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The traffic assignment problem attempth to find the distribution of the traffic flow throughout
a network of routes. It is possible to formulate the problem by means of a network model that re-
presents the physical infrastructure and aims to compute the flows of one or more commodities on
the links of the network, (each commodity being related to the flows from an origin to a destina-
tion), based on the principles of optimization, which characterize the use of the routes from origins
to destinations on the corresponding network.

Whenever congestion phenomena are present, the cost functional associated with the links of
the network model are nonlinear and, in most applications convex or monotone. When interactions
between network links are present, the problem is known as asymmetric traffic assignment problem
and it can be formulated as a variational inequality problem (Smith [8], Dafermos [3D).

The variational inequality problem, VI (F, Y), solves the traffic assignment problem. It can
be stated as:

Find y* € ¥ such that F(y™)'(y — y*) > 0, Yy e Y, (1)

where ' is a continuous, pseudo-monotone mapping and Y is a nonempty, closed, convex subset
of IR™. It can be proved that for “pseudo-monotone mappings”y* € Y solves the VI(F, Y) if

“Partially supported by grant from Universidad Nacional Auténoma de México (UNAM)

TRISTAN IV Triennial Symposium on Transportation Analysis




and only if y* € ¥ and
Fly)(y—y) =20 Vyel (2)

This effectively means that the solution set Y* of VI(I", Y'), which eventually might consist
of a unique point, is defined as the intersection of all the half-spaces defined by (2). In other words,
there is a convex feasibility formulation of VI(I', }), with the feasible set Y~ implicitly defined
by the infinite family of cutting planes (2). (2) ensures both the convexity and closedness of ¥,
while Y= C Y ensures its boundness.

Generated cutting planes are considered a closer approximation to the solution set of V1. Inthe
iterated point yy, the half-space

{y € R™\F(y)(yx — y) = 0}

is added to the current solution set, and the following point yx+1 is chosen inside the new solution
set. Goffin’s, Marcotte’s and Zhu’s ACCPM (Analytic Center Cutting Plane Method) [5] uses an
approximation of the analytic center. The computation of the analytic center is made by Newton’s
primal-dual method which uses this last centre as a starting point.

There are several possible ways of solving the variational inequality problem (1). One way
is to apply the analytic center cutting plane method for variational inequalities directly (possibly
exploiting the multicommodity structure of the problem [2]). Another approach would be to apply
a simplicial decomposition technique to the problem (1).

This is the method considered in this work. We have to solve two problems at each iteration of
the simplicial decomposition technique, a linearized subproblem (which is a shortest path assign-
ment problem) and the master problem which is itself a variational inequality problem that can be
solved by many effective methods, such as the projection method [1, 6] and the linear approxima-
tion methods. The analytic center cutting plane method can also be adapted to solve the variational
inequality problem arising in the master problem of the simplicial decomposition scheme. We used
this latter approach in this work.

The RSDVI programme (proposed by L. Montero in [7]) has been adapted to solve the vari-
ational inequality of the master problems. Originally RSDVI implemented the linear projection
method proposed in [1] to find the solutions to such problems. The linear projection method has
been replaced by the ACCPM in this work.

Three variants of ACCPM were programmed. The first solved the following problem master:

Find A" € A such that EXF(EX)(A = X\*) 20, VA€A

where E is a matrix n x m which colums are the extrem flows and n is the number of links.

withA={\] D=1, =X <0},
1=1
where both equality and inequality constraints were considered, following the the idea of Denault

and Goffin [4].
In the second variant the same problem is solved, through the following set

A=A a<L -2 g1 =\ <0},
=1

i=1
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where equality constraints are duplicated into two inequalities [5].

In the last case we used previous set and a heuristic to find the feasible initial analytic center for
the variational inequality of the master problem. The heuristic attempts to find an initial e-pseudo
feasible point, and it can be adjusted through the e-parameter

The problems that have been used for testing purposes are: Sioux Falls, Barcelona, Winnipeg
and Madrid. (See Table 1).

Nodes Centroids Links OD pairs
Sioux Falls 48 24 124 528
Barcelona 930 110 2522 7922
Winnipeg 1017 154 2976 4345
Madrid 2776 490 6871 26037

Table 1. Test networks description

The following tables show the results obtained from asymmetric problems: artificially built by
adding interactions between incoming links at intersections. The initial gap refers to the relative
gap of the first major iteration. The final gap is the desired aproximation of the solution in gap
terms. Major it. gives the necessary iterations to reach the criteria of convergence. Minor it. gives
the average number of minor iterations for solving the master problems. [W ] s the maximum
cardinality of W i.e. the maximum number of extreme points (links space). Global-CPU gives
the total execution time in seconds. M.P.-CPU is the execution time spent in the solution of the
master problem, in seconds. All the runs were carried on a Sun-4, SPARC-based with a CPU of
198.3 MHz.

