Optimal day-ahead bidding strategy with futures and bilateral contracts. Scenario generation by means of factor models

C. Corchero, F.J. Heredia, M.P. Muñoz

Group of Numerical Optimization and Modelling - GNOM Universitat Politècnica de Catalunya - UPC, Spain http://gnom.upc.edu

Project DPI2008-02154, Ministry of Science and Innovation, Spain

July 10, 2010

- MIBEL
- Physical Futures and Bilateral Contracts in the MIBEL

Optimization Model and Optimal Bid Function

- Problem definition
- Two-stage stochastic program formulation
- Optimal Matched Energy
- Optimal Bid Function

Factor models

- Day-Ahead Market price
- Factor model estimation
- Forecasting model
- Factor Model Results

Results and Conclusions

- Case Study characteristics
- Results
- Conclusions
- Conclusions

MIBEL Physical Futures and Bilateral Contracts in the MIBEL

Electric Energy Iberian Market: MIBEL

C. Corchero, F.J. Heredia, M.P. Muñoz EURO 2010 - Lisboa

MIBEL Physical Futures and Bilateral Contracts in the MIBEL

Electric Energy Iberian Market: MIBEL

MIBEL Physical Futures and Bilateral Contracts in the MIBEL

Characteristics of Physical Futures and Bilateral Contracts

Base Load Futures Contract

- A Base Load Futures Contract consists in a pair (L^{FC}, λ^{FC})
 - L^{FC}: amount of energy (MWh) to be procured each interval of the delivery period.
 - λ^{FC} : price of the contract (c \in /MWh).

Bilateral Contracts

A Bilateral Contract consists in a pair $(L^{\scriptscriptstyle BC}_i,\lambda^{\scriptscriptstyle BC}_i)$ $i\in I$

- L_i^{BC} : amount of energy (MWh) to be procured each interval *i* of the delivery period.
- $\lambda_i^{\scriptscriptstyle BC}$: price of the contract (c \in /MWh).

MIBEL Physical Futures and Bilateral Contracts in the MIBEL

Characteristics of Physical Futures and Bilateral Contracts

Base Load Futures Contract

- A Base Load Futures Contract consists in a rap (15.)
 - *L^{FC}*: amount of energy (MWh) to be procured each interval of the delivery period.
 - λ^{FC} : price of the contract (c \in /WWh).

Bilateral Contracts

- A Bilateral Contract consists in a pair $(L_i^{\scriptscriptstyle BC}, \lambda_i^{\scriptscriptstyle BC})$ $i \in I$
 - L^{BC}: amount of energy (MWh) to be procured each interval i of the delivery period.
 - $\lambda_i^{\scriptscriptstyle BC}$: price of the contract (c \in /MWh).

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Integration of the futures and bilateral contracts in the day-ahead bid

The energies L^{FC} and L_i^{BC} should be integrated in the MIBEL's day-ahead bid respecting the two following rules:

If generator t contributes with the VWh at period i to the coverage of the Content of the range of the Content of the range of the Content of the range of the contributes with b_{it} MWh at period i to the coverage of the pool of BCs, then the energy b_{it} must be excluded from the bid to the day-ahead market. Unit t can offer its remaining production capacity P_t - b_{it} to the pool.

Introduction Problem de Optimization Model and Optimal Bid Function Two-stage Factor models Results and Conclusions Optimal Bi

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Integration of the futures and bilateral contracts in the day-ahead bid

The energies L^{FC} and L_i^{BC} should be integrated in the MIBEL's day-ahead bid respecting the two following rules:

- If generator t contributes with f_{itj} MWh at period i to the coverage of the FC j, then the energy f_{itj} must be offered to the pool for free (instrumental price bid).
- A generator t contributes with b_{it} MWh at period i to the coverage of the pool of BCs, then the energy b_{it} must be excluded from the bid to the day-ahead market. Unit t can offer its remaining production capacity $\overline{P}_t b_{it}$ to the pool.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Integration of the futures and bilateral contracts in the day-ahead bid

The energies L^{FC} and L_i^{BC} should be integrated in the MIBEL's day-ahead bid respecting the two following rules:

