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Abstract
This document presents a primal-dual interior point algorithm for the solution of large
multicommodity network flow problems with or without side constraints. The method
exploits the structure of the problem and uses a preconditioned conjugate gradient
solver. The algorithm has been implemented for the case of pure multicommodity
problems (without side constraints), and some computational results are presented,
comparing the performance of the code developed with alternative ones.
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1 INTRODUCTION

Multicommodity network flows (Kennington and Helgasson (1980)) are used as a mod-
elling tool in many applications in routing, telecommunication networks, allocation and
transportation problems and in electrical power systems. It is thus important to have
efficient tools to optimize this kind of problems. Interior point methods have recently
gained wide recognition as an optimization procedure for applications with general linear
constraints and both their general primal-dual and dual-affine-scaling formulations have
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been extended to the linear multicommodity network flow problem (Choi and Goldfarb
(1990), Kamath et al. (1993)).

In the work described here the primal-dual interior point algorithm has been spe-
cialized for solving multicommodity network flow problems, considering additional side
constraints. The method is heavily based on the use of a preconditioned conjugate gra-

dient algorithm for solving repeatedly a part of the systems of the type ASAtdy = b̄,
ASAt being symmetric and positive definite. Two specialized multicommodity network
flow codes (Kennington (1979), Castro and Nabona (1995)), both based on the primal
partitioning algorithm (Kennington and Helgasson (1980)), have been run on the same
test problems solved with the interior point code in order to compare the performance of
the interior point solution with that of the specialized network codes. The performance
of the multicommodity primal-dual interior point code developed is also compared with
that of a general primal-dual interior point code (Vanderbei (1993)) so that it is possi-
ble to appreciate the computational advantages of using multicommodity specialization
within the interior point scheme. Randomly generated multicommodity test problems
of sizes ranging from 100 to 10000 arcs and numbers of commodities ranging from 1 to
200 were solved and their results are reported.

2 OUTLINE OF THE PRIMAL-DUAL INTERIOR POINT FOR UPPER-
BOUNDED LINEAR PROGRAMMING

Let us consider the following minimization problem with upper bounds in some variables
min ctx (1)

subj. to Ax = b (2)

0 ≤ xu ≤ xu (3)

0 ≤ xl (4)

where xu ∈ IRnu , xl ∈ IRnl , x = (xt
u, xt

l)
t, x ∈ IRn (thus n = nu + nl), c ∈ IRn, b ∈ IRm

and A ∈ IRm×n. Considering an appropriate partitioning of c and A, equations (1) and
(2) can be rewritten as:

ct
uxu + ct

lxl (5)
Auxu + Alxl = b (6)

where cu ∈ IRnu , cl ∈ IRnl , Au ∈ IRm×nu and Al ∈ IRm×nl . The dual of the minimiza-
tion problem stated can be cast as:

max bty − xt
uw

subj. to At
uy + zu − w = cu

At
ly + zl = cl



z = (zt
u, zt

l )
t ≥ 0 w ≥ 0

where zu ∈ IRnu , zl ∈ IRnl (thus z ∈ IRn) and w ∈ IRnu .
Considering a logarithmic barrier function (µ being its penalty term) for the nonneg-

ativity constraints of the variables, and adding slacks f ∈ IRnu for the upper bounds
(xu + f = xu), the Kuhn-Tucker optimality conditions for both the dual and the primal
can be written as:

b1l
≡ µenl

−XlZlenl
= 0 (7)

b1u
≡ µenu

−XuZuenu
= 0 (8)

b2 ≡ µenu
− FWenu

= 0 (9)

b3 ≡ b− (Auxu + Alxl) = 0 (10)

b4l
≡ cl − (At

ly + zl) = 0 (11)

b4u ≡ cu − (At
uy + zu − w) = 0 (12)

el being the l-dimensional vector of 1’s, and where matrices Xu, Xl, Zl, Zu, F and W

are diagonal and defined as M ∈ IRl×l = diag(m1, . . . , ml). It is clear than when nu = 0
(n = nl) only equations (7, 10 and 11) hold, thus having the optimality conditions of
the standard primal-dual algorithm with no upper bounds.