Table 2 shows the computational results for the asymmetric problems using the linear projec-
tion method for solving the master problem.

Problem S10 BCN WIN MAD
initial gap 427E+02 .156E+04 249E+03 .154E+05
final gap 887E+00 .984E+00 .769E+00 .922E+00
major It. 12 69 11 39
minor [t. 6.5 8.35 39 7:25
W] 14 71 13 41
Global-CPU 0:2 533:1 6.6 610.8
M.P.-CPU 0.2 518.5 3.0 403.0

Table 2. Results for TAP using linear projection method for the master problem

Each cell of Table 3 gives the information for the first, second, and third variant ofthe ACCPM
respectively.
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Problem S10 BCN WIN MAD
initial gap  427E+02 .156E+04 249E+03 .154E405
427E+02  .156E+04 249E+03 .154E+05

412E+02 .148E+04 240E+03 .147E+05

final gap R8TE+00 .984E+00 .769E+00 .922E+00
837E+00 .882E+00 .768E+00 .876E+00

502E+00 .910E+00 .757E+00 .775E+00

major It. 12 69 11 39
12 66 11 41

1 45 8 31

minor It. 89.33 379.21 86.0 238.07
45.16 172.85 48.45 131.42

16.1 34.87 11.25 34.19

[W 14 71 13 41
14 68 13 43

13 47 10 33

Global-CPU 113 127616.9 33.8 3185.1
3.5 6065.4 17.6 1280.5

03 77.0 5.1 270.0

M.P.-CPU 1.0 127602.5 30.4 2977.2
3.4 6050.5 14.1 1058.7

03 66.7 2.1 104.7 |

Table 3. Results for TAP using the three implemented vatiants of the ACCPM

It has been observed that the method of linear projections still continues to be competitive,
compared to the ACCPM. However. when the heuristic is applied, ACCPM-variant 3 seems 10
be more efficient as fewer cuts are made. The only disadvantage is that feasibility is lost in the
traffic assignment problem, leading to an "infeasible optimal solution". In fact, there is a trade-off
between feasibility and efficiency which can be controlled by the user through the e-parameter.

For the separable and symmetric Winnipeg problem Table 4 shows the objective function value
of the equivalent mathematical programming formulation, for several e-parameters and the linear
projection method. The number of both major and minor iterations are also given as well as the
required CPU for the master problem.

Winnipeg
c=102 e=10"7 e=10°% e=10"" RSDVI
major It. 10 16 16 16 16
minor It. 7.8 42 .87 79.18 96.5 3.18
M.P.-CPU 1.8 18.2 42.1 577 33
Obj(v™) 704207.8 7052524 705277.1 705277.2 705277.2J

Table 4. feasibility vs. efficiency
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We also compared in statistical terms the resulting optimal solutions in the link flow space for
ACCPM-variant 3 (infeasible) and for RSDVI (feasible), since the heuristic variant is competitive
in time. Let wL and wD be the vectors of optimal links flows obtained with the linear projection
method and ACCPM-variant 3 respectively.

For the Winnipeg problem, removing the zero link flows, which results in a reduction from
2976 to 2359 links, and using € = 10~ % for ACCPM-variant 3, the linear regression between the
wL and wD is showed in Figure 1.

Figure 1. Comparison of optimal link flow by regression

In Figure 2 the difference of the two volumes is compared to the average of them.
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Figure 2. Comparison of optimal links flows: RSDVI vs. ACCPM-variation 3

At first sight, discrepancies in link flow volumes tend to decrease as link flow increases, this
means, that for links with low flow, (relative) differences are expected to be high. To refine the
analysis, the average of the link volumes are separated in groups and relative error |wl — wD)| /
((wL +wD)/2) 100, is calculated. Table 5 shows the number of observations in each group, the
mean relative error, the relative error value that is only exceeded for 25% of the observations in
the same group (denoted as Q3), and the relative error interval of outliers.
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Group No. Mean Q3 L of Outliers

0 — 500 1330 10% 12% (27,195)
500 — 1000 514 3% A% (9,22)
1000 — 1500 163 2% 2% (6,10)
1500 — 2000 61 1% 2% 4.4)
2000 — 2359 49 1% 1% 3.,5)

—_

—_—

Table 5. Relative errors for link flow groups
It is observed that the relative errors decrease when the link flow volume increases.
Conclusions

We can conclude that ACCPM-variant 3 solutions are as much similar to the solutions obtained
with the linear projection method as e-parameter is decreased.

Solving the master problem with ACCPM-variation 3 leads to an optimal user equilibrium as-
signment flow for TAP that in fact is related to a TAP problem with a perturbed demand OD ma-
trix. It is possible to compare the perturbed OD matrix estimated by a bi-level scheme proposed
by Spiess, and implemented in the EMME?2 software, with the original OD matrix. In the estima-
tion process, exact solutions to TAP in the link flow-space could be used as traffic counts in the
adjustment macro. This is part of the additional work to be done.
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