- If generator t contributes with f_{itj} MWh at period i to the coverage of the FC j, then the energy f_{itj} must be offered to the pool for free (instrumental price bid).
- **9** If generator t contributes with b_{it} MWh at period i to the coverage of the pool of BCs, then the energy b_{it} must be excluded from the bid to the day-ahead market. Unit t can offer its remaining production capacity $\overline{P}_t b_{it}$ to the pool.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: definitions

Definition (Bid function)

A bid function for the thermal unit t is a non-decreasing function defined over the interval $[0, \overline{P}_t - b_{it}]$ that gives, for any feasible value of the bid energy p_{it} , the asked price per MWh from the day-ahead market:

$$\begin{array}{rcl} \lambda_{it}^b \colon & \left[0, \overline{P}_t - b_{it}\right] & \longrightarrow & \Re^+ \cup 0 \\ & & p_{it} & \longmapsto & \lambda_{it}^b(p_{it}) \end{array}$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: definitions

Definition (Matched energy function)

The matched energy associated to the bid function λ_{it}^{b} is defined as the maximum bid energy with an asked price not greater than the clearing price λ_{i} , and is represented by the function:

$$p_{it}^{M}(\lambda_{i}) \stackrel{\text{\tiny def}}{=} \max\{p_{it} \in [0, \overline{P}_{t} - b_{it}] \mid \lambda_{it}^{b}(p_{it}) \leq \lambda_{i}\}$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: assumption

Assumption

For any thermal unit i committed at period t there exists a bid function λ_{it}^{b} such that:

$$p_{it}^{M,s*} = p_{it}^{M}(\lambda_{i}^{s}) \quad \forall s \in S$$
 (1)

with $p_{it}^{M,s*}$ the optimal value of the matched energy variable $p_{it}^{M,s}$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

The objective of the study is to decide:

- the optimal economic dispatch of the physical futures and bilateral contract amove the physical units
- the optimal binning at Local trade Market abiding by the

EXAMPLATED UNIT COMMITMENT of the thermal units **many zing the expected Day-Ahead Market profits** taking into account futures and bilateral contracts.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

The objective of the study is to decide:

- the optimal economic dispatch of the physical futures and bilateral contract among the thermal units
- the optimal bidding at Day Ahead Market abiding by the MIBEL rules

The optimal unit commitment of the thermal units maximizing the expected Day-Ahead Market profits taking into account futures and bilateral contracts.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

The objective of the study is to decide:

- the optimal economic dispatch of the physical futures and bilateral contract among the thermal units
- the optimal bidding at Day-Ahead Market abiding by the MIBEL rules

The optimal unit commitment of the thermal units maximizing the expected Day-Ahead Market profits taking into account futures and bilateral contracts.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

The objective of the study is to decide:

- the optimal economic dispatch of the physical futures and bilateral contract among the thermal units
- the **optimal bidding at Day-Ahead Market** abiding by the MIBEL rules

• the optimal unit commitment of the thermal units maximizing the expected Day-Ahead Market profits taking into account futures and bilateral contracts.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

The objective of the study is to decide:

- the optimal economic dispatch of the physical futures and bilateral contract among the thermal units
- the optimal bidding at Day-Ahead Market abiding by the MIBEL rules

• the optimal unit commitment of the thermal units maximizing the expected Day-Ahead Market profits taking into account futures and bilateral contracts.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Problem definition

Model characteristics

- Stochastic mixed integer quadratic programming model
- Price-taker generation company
- Set of thermal generation units, 7
- Optimization horizon of 24h, I
- Set of physical futures contracts, F, of energy $L_i^{FC} j \in F$.
- A pool of bilateral contracts of energy L^{BC} .
- Set of day-ahead market price scenarios, $\lambda^s\,,\,s\in\mathcal{S}$

Optimization Model and Optimal Bid Function Factor model Results and Conclusions Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Variables

First stage variables: $\forall t \in T, \forall i \in I$

- Unit commitment: u_i^t , c_t^u , $c_d^t \in \{0, 1\}$
- Instrumental price offer bid : q_{i}^{t}
- Scheduled energy for futures contract $j: f_{itj} \quad \forall j \in F$
- Scheduled energy for bilaterals contract: b_{it}

