initial feasible point.
f(z) : objective function value at optimal point z*.

ASCO : number of non-key arcs at z°. It is equivalent
to the number of active side constraints.
ASC* : Number of active side constraints at z*.
# SBV : Number of superbasic variables at z*.

llg;]ly © 1-norm of the reduced gradient at z*.

0}, ¢ This is the value of the Lagrange multiplier tol-
erance used in the pricing routines. In this rou-
tines, a non basic variable z, is considered to




become superbasic only if its Lagrange multi-
plier o, satisfies |og| > oynin.

{[=*||s : The 1-norm of the Lagrange multipliers of the
network equations.

4.3. Performance evaluation of NOXCB

In order to evaluate the efficiency of the especialized
code NOXCB against a general purpose code, the MINOS
package has been employed to solve the same HTC prob-
lems. The performance evaluation has been focused on the
following items :

1.- Computation of the initial feasible point z°.
2.- Computation of z* starting from different z°.
3.- Computation of z* starting from the same z° point.

The results of the numerical experiments presented
in this paper show that, in general, the current version of
NOXCB provides lower total and partial execution times
than MINOS. However, the degree of efficiency depends
strongly on the structure of the test problem and on the
initial feasible point. In order to make realistic compar-
isons, the user parameters shared by both codes have been
fixed to the same values.

4.3.1. Computation of the initial feasible point.

The results shown in Table 4 seem to indicate that the
efficiency of both codes in finding an initial feasible point
is similar, though there is a clear trend towards a better
performance of NOXCB as the problem size increases or
when there are more side constraints.

Table 4 : Phase 0/1 of NOXCB versus phase 1 of MI-
NOS.

iterations seconds

NO MI NO MI
EBREO1 511 33 0.68 0.46
EBRET75 511 33 0.68 0.46
EBRET78 511 109 0.68 1.53
EBRET77 548 123 1.6 1.49
EBRET6 550 192 1.34 2.49
EBRET1 572 311 1.65 ,  4.10
SUMATS 3853 2501 19.36 157.70

4.3.2. Computation of z*, from different z°

Table 5 and Figure 1 summarize the results obtained
with MINOS and NOXCB when each program finds the
initial feasible point in its own way. There are two cases
corresponding to problems EBRE76 and SUMAT5 in fig-
ure 1. Besides the plot of objective function value ver-
sus time (A), there are also three other graphics for each
case: the number of objective function evaluations (B), the
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cumulative computation time per iteration (excluding the
objective function evaluations) (C) and the number of ac-
tive side constraints (D), w.r.t. number of iterations. The
total computation time is very much related to the num-
ber of function evaluations, because the proportion of com-
putation time per iteration devoted to objective function
evaluations is high. The philosophy of NOXCB iterations,
though quite similar to that of MINOS, seems better suited
to Hydrothermal Coordination problems as the number of
function evaluations required are in most of the cases less
than with MINOS. (The same line search routine is used by
both codes). The lower total computation times of NOXCB
bear a direct relation to this fact and to the improved con-
vergence. On the other hand the computation time per
iteration, once function evaluations have been excluded, is
not always lower with NOXCB than with MINOS. This
should not be surprising since some operations of NOXCB,
even being partly related to network equations, are quite
intrincated as compared to MINOS operations, e.g.: the
Lagrange multipliers’ calculation requires for NOXCB the
solution of two network basis sytems of linear equations
plus one solution with the @ equation system, whereas with
MINOS it requires a single solution using a very sparse eta
file. Time per iteration is related to problem size and to the
number of active side constraints. For problems of low size
like that of EBRETS, iteration time (with function evalua-
tion excluded) is lower than with MINOS. For bigger prob-
lems as SUMAT5 iteration times (with function evaluation
excluded) gets to be, at some iterations, a bit higher with
NOXCB than with MINOS, and is related to the number of
of active side constraints, as shown in the graphics where
the change of slope in the cumulative time per iteration
coincides for NOXCB with the change in number of active
side constraints. A detailed analysis of this feature is out
of the scope of this paper.

4.3.3. Computation of z* from the same z°

The behaviour of the nonlinear algorithms used to
solve HTC problems depends strongly on the initial feasible
point. Therefore, the ability to compare the behaviour of
both codes relies on the possibility of introducing iterated
feasible points of one of the codes into the other. This is
cumbersome since it means transforming the coding of the
basic and superbasic variables and that of the basis, from
the system used by one program into that of the other one.

