Generalized Unit Commitment

F. Javier Heredia Dept. d'Estadística i Investigació Operativa Universitat Poltècnica de Catalunya

César Beltran Hautes Études Commerciales. HEC. Univ. de Genève

> APMOD2004 Brunel University London, june 2004

The generalized unit commitment problem

Given a forecasted power demand (1 up to 7 days), for each hour, we have to answer:

- Which thermal units will be generating power?
- How much power will they generate?
- How mach power will generate each reservoir?
- How will we distribute the power through the network?

Furthermore, we whish to generate at minimum cost and with a reliable service.

Formulation and variables

$$(GUC) \begin{cases} \min TC(p) + MC(p) + DC(q) \\ s. t. (p, r_{I}, r_{D}, q, g, d, v, s) \in D_{htd} \\ p \in D_{m} \end{cases}$$

(Heredia and Nabona, 1995)

- p_t^i : power generation of unit t during interval i.
- r_{It}^{i} : incremental spinning reserve of unit t at interval i.
- r_{Dt}^{i} : decremental spinning reserve of unit t at interval i.
 - q_l^i : power flow through line l during interval i.
- g_r^i : hydro-generation of the reservoir r during interval i.
- d_r^i : water discharge of reservoir r at interval i.
- v_r^i : water volume of reservoir r at the end of interval i.
- s_r^i : water spillage of reservoir r at interval i.

Objective function

TC(p) + MC(p) + DC(q)

• Thermal cost:

$$TC(p) := \sum_{t=1}^{n_t} \sum_{i=1}^{n_i} \left(c_{lt} p_t^i + c_{qt} (p_t^i)^2 \right).$$
(5)

• Management cost:

$$MC(p) := \sum_{t=1}^{n_t} \sum_{i=1}^{n_i} MC_t(p_t^{i-1}, p_t^i), \quad (6)$$

$$MC_{t}(p_{t}^{i-1}, p_{t}^{i}) := \begin{cases} C_{ont} + c_{b_{t}} & \text{if } p_{t}^{i-1} = 0 \text{ and } p_{t}^{i} > 0, \\ C_{off_{t}} & \text{if } p_{t}^{i-1} > 0 \text{ and } p_{t}^{i} = 0, \\ c_{b_{t}} & \text{if } p_{t}^{i-1} > 0 \text{ and } p_{t}^{i} > 0, \\ 0 & \text{if } p_{t}^{i-1} = 0 \text{ and } p_{t}^{i} = 0. \end{cases}$$

$$(7)$$

• Distribution cost.

$$DC(q) := \sum_{i=1}^{n_i} \pi^i \left(\sum_{l=1}^{n_l} r_l(q_l^i)^2 \right).$$
 (8)

Hydrothermal distribution domain D_{htd}

 Hydrothermal Transmission Extended (HTTE) network:

$$A_{\rm \tiny HTTE} \cdot x = b_{\rm \tiny HTTE}, \qquad (9)$$

where $x = (p, r_{\scriptscriptstyle I}, r_{\scriptscriptstyle D}, q, d, v, s, g)$.

• Hydroelectric generation:

$$\sum_{r \in \mathcal{R}_j} h_r(d_r^i, v_r^{i-1}, v_r^i, s_r^i) = g_j^i \quad j = 1, \dots, n_g, \ i = 1, \dots, n_i.$$
(10)

• Incremental and decremental spinning reserve:

$$\sum_{t=1}^{n_t} r_{It}^{i} + \sum_{r=1}^{n_r} \left(\bar{g}_r^i - g_r^i \right) \geq R_I^{i} \quad i = 1, \dots, n_i, (11)$$
$$\sum_{t=1}^{n_t} r_{Dt}^{i} + \sum_{r=1}^{n_r} g_r^i \geq R_D^{i} \quad i = 1, \dots, n_i. (12)$$

• Kirchoff voltage law (d.c. model):

$$\sum_{l \in \mathcal{L}_j} x_l \cdot q_l^i = 0 \quad j = 1, \dots, n_o, \ i = 1, \dots, n_i.$$
(13)

• Upper and lower bounds.