When using Newton’s method to find a point satisfying (7–12), linear systems of the
type Jidi = −fi must be solved at each iteration i. These solutions amount to finding
dy and then computing dx, dw, dzu, dzl, in:

(ASAt)dy = b3 + ASr (13)

dx = S(Atdy − r) (14)

dw = F−1(b2 + Wdxu) (15)

dzu = b4u + dw −At
udy (16)

dzl = b4l
−At

ldy (17)

where
r = (rt

u, rt
l )

t r ∈ IRn ru ∈ IRnu rl ∈ IRnl

ru = F−1b2 + b4u −X−1
u b1u rl = b4l

−X−1
l b1l

(18)

and

S =
(

Su 0
0 Sl

)
S ∈ IRn×n, Su ∈ IRnu×nu , Sl ∈ IRnl×nl

Su = FXu(ZuF + XuW )−1 Sl = Z−1
l Xl

(19)

(where Su and Sl can be directly computed, since they are made of products and sums
of diagonal matrices). A justification of this process can be found in Castro (1995a).



It is quite clear that the main computational burden in solving system (7–12) is the
repeated solution of the linear system (13).

3 FORMULATION OF THE LINEAR MULTICOMMODITY NET-
WORK FLOWS WITH SIDE CONSTRAINTS

The multicommodity network flow problem corresponds to the minimization problem
(1–4). Let us consider a network with m∗ nodes, n∗ arcs (where the last one is a

rooted arc added to avoid the singularity of the network matrix A∗ ∈ IRm∗×n∗) and k

commodities. Adding slacks to the mutual capacity constraints (smc ∈ IRn∗) and the

side constraints (ssc ∈ IRt, t ≥ 0), and denoting by xi = (xt
ia

xir
)t ∈ IRn∗ i=1,. . . ,k

the flows for each commodity (xir
∈ IR being the rooted arc and xia

∈ IRn∗−1 the

remaining ones, for commodity i) with capacities xi ∈ IRn∗−1 (thus considering the

rooted arcs as uncapacitated ones), by bmc ∈ IRn∗ the mutual capacities (for the rooted

arcs an arbitrary mutual capacity can be considered), by bi ∈ IRm∗
i=1,. . . ,k the node

supplies/demands of each commodity i, by Ti ∈ IRt×n∗ the matrices defining the side

constraints structure, and by bsc, bsc ∈ IRt the upper and lower bounds of the side
constraints, then the multicommodity network problem can be stated as:

min
k∑

i=1

ct
ixi (20)

subj. to

A∗ 0 . . . 0 0 0

0 A∗ . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . A∗ 0 0

1l 1l . . . 1l 1l 0

T1 T2 . . . Tk 0 1l

x1

x2

...
xk

smc

ssc

=

b1

b2

...
bk

bmc

bsc

(21)

0 ≤ xia ≤ xi 0 ≤ xir i = 1, . . . , k (22)

0 ≤ ssc ≤ bsc − bsc (23)

0 ≤ smc ≤ bcm (24)

In this case the total number of variables and constraints is given by n = (k+1)n∗+t and m =

km∗+n∗+t, and the partitioning of the variables x = (xt
u, xt

l)
t is xt

u = (xt
1a

, . . . , xt
ka

, st
mc, s

t
sc)

and xt
l = (x1r , . . . , xkr ).



In the multicommodity problem, matrix S defined in (19) can be partitioned as:

S =

S1

. . .

Sk

Smc

Ssc

(25)

Applying equations (13–17) to the multicommodity problem, one can take advantage

of the special structure of matrix A, especially when solving (ASAt)dy = b3 + ASr. In

this case, and considering (21) and (25), the structure of matrix ASAt is as follows:

ASAt =

A∗S1A
∗t

0 . . . 0 A∗S1 A∗S1T
t
1

0 A∗S2A
∗t

. . . 0 A∗S2 A∗S2T
t
2

...
...

. . .
...

...
...

0 0 . . . A∗SkA∗
t

A∗Sk A∗SkT t
k

S1A
∗t

S2A
∗t

. . . SkA∗
t ∑k

i=1 Si + Smc

∑k
i=1 SiT

t
i

T1S1A
∗t

T2S2A
∗t

. . . TkSkA∗
t ∑k

i=1 TiSi Ssc +
∑k

i=1 TiSiT
t
i

=
B C1 C2

Ct
1 D1 D2

Ct
2 D3 D4

=
B C

Ct D

(26)

4 NUMERICAL SOLUTION SCHEME

Because of the structure of A∗SiA
∗t

and that of A∗Si, when a solution for system
(13) is attempted directly using the Cholesky decomposition, submatrix D1 become
completely dense. Since the dimension of D1 is n∗ this would mean having to store and
process n∗(n∗ + 1)/2 values. For large networks this amount of memory can become
prohibitive. This is stated in Choi and Goldfarb (1990), but no procedure is given there
to circumvent this difficulty. The algorithm developed considers the solution of the

linear system (13) (ASAtdy = b̄) taking into account the partition indicated in (26);
thus the system to be solved can be written as:

B C

Ct D

dy1

dy2

=
b̄1

b̄2



whose solution is directly obtained by block multiplication:

(D − CtB−1C)dy2 = (b̄2 − CtB−1b̄1)

Bdy1 = (b̄1 − Cdy2)
(27)

B is made of k diagonal blocks A∗SiA
∗t

. Each block has the same very sparse topological
structure of nonzero elements. If A is the set of arcs of the network, and Iv the set of

incident arcs to node v, A∗SiA
∗t

can be computed as follows:

A∗SiA
∗t

= (avw)
v=1,...,m∗
w=1,...,m∗

=





∑

∀a

− Si(a) if a ≡ (v, w) ∈ A and (w, v) 6∈ A
∑

∀a,b

(− Si(a) − Si(b)

)
if a ≡ (v, w) ∈ A and b ≡ (w, v) ∈ A

∑

∀a∈Iv

Si(a) if (v = w)

0 otherwise
(28)

and any solution having B as the system matrix can be decomposed in k systems of
equations (thus the process could be parallelized). The minimum order degree algorithm
was used to reorder the nodes of the network to avoid fill-in when making the Cholesky

decomposition of the k blocks of B. Neither the calculation of B−1b̄1 nor the solution of

Bdy1 = (b̄1−Cdy2) involves too much work. However, when computing dy2, matrix D̂ =

D − CtB−1C should be formed, which would mean solving n∗+t systems of equations

to obtain B−1C and, afterwards, a Cholesky decomposition of D̂.
A better choice is to use a preconditioned conjugate gradient (PCG) algorithm to

obtain dy2, and then to compute dy1 directly. In the PCG algorithm the only operation
directly made with the system matrix is a product of it by a vector v. But we have:
(D − CtB−1C)v = Dv − CtB−1w, with w = Cv. Thus one can take advantage of the

sparsity of D and C, and the fact that the computation of B−1w is numerically efficient.
In order to speed up the PCG algorithm, a positive definite matrix M must be deter-

mined such that M−1D̂ becomes less ill-conditioned than D̂, and that the computation
of Mz = r does not involve too much work. For pure multicommodity network prob-

lems (without side constraints) the system matrix is D̂1 = D1−Ct
1B

−1C1. In this case,

and considering a splitting of matrix D̂1 such that D̂1 = P − Q, where P = D1 and
Q = Ct

1B
−1C1 (both positive definite), it can be proved (Castro (1995b)) that:

D̂−1
1 =

( ∞∑

i=0

(P−1Q)i
)
P−1 (29)



The preconditioner M−1 to be used will be an approximation of D̂−1
1 , and can be

obtained by truncating (29) at some term φ:

M−1 = (1l + (P−1Q) + (P−1Q)2 + . . . + (P−1Q)φ−1)P−1 (30)

The higher φ is, the better the preconditioning, and the fewer iterations of the PCG
will be required. However, it must be noted that the product of Q by a vector r implies
the solution of B−1(C1r), and this should be performed at each iteration of the PCG
algorithm, increasing the execution time considerably. Thus φ must be chosen in order
to balance both objectives: to decrease the PCG iterations and to improve the time per
PCG iteration. Various tests have shown than, in general, the best results are obtained

with φ = 1. In this case M−1 = P−1 = D−1
1 , which means that z = M−1r can be

obtained in O(n) operations (since D1 is a diagonal matrix).

5 COMPUTATIONAL RESULTS

The multicommodity primal-dual interior point algorithm outlined in the above sections
was implemented for the case of problems without side constraints, using the precondi-
tioning previously stated. The code was written in ansi-c, and to test its performance
four types of problems, obtained from different network generators, were used: Rmfgen,
Grid-on-torus, Gridgraph and Gridgen (Dimacs (1991)). These generators do not con-
sider the case of multicommodity flows, and the output networks had to be converted
to a multicommodity one. The conversion algorithm is described in Castro (1995b).
Five particular instances were created with each of these generators. The first two are
problems with few commodities and medium-sized networks, whereas the last three cor-
respond to small-sized networks with many commodities. Each problem will be denoted

by Li)
j , i=1,. . . ,4, j=1,. . . ,5, i denoting the generator employed (1 for Rmfgen, 2 for

Grid-on-torus, 3 for Gridgraph and 4 for Gridgen). Table 1 presents the characteristics
of each problem, showing for each test problem the number of commodities, nodes and
arcs of the network, and the total number of constraints and variables of the linear
program to be solved (columns Rows A and Columns A).