Optimization Model and Optimal Bid Function Factor model Results and Conclusions Optimal Bid Function Factor model Results and Conclusions

Variables

First stage variables: $\forall t \in T, \forall i \in I$

- Unit commitment: u_i^t , c_t^u , $c_d^t \in \{0,1\}$
- Instrumental price offer bid : q_{i}^{t}
- Scheduled energy for futures contract $j: f_{itj} \quad \forall j \in F$
- Scheduled energy for bilaterals contract: b_{it}

Second stage variables $\forall t \in T, \ \forall i \in I, \ \forall s \in S$

- Matched energy: $p_{it}^{M,s}$
- Total generation: p^s_{it}

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Physical Future and Bilateral Contracts model

Physical future contract coverage:

$$\sum_{t \in T} f_{itj} = L_j^{FC} , \forall j \in F , \forall i \in I$$
$$f_{itj} \ge 0 , \forall j \in F , \forall t \in T , \forall i \in I$$

Bilateral contract coverage

$$\sum_{t \in T} b_{it} = L_i^{BC}, \ \forall i \in I$$

 $0 \leq b_{it} \leq \overline{P}_t , \ \forall t \in T , \ \forall i \in I$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Physical Future and Bilateral Contracts model

Physical future contract coverage:

$$\sum_{t \in T} f_{itj} = L_j^{FC} , \forall j \in F , \forall i \in I$$
$$f_{itj} \ge 0 , \forall j \in F , \forall t \in T , \forall i \in I$$

Bilateral contract coverage:

$$\sum_{t\in T} b_{it} = L_i^{BC}, \ \forall i\in I$$

$$0 \leq b_{it} \leq \overline{P}_t , \ \forall t \in T , \ \forall i \in I$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: constraints

Matched energy:

$$p_{it}^{M,s} \leq \overline{P}_t - b_{it}, \forall t \in T, \forall i \in I, \forall s \in S$$
$$p_{it}^{M,s} \geq q_{it}, \forall t \in T, \forall i \in I, \forall s \in S$$

 $\sum_{j \in F_i} \forall t \in T, \forall i \in I$

ET.WE

Instrumental price bid $q_{it} \ge P_t - b_t$

Total energy generation:

$p_{it}^{s} = b_{it} + p_{it}^{M,s}, \, \forall t \in T, \, \forall i \in I, \, \forall s \in S$

C. Corchero, F.J. Heredia, M.P. Muñoz EURO 2010 - Lisboa

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: constraints

Matched energy:

$$p_{it}^{M,s} \leq \overline{P}_t - b_{it}, \forall t \in T, \forall i \in I, \forall s \in S$$

$$p_{it}^{M,s} \geq q_{it}, \ \forall t \in T, \ \forall i \in I, \ \forall s \in S$$

Instrumental price bid:

$$\begin{aligned} q_{it} &\geq \underline{P}_t - b_{it} , \ \forall t \in T , \ \forall i \in I \\ q_{it} &\geq 0 , \ \forall t \in T , \ \forall i \in I \\ q_{it} &\geq \sum_{i \in F_i} f_{itj} , \ \forall t \in T , \ \forall i \in I \end{aligned}$$

Total energy generation:

$$p_{it}^{s} = b_{it} + p_{it}^{M,s}, \ \forall t \in T, \ \forall i \in I, \ \forall s \in S$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: constraints

Matched energy:

$$p_{it}^{M,s} \leq \overline{P}_t - b_{it}, \forall t \in T, \forall i \in I, \forall s \in S$$

$$p_{it}^{M,s} \ge q_{it} , \ \forall t \in T , \ \forall i \in I , \ \forall s \in S$$

Instrumental price bid:

$$\begin{aligned} q_{it} &\geq \underline{P}_t - b_{it} , \ \forall t \in T , \ \forall i \in I \\ q_{it} &\geq 0 , \ \forall t \in T , \ \forall i \in I \\ q_{it} &\geq \sum_{j \in F_i} f_{itj} , \ \forall t \in T , \ \forall i \in I \end{aligned}$$

Total energy generation:

$$p_{it}^{s} = b_{it} + p_{it}^{M,s}, \ \forall t \in T, \ \forall i \in I, \ \forall s \in S$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Day-ahead market model: constraints

Other set of constraints:

- Unit commitment constraints: including the start-up and shut-down costs and the minimum operation and idle time control taking into account the initial state of the units.
- Operational limits for the total generation.