Management domain D_m

• Minimum generating power:

$$p_t^i \in \{0\} \cup [\underline{p}_t^i, \overline{p}_t^i]. \tag{14}$$

• Minimum up time:

if
$$p_t^{i-1} = 0$$
 and $p_t^i > 0$, then $p_t^k > 0$
 $(k = i, \dots, i + min_{ont} - 1).$ (15)

• Minimum down time:

if
$$p_t^{i-1} > 0$$
 and $p_t^i = 0$, then $p_t^k = 0$
(16)
 $(k = i, \dots, i + min_{off_t} - 1).$

VD formulation of the GUC problem

• The primal GUC problem (VD version):

$$\begin{array}{ll} \min & GC(p,\widetilde{p},q) \\ & := \frac{1}{2}TC(p) + DC(q) + \frac{1}{2}TC(\widetilde{p}) + MC(\widetilde{p}) \\ \text{s. t.} & (p,q,x) \in \mathcal{D}_{htd}, \quad \widetilde{p} \in \mathcal{D}_m, \quad p = \widetilde{p}. \end{array} \right\}$$

$$(22)$$

• The dual GUC problem (VD version):

$$\max_{\lambda \in R^{n_i \times n_t}} \left\{ \begin{array}{ll} \min & GC(p, \widetilde{p}, q) + \lambda'(p - \widetilde{p}) \\ \text{s. t.} & (p, q, x) \in D_{htd}, \quad \widetilde{p} \in D_m. \end{array} \right\}$$
(23)

• The thermal subproblem for
$$\lambda_n$$

min $\frac{1}{2}TC(\widetilde{p}) + MC(\widetilde{p}) - \lambda'_n \widetilde{p}$
s. t. $\widetilde{p} \in D_m$. (24)

• The hydrothermal subproblem for
$$\lambda_n$$

min $\frac{1}{2}TC(p) + DC(q) + \lambda'_n p$
s. t. $(p, q, x) \in D_{htd}$. (25)

Thermal and hydrothermal subproblems

• The thermal subproblem for λ_n

$$\min \sum_{t=1}^{n_t} \left(\frac{1}{2} T C_t(\widetilde{p}_t) + M C_t(\widetilde{p}_t) - \lambda'_{n,t} \widetilde{p}_t \right)$$
s. t. $\widetilde{p}_t \in D_{m,t}.$
(26)

- n_t quadratic mixed integer programming problems of dimension n_i .
- Solved by forward dynamic programming.
- The hydrothermal subproblem for λ_n

$$\min \left\{ \frac{1}{2}TC(p) + DC(q) + \lambda'_n p \right\}$$

$$s. t. (p, q, x) \in D_{htd}.$$

$$(27)$$

- OPF problem: large-scale quadratic network flow problem with side constraints.
- Solved by the specialized nonlinear network flow code NOXCB (Heredia 1995).

Separating the augmented Lagrangian (Beltran and Heredia, JOTA 2002)

• Primal VD problem:

$$\min f(x) + \widetilde{f}(\widetilde{x}) \text{s. t.} \quad x \in \mathcal{D}, \ \widetilde{x} \in \widetilde{\mathcal{D}}, \\ x - \widetilde{x} = 0.$$
 (32)

• (Augmented) VD dual problem:

$$\max_{\lambda \in \mathbb{R}^{n}} \left\{ \min_{\substack{x \in \mathcal{D} \\ \widetilde{x \in \mathcal{D}}}} f(x) + \widetilde{f}(\widetilde{x}) + \lambda'(x - \widetilde{x}) + \frac{c}{2} \|x - \widetilde{x}\|^{2} \right\}.$$
(33)

• The Auxiliary Problem Principle (APP) (Cohen, 1990), first time used to solve the GUC problem in Batut and Renaud, 1992:

$$\frac{c}{2} \|x - \widetilde{x}\|^2 \quad \rightsquigarrow \quad c(\mathbf{x}_n - \widetilde{\mathbf{x}}_n)'(x - \widetilde{x}) + \frac{b}{2} \|(x, \widetilde{x})' - (\mathbf{x}_n, \widetilde{\mathbf{x}}_n)'\|^2.$$
(34)

• The <u>Block Coordinate Descent</u> (BCD) or Nonlinear Gauss-Seidel method, *(Bertsekas, 1995)*:

$$\min \frac{c}{2} \|x - \widetilde{x}\|^2 \quad \rightsquigarrow \quad \min \frac{c}{2} \|x - \widetilde{\mathbf{x}}_{\mathbf{n}}\|^2, \quad \min \frac{c}{2} \|\mathbf{x}_{\mathbf{n}+1} - \widetilde{x}\|^2.$$
(35)

Used to solve the GUC problem by Beltran and Heredia.