The interior point multicommodity code developed (denoted by IPM) was compared
with MINOS 5.3 (Murtagh and Saunders (1983)), a general-purpose package, PPRN
(Castro and Nabona (1995)) and MCNF85 (Kennington (1979)), two specialized multi-
commodity network flow codes, and LoQo (Vanderbei (1993)), a state-of-the-art primal-
dual interior point code. Table 2 shows the CPU seconds required by each code. The
fastest execution for each test is marked with an asterisk (∗). All runs were carried out
on a SunSparc 10/41 (one CPU), with a 40MHz clock, ≈100Mips and ≈20Mflops CPU,



Table 1 Linear test problems

Test Commodities Nodes Arcs Rows A Columns A

L1)
1 8 2048 9472 25856 85248

L1)
2 16 2048 9472 42240 161024

L1)
3 50 128 496 6896 25296

L1)
4 150 128 496 19696 74896

L1)
5 200 128 496 26096 99696

L2)
1 8 1500 9000 21000 81000

L2)
2 16 1500 9000 33000 153000

L2)
3 50 100 600 5600 30600

L2)
4 150 100 600 15600 90600

L2)
5 200 100 600 20600 120600

L3)
1 8 2502 5000 25016 45000

L3)
2 16 2502 5000 45032 85000

L3)
3 50 227 450 11800 22950

L3)
4 150 227 450 34500 67950

L3)
5 200 227 450 45850 90450

L4)
1 8 976 7808 15616 70272

L4)
2 16 976 7808 23424 132736

L4)
3 50 101 606 5656 30906

L4)
4 150 101 606 15756 91506

L4)
5 200 101 606 20806 121806

and 64Mbytes of main memory. From Table 2 it can be concluded that the perfor-
mance of IPM increases with the size of the problem, this code thus being a good choice
for large multicommodity network flow problems, especially for the case of small-sized
networks with many commodities.
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Table 2 CPU seconds of each code for the linear test problems

Test IPM MINOS PPRN MCNF85 LoQo
L1)

1 7095.4 15147.7 737.9∗ 1778.2 (d)

L1)
2 16737.9 (a) 6838.7 5651.3∗ (d)

L1)
3 178.6∗ 2639.4 275.1 398.6 3402.8

L1)
4 1839.9∗ (b) 8069.0 11319.0 (d)

L1)
5 1710.0∗ (c) 15415.3 26479.9 (d)

L2)
1 12296.3 (b) 4962.2 4833.0∗ (d)

L2)
2

(d) (c) 37470.5 34383.0∗ (d)

L2)
3 287.0 1402.8 169.2∗ 466.9 5211.1

L2)
4 4352.4∗ 105082.5 7605.5 15836.2 (d)

L2)
5 11974.4∗ (c) 22218.4 81903.5 (d)

L3)
1 2818.3 (b) 1409.2∗ 2134.1 (d)

L3)
2 16485.5 (c) 14139.8∗ 14709.9 (d)

L3)
3 236.3∗ 3172.8 364.9 533.9 3180.4
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L4)
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L4)
2

(d) (c) 40974.1∗ (e) (d)

L4)
3 114.1 918.2 39.4∗ (e) (d)

L4)
4 584.8 15236.6 415.8∗ (e) (d)

L4)
5 915.2∗ (c) 1273.4 (e) (d)

(a) Too many constraints. (b) Error during execution. (c) Execution too long.

(d) Not enough memory. (e) Feasibility error.

Castro, J. and Nabona, N. (1995) An implementation of linear and nonlinar multi-
commodity network flows. Accepted for publication in the European Journal of

Operational Research.
Choi, I.C. and Goldfarb, D. (1990) Solving multicommodity network flow problems by

an interior point method. SIAM Proceedings in Applied Mathematics, 46, 58–69.
DIMACS. (1991) The first DIMACS international algorithm implementation challenge:

The bench-mark experiments. Technical Report, DIMACS, New Brunswick, NJ.
Kamath, A.P, Karmarkar, N.K. and Ramakrishnan, K.G. (1993) Computational and

Complexity Results for an Interior Point Algorithm on Multicommodity Flow Prob-
lems. TR-21/93, Dipartimento di Informatica, Università di Pisa, Italy.
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