Introduction Optimization Model and Optimal Bid Function Factor models Results and Conclusions Optimal Bid Function Factor models Optimal Bid Function

Objective function

Maximization of the day-ahead market clearing's benefits

$$\max_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} \left(-c_{it}^{u} - c_{it}^{d} - c_{it}^{b} u_{it} + \sum_{s \in S} P^{s} \left[\lambda_{t}^{Ds} p_{it}^{M,s} - (c_{i}^{I} p_{it}^{s} + c_{i}^{q} (p_{it}^{s})^{2}) \right] \right)$$

Incomes from Eurures and bilateral contracts:

Furtheres contracts:
$$\sum_{t \in T} \sum_{j \in J} \left(\lambda_j^{FC} - \lambda_t \right) L_t^F$$

Bilateral contracts: $\sum_{t \in T} \lambda_s^{BC} L_t^{BC}$

• They don't depend on the decision variables.

Introduction Optimization Model and Optimal Bid Function Factor models Results and Conclusions Optimal Bid Function Factor models Optimal Bid Function

Objective function

Maximization of the day-ahead market clearing's benefits

$$\max_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} \left(-c_{it}^{u} - c_{it}^{d} - c_{it}^{b} u_{it} + \sum_{s \in S} P^{s} \left[\lambda_{t}^{Ds} p_{it}^{M,s} - (c_{i}^{I} p_{it}^{s} + c_{i}^{q} (p_{it}^{s})^{2}) \right] \right)$$

Incomes from Futures and bilateral contracts:

- Futures contracts: $\sum_{t \in T} \sum_{j \in J} \left(\lambda_j^{FC} \lambda_t \right) L_t^{FC}$
- Bilateral contracts: $\sum_{t \in T} \lambda_t^{BC} L_t^{BC}$
- They don't depend on the decision variables.

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Summary of the model

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

Optimal Matched Energy

Lemma

Let $x^{*'} = [p^*, p^{M,*}, q^*, f^*, b^*]'$ be an optimal solution of problem (OBIFUC). Then for any thermal unit *i* the optimal value of the matched energy $p_{it}^{M,s*}$ can be expressed as:

$$p_{it}^{M,s*} = \max\{q_{it}^*, \rho_{it}^s(b_{it}^*)\}$$
 (2)

Problem definition Two-stage stochastic program formulation Optimal Matched Energy **Optimal Bid Function**

Bid's functions Optimality Conditions

Definition (Bid functions's optimality conditions)

Let $x^{*'} = [u^*, c^{*u}, c^{*d}, p^{M,*}, p^*, q^*, f^*, b^*]'$ be an optimal solution of the (OBIFUC) problem. The bid function λ_{it}^{b*} of a thermal unit *i* committed at period *t* (i.e. $i \in U_t$) is said to be optimal w.r.t. the (OBIFUC) problem and solution x^* if the value of the matched energy function associated to any scenario's clearing price λ_t^s , $p_{it}^M(\lambda_t^s)$, coincides with the optimal matched energy $p_{it}^{M,s*}$, that is:

$$p_{it}^{\scriptscriptstyle M}(\lambda_t^{\scriptscriptstyle S}) = p_{it}^{\scriptscriptstyle M,s*} = \max\{q_{it}^{\ast}, \rho_{it}^{\scriptscriptstyle S}(b_{it}^{\ast})\}$$

Problem definition Two-stage stochastic program formulation Optimal Matched Energy Optimal Bid Function

OBIFUC's optimal bid function

Lemma (Optimal bid function)

Let $x^{*'} = [u^*, c^{*u}, c^{*d}, p^{M,*}, p^*, q^*, f^*, b^*]'$ be an optimal solution of the (OBIFUC) problem and i any thermal unit committed on period t at the optimal solution (i.e. $i \in U_t$). Then the bid function:

 $\lambda_{it}^{*}(p_{it}; b_{it}^{*}) = \begin{cases} 0 & \text{if } p_{it} \le q_{it}^{*} \\ 2c_{i}^{q}(p_{it} + b_{it}^{*}) + c_{i}^{l} & \text{if } q_{it}^{*} < p_{it} \le (\overline{P}_{t} - b_{it}^{*}) \end{cases}$ (3)

is optimal w.r.t. the (OBIFUC) problem and the optimum x^* .