The radar subgradient method (Beltran and Heredia, JOTA 2005)

• Subgradient method:

$$\lambda_{n+1} = \lambda_n + \alpha_n \cdot \frac{h(x_n)}{\|h(x_n)\|},$$

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=0}^{\infty} \alpha_n = +\infty.$$
(41)

• Radar subgradient method (motivation):

• Proposition 5.1 The step length β_n of the radar subgradient method can be computed as follows:

$$\beta_{n,k} := \frac{q_k - q_n + (\lambda_n - \lambda_k)' s_k}{(s_n - s_k)' s_n} \quad k = 0, \dots, n - 1, \quad (42)$$
$$\beta_n := \min\{\beta_{n,k} : \beta_{n,k} > 0 \ k = 0, \dots, n - 1\}. \quad (43)$$

The radar subgradient method (2)

Proposition 5.2 Let us define (k = 0, ..., n - 1):

$$SP_k \equiv y_k(\lambda) = q_k + s'_k(\lambda - \lambda_k)$$
 supporting planes,

- $\lambda_{n+1}(\beta) := \lambda_n + \beta \cdot \frac{s_n}{\|s_n\|}$ line defined by the point λ_n and the subgradient s_n ,
 - $y_k(\beta) := q_k + s'_k(\lambda_{n+1}(\beta) \lambda_k)$ line defined on the supporting plane SP_k when we move along the line $\lambda_{n+1}(\beta)$.

The slope of any supporting plane SP_k (k = 0, ..., n-1) along the line $\lambda_{n+1}(\beta)$ i.e. the slope of $y_k(\beta)$ is

$$m_k := \frac{s'_k s_n}{\|s_n\|} \tag{46}$$

The radar subgradient algorithm

- **Step 1** [Compute the subgradient s_n .]
- **Step 2** [Check the stopping criterion.]
- Step 3 [Compute the radar step length.]
 - Compute $s'_n s_n$
 - For k = 0, ..., n 1
 - \ast Compute $s_k's_n$
 - * If $s'_k s_n > 0$ reject the *unsuitable* plane SP_k . Otherwise compute

$$\beta_{n,k} := \frac{q_k - q_n + (\lambda_n - \lambda_k)' s_k}{s'_n s_n - s'_k s_n} \qquad (47)$$

There are two cases depending on

$$\Omega := \{ \beta_{n,k} : \beta_{n,k} > 0 \ k = 0, \dots, n-1 \}.$$
(48)

- a) If $\Omega \neq \emptyset$, then set $\beta_n := \min \Omega$.
- b) If $\Omega = \emptyset$, then set $\beta_n = \frac{\alpha_n}{\|s_n\|}$, for a prefixed sequence $\{\alpha_n\}$ that guarantees subgradient convergence.
- **Step 4** Compute $\lambda_{n+1} = \lambda_n + \beta_n \cdot s_n$ and back to Step 1.

Radar subgradient vs. subgradient (1)

On average, the subgradient (SG) method performed 4.2 times slower than the radar subgradient (RS) method:

Case	Iterat	ions	CPU Time (seconds)		Opti	mum	
10 20 30 40 50 60 70 80 90 100	SG 141 154 179 189 178 190 198 198 198 201	RS 28 38 31 34 32 36 33 32 42	SG 3.0 6.0 10.7 16.8 21.8 32.2 45.3 59.6 77.9 103.2	RS 0.9 1.4 2.8 3.4 5.2 7.1 10.5 13.1 17.1 27.3	R 3.3 4.3 4.2 4.5 4.5 4.5 4.6 3.8	SG 84.6 170.3 255.6 341.0 426.3 511.7 597.3 682.3 767.6 853.4	RS 84.9 169.8 256.2 340.8 427.1 512.0 597.7 682.6 767.9 854.1
Average	183	33	37.7	8.9	4.2	469.0	469.3