Experiments comparing the behaviour of both algo-
rithm starting from the initial feasible solution found by
MINOS have been developed for some of the test HTC
problems.

Figure 2. shows the graphics of objective function
value versus computation time of MINOS and NOXCB
starting from the same initial feasible point (computed with
MINOS). The results illustrated correspond to problems
EBREO1 and SUMAO1 and show that NOXCB converges
faster than MINOS. The solutions reached in both cases
coincide with those obtained with NOXCB when using its
own phase 0 and 1 procedures.
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Table 3 : Phase 2 of NOXCB.

sec. iter. OFE f(z°) f(z*) Asco Asc* # sBV llgz !l Thin l7* 14
EBRCu1| 12.085 210 254(—2.572 x 10% —5.059 x 10* 0 0 0 0. 1.0x 102 6.1 x 10!
EBRE75| 18.236 265 384|—2.572 x 10 —5.059 x 104 0 0 2( 1.4x10"3 51x10"% 6.1x 107!
EBRE78| 17.807 230 335|—2.572 x 10 —5.057 x 104 0 1 2| 40x10"3 1.2x 102 6.1x 107!
EBRET77| 13.349 207 309| 3.616 x 107 —3.870 x 10 2 4 2| 40x10"3 1.3x10"2 4.2x 107!
EBRE76| 24.913 376 521| 6.030 x 10% —3.554 x 10* 3 7] 12 9.2x10°6 1.1x 107 3.8x 10!
EBRET71] 31.964 317 636/ 5.142 x 10® —2.348 x 10* 8 15| 24] 6.6x10"3 6.2x10"* 23x 10!
SUMATS 1880.2 2942 6041} 6.947 x 108 —2.343 x 10° 5 4 29 1.5 0.1 8.2 x 10°
Table 5 : Phase 2 of NOXCB versus phase 2 of MINOS.
iterations OFE OFE/iter. # SBV  ASC* f(z*) seconds
NO MI NO MINO MI | NO MI|{ NO MI NO MI NO Mljratio
EBREO01 210 315 254 1321 1.2 4.2 00 0 0]-5.059 x 10*—-5.059 x 10*| 12.08 43.3( 0.28
EBRET5 225 315 384 1319 1.7 4.2 20 0 0]|-—-5.059 x 104—5.059 x 10%| 18.23 44.50 0.41
EBRET78 230 263 336 982 1.4 3.7 2 3 1 1|-5.057 x 10*—5.056 x 10%| 17.81 33.59 0.53
EBRET77 207 246 309 921 1.5 3.7 2 3 4 4|-3.870x 10"—3.887 x 10*| 13.35 32.01 0.42
EBRET6 376 385 521 1110 1.4 2.9| 1227 7 8|-—3.554 x 109—3.540 x 10%| 24.91 38.8§ 0.64
EBRET1 317 313 636 649 2.0 2.1| 24 28 15 17|—2.348 x 101—2.337 x 10%| 31.96 24.22 1.32
SUMATS 2952 12376 604123590 2.0 1.9] 29 57 4 T77-2.343 x 105—2.270 x 105 1880. 6474 0.29

Figure 2 : Objective function value versus execution time starting from the same initial feasible point.
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Figure 1 :

Comparative computational performance of MINOS and NOXCB with problems EBRE76 and SUMA75
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4.4. Comments on the nonconvexity of the objec-
tive function.

Due to the nonconvexity of the objective function, any
local optimization technique applied to the HTC problem
will possibly stop at a local minimum. The solutions found
either by NOXCB or MINOS could not be the global opti-
mum. Thus the user may wish to check the results against
the value of the objective function for well known oper-
ating conditions of the reservoir system, may have lower
objective function values than some local optima found by
the program. Thus it is useful to be able to introduce fea-
sible operating points in the program. This is not easy
because variables must be separated into basic, superbasic
and nonbasic, and the set of basic variables must lead to
a non-singular basis. From these points the programs can
try to reach a better solution.

Different optimizers have sometimes been obtained
with MINOS and NOXCB for some problems, which corre-
spond to different local minimizers.

5. CONCLUSIONS.

The structure of a specialized code of nonlinear net-
work flows with linear side constraints has been described
and analyzed. The application of such a code to real Short
Term Hydrothermal Coordination problems of many sizes
has been presented and has been compared to the perfor-
mance of the general purpose MINOS package when used
to solve the same problems. A first comparative analysis
shows that the specialized code performs better though not
by an order of magnitude as it is the case for network prob-
lems without side constraints.
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