Introduction Problem definition Optimization Model and Optimal Bid Function Factor models Results and Conclusions Optimal Bid Function

OBIFUC's optimal bid function graphical representation

Introduction Optimization Model and Optimal Bid Function Factor models Results and Conclusions Optimal Bid Function Optimal Bid Function

OBIFUC's optimal bid function graphical representation

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Price characteristics

Electricity spot prices exhibit:

- Non-constant mean and variance
- Daily and weekly seasonality

- Calendar effects
- High volatility and presence of outliers

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Factor Model Approach

To apply the methodology of factor models in the next way:

- The spot price is interpreted not as a single time series but a set of 24 time series, one for each hour.
- The factor model allows to identify common unobserved factors which represent the relationship between the hours of a day.
- The forecasting model provide suitable scenarios for the optimization model.

Schema

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Time Series Factor Analysis

Time Series Factor Analysis

Time Series Factor Analysis ^a (*TSFA*) estimates measurement model for time series data with as few assumptions as possible about the dynamic process governing the factors. It estimates parameters and predicts factor scores.

^aGilbert P.D., Meijer E. (2005). Time Series Factor Analysis with an Application to Measuring Money

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Factor Model Estimation

Let y_t be a *M*-vector of observed time series of length *T* and *k* unobserved factors ($k \ll M$) collected in the *K*-vector ξ . The relationship between the observed time series and the factors is assumed to be linear and described by equation:

 $y_t = \alpha_t + B\xi_t + \epsilon_t$

where α_t is an *M*-vector of intercept parameters, *B* is an *Mxk* matrix parameter of loadings, assumed time-invariant, and ϵ is a random *M*-vector of measurement errors.

Parameters are estimated by maximum likelihood.

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Forecasting model

The factors obtained have to be implemented into a forecasting model in order to obtain the price forecasts.

A one-step-ahead forecasting model is specified and estimated as a linear multiple regression model with the factors as predictors¹:

$$y_{t+1} = \beta \hat{\xi}_t + \alpha(L) y_t + \varepsilon_{t+1}$$

The out of the sample forecast for $y_{T+1|T}$ is given by the conditional expectation

$$y_{T+1|T} = \hat{\beta}\hat{\xi}_T + \hat{\alpha}(L)y_T$$

¹Stock J., Watson M.W. (2002). Forecasting Using Principal Components From a Large Number of Predictors

Data analysis

- Random variable: Iberian Day-Ahead Market electricity prices
- Data set: work days from January 1^{rts}, 2007 to March 30th, 2008.
- 3 significant factors, based on eigenvalues of the sample correlation matrix.
- The data has been analyzed using R (version 2.7.0) with the library TSFA available at CRAN (*www.cran.r-project.org*).

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Iberian Day-Ahead Electricity Market price

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

24 Time Series

Introduction Day-Ahead Market pr Optimization Model and Optimal Bid Function Factor model setimat Results and Conclusions Factor Model Results

Factor model results

C. Corchero, F.J. Heredia, M.P. Muñoz EURO 2010 - Lisboa

Day-Ahead Market price Factor model estimation Forecasting model Factor Model Results

Out of sample forecasting results (I/II)

Figure 7: One-step-ahead forecast prices

Introduction Day-Ahead Market pric Optimization Model and Optimal Bid Function Factor models Results and Conclusions Factor Model Results

Out of sample forecasting results (II/II)