Radar subgradient vs. subgradient (2)

Case	Int.	Res.	Thermal	Cont.	Binary
			units	var.	var.
1	2	0	2	16	4
2	6	2	4	138	24
3	48	2	4	1104	192
4	48	4	7	1920	336
5	48	2	7	1680	336
6	168	4	2	3360	336
7	168	4	7	6720	1176
8	168	4	11	9408	1848

• Description of the UC instances:

• On average, the Subgradient (SG) method performed 2.17 times slower than the Radar Subgradient (RS) method:

Case	Iterat	tions	C	PU Time			st
Cuse				$(> 10^{6})$	PTA		
		1		<u>seconds)</u>		(~ 10	
					_		
	SG	RS	SG	RS	Ratio	SG	RS
1	15	39	6.5	16.0	0.41	0.1	0.1
2	200	30	60.0	9.8	6.12	5.7	5.8
3	40	25	25.7	16.3	1.58	0.9	0.9
4	200	37	169.7	72.4	2.34	6.3	6.3
5	42	18	31.5	15.7	2.01	1.0	1.0
6	88	28	150.0	78.6	1.91	4.4	4.3
7	49	28	632.0	467.0	1.35	2.5	2.5
8	100	40	25810.0	15479.0	1.67	84.8	84.8
Av.	92	31	3360.7	2019.4	2.17	13.2	13.2

Motivation of the radar multiplier (RM) method

• Problem to be solved:

$$\min f(x) + \tilde{f}(\tilde{x}) \text{s. t.} \quad x \in \mathcal{D}, \ \tilde{x} \in \tilde{\mathcal{D}}, \\ x - \tilde{x} = 0.$$
 (49)

- In nonconvex optimization, the Classical Lagrangian Relaxation (CLR) may obtain primal <u>infeasible solutions</u> $(x - \tilde{x} \neq 0)$. By augmenting the Lagrangian, we can obtain a feasible solution $(x - \tilde{x} = 0)$.
- In nonconvex optimization, the Augmented Lagrangian Relaxation (ALR) may obtain a local optimizer.
 - The dual optimum obtained by the CLR method can be used to asses the ALR solution.
 - We propose a heuristic procedure to update the penalty parameter c_n for the augmented Lagrangian, which produces high quality local optimizers.
- We use the CLR combined with the ALR (RM method). In the first phase the CLR computes a dual cost bound and in the second phase the ALR computes a high quality local optimizer.

The radar multiplier algorithm

* [Objectives.] (1) To obtain a local optimizer of the following problem:

$$\min f(x) + \tilde{f}(\tilde{x}) \text{s. t.} \quad x \in \mathcal{D}, \ \tilde{x} \in \tilde{\mathcal{D}}, \\ x - \tilde{x} = 0,$$
 (50)

and (2) to measure the optimizer quality through a dual lower bound.

Phase 1 [Compute a dual lower bound f^* .]

Using the radar subgradient method solve the dual of problem (50),

$$\max_{\lambda \in R^{n}} \left\{ \min_{\substack{x \in \mathcal{D} \\ \widetilde{x} \in \widetilde{\mathcal{D}}}} f(x) + \widetilde{f}(\widetilde{x}) + \lambda'(x - \widetilde{x}) \right\}.$$
(51)

Phase 2 [Compute the local optimizer (x^*, \tilde{x}^*) .] Using the <u>multiplier</u> method (block coordinate descent version) solve the augmented dual of problem (50),

$$\max_{\lambda \in R^{n}} \left\{ \min_{\substack{x \in \mathcal{D} \\ \widetilde{x \in \mathcal{D}}}} f(x) + \widetilde{f}(\widetilde{x}) + \lambda'(x - \widetilde{x}) + \frac{c}{2} ||x - \widetilde{x}||^{2} \right\}.$$
(52)

Radar multiplier vs. multiplier

Case	Number	Number	Thermal	Cont.	Binary
	interv.	reserv.	units	variables	variables
1 2 3 4 5 6 7 8	2 6 48 48 48 168 168 168	0 2 2 4 2 4 4 4 4	2 4 4 7 7 2 7 11	16 138 1104 1920 1680 3360 6720 9408	4 24 192 336 336 336 1176 1848