	Hour	1	2	3	4	5	6
	R^2	99.1	95.3	97.1	99.8	99.8	97.6
	MSE	0.017	0.004	0.003	0.003	0.002	0.002
	Hour	7	8	9	10	11	12
	R^2	96.0	99.6	99.7	99.8	96.3	98.3
	MSE	0.003	0.008	0.008	0.004	0.003	0.001
	Hour	13	14	15	16	17	18
	R^2	99.9	97.7	99.8	99.9	99.9	97.1
	MSE	0.002	0.002	0.004	0.002	0.002	0.002
	Hour	19	20	21	22	23	24
	R^2	99.7	96.6	94.2	99.7	99.7	95.1
		0.006	0.005	0.007	0.007	0.007	0.005
	IVISE	0.000	0.005	0.007	0.007	0.007	0.005

Table 1: Summary of the forecast models for each hour

C. Corchero, F.J. Heredia, M.P. Muñoz EURO 2010 - Lisboa

Case Study characteristics Results Conclusions

Case Study characteristics

- Real data from the Spanish Market about the generation company and the market prices.
- 9 thermal generation units (6 coal, 8 fue) from a Spanish generation company with daily bidding in the MIBEL

$\overline{P} - \underline{P}(MV)$	160	243	25	0-550	0-260	160			
minon/off (h)							4	4	
[<i>P</i> - <u><i>P</i>]</u> (M	(V)	60-14		160-34	110-1	.57	110-1	57	
min _{on/off} (4		4		

Model implemented and solved with AMPL/CPLEX 11.0.

Case Study characteristics Results Conclusions

Case Study characteristics

- Real data from the Spanish Market about the generation company and the market prices.
- 9 thermal generation units (6 coal, 3 fuel) from a Spanish generation company with daily bidding in the MIBEL

$[\overline{P} - \underline{P}]$ (MW)		16	160-243		250-550		80-260		160-340		30-70	
min _{on/off} (h)		3		3		3		4		4		
	$[\overline{P} - \underline{P}]$ (MW)		60-140		160-340		110-15		57 110-1			
	<i>min_{on/off}</i> (h)		3		3		4		4			

Model implemented and solved with AMPL/CPLEX 11.0.

Case Study characteristics Results Conclusions

Case Study characteristics

- Real data from the Spanish Market about the generation company and the market prices.
- 9 thermal generation units (6 coal, 3 fuel) from a Spanish generation company with daily bidding in the MIBEL

$[\overline{P} - \underline{P}]$ (MW) 16		0-243 2		50-550	80-260		160-340		30-70		
min _{on/off} (h)		3		3		3			4	4	
	[<u>P</u> – <u>P</u>] (M	W)	60-14	10	160-34	0	110-1	.57	110-1	.57	
	<i>min_{on/off}</i> (h)		3		3		4		4		

• Model implemented and solved with AMPL/CPLEX 11.0.

Case Study characteristics Results Conclusions

Results: unit commitment and zero price bid

Case Study characteristics Results Conclusions

Results: procurement of bilateral contracts

C. Corchero, F.J. Heredia, M.P. Muñoz EURO 2010 - Lisboa

Case Study characteristics Results Conclusions

Results: optimal bidding curves

C. Corchero, F.J. Heredia, M.P. Muñoz

EURO 2010 - Lisboa

Case Study characteristics Results Conclusions

Conclusions

- The forecast procedure based on factor models gives suitable results, equivalent to the ones obtained through an ARIMA model.
- The advantage of the procedure presented lies in its simplicity, easy to implement and to present.
- The improved forecasts have been used to successfully generate a set of scenarios to feed the stochastic optimization model.

Conclusions

- It has been built an Optimal Bidding Model for a price-taker generation company operating both in the MIBEL Derivatives and Day-Ahead Electricity Market.
- The model developed gives the producer:
 - Optimal bid for the spot market: quantity at 0€/MWh and the rest of the power capacity at the unit's marginal cost
 - Unit commitment
 - Optimal allocation of the physical futures contracts among the thermal units

following in detail the MIBEL rules.

Case Study characteristics Results Conclusions

Optimal day-ahead bidding strategy with futures and bilateral contracts. Scenario generation by means of factor models

C. Corchero, F.J. Heredia, M.P. Muñoz

Group of Numerical Optimization and Modelling - GNOM Universitat Politècnica de Catalunya - UPC, Spain http://gnom.upc.edu

Project DPI2008-02154, Ministry of Science and Innovation, Spain

July 10, 2010