• Description of the UC instances:

• Unlike the Multiplier (M) method, the Radar Multiplier (RM) method computes a dual cost bound:

Case		CPU tim	e	Optim	al cost	Cost
		(seconds)	(×10 ⁶	PTA)	bound
1 2 3 4 5 6 7	M 5 28 29 63 34 71 553	RM 16 31 45 98 42 120 627	Ratio 2.8 1.1 1.5 1.5 1.2 1.6 1.1	M 0.004 7.015 0.991 7.134 1.028 4.471 3.223	RM 0.004 6.776 0.990 6.358 1.028 4.467 2.653	RM 0.004 5.826 0.961 6.324 1.004 4.330 2.530
8	699	15836	22.6	89.122	85.896	84.865
A v.	185	2102	4.2	14.122	13.522	13.231

Radar multiplier vs. radar subgradient

• Unlike the Radar Subgradient (RS) method, the Radar Multiplier (RM) method computed feasible solutions $(x - \tilde{x} \approx 0)$:

Case	C	CPU time	j	Infe	asibility
	(seconds)		$ x - \widetilde{x} $	\parallel_{∞} (MW)
	RS	RM	Ratio	RS	RM
1	16	16	1.01	0	0.0065
2	9	31	3.19	230	0.0004
3	16	45	2.76	360	0.0072
4	72	98	1.36	1180	0.0032
5	15	42	2.69	470	0.0077
6	78	120	1.53	1390	0.0084
7	467	627	1.34	530	0.0067
8	15479	16019	1.03	3350	0.0040
Av.	2019	2124	1.86	939	0.0055

The MACH code

- **Phase 1** [Compute a dual lower bound f^* .]
 - Step 1.1 [Hydrothermal distribution subproblem.] (NOXCB, nonlinear network flow solver).

$$\min f(x) + \lambda'_n x.$$
$$x \in \mathcal{D}$$

Step 1.2 [Thermal subproblem.] (Dynamic programming).

$$\min \ \widetilde{f}(\widetilde{x}) - \lambda'_n \widetilde{x}.$$
$$x \in \widetilde{\mathcal{D}}$$

- Step 1.3 [Dual variable updating.] (Radar subgradient). If the stopping criterion is not fulfilled, back to step 1.1.
- **Phase 2** [Compute (x^*, \tilde{x}^*) a local LPF optimizer.]
 - Step 2.1 [Hydrothermal distribution subproblem.] (NOXCB, nonlinear network flow solver).

min
$$f(x) + \lambda'_n x + \frac{c_n}{2} ||x - \widetilde{x}_n||^2$$
.
 $x \in \mathcal{D}$

Step 2.2 [Thermal subproblem.] (Dynamic programming).

$$\min_{x \in \widetilde{\mathcal{D}}} \widetilde{f}(\widetilde{x}) - \lambda'_n \widetilde{x} + \frac{c_n}{2} ||x_{n+1} - \widetilde{x}||^2.$$

Step 2.3 [Dual variable updating.] (Multiplier method). If the stopping criterion is not fulfilled, back to step 2.1.

Testing MACH

• Description of the GUC instances:

Case	Int.	Res.	Units	Buses	Lines	Cont.	Bin.
1 2	2 6	0 2	2 4	3 3 3	3 6	28 192	4 24
3	24	20	70	6	10	8568	1680
*4	48	10	70	6	10	15696	3360
5	48	0	27	6	21	6528	1296
6	48	2	4	3	6	1536	192
7	48	4	4	2	3	1632	192
8	48	2	7	2	3	1920	336

• Computational results:

Case	Itera	ations	Time	Dual	Opt. cost	Duality
			(sec.)	bound	(×10 ⁶ PTA)	gap (%)
	-					
		11				
1	41	0	19	0.005	0.005	0.00
2	31	280	134	9.038	10.006	10.71
3	32	64	3604	5.522	5.590	1.23
*4	32	84	6282	12.183	12.397	1.76
5	32	167	3076	8.713	8.890	2.03
6	17	185	161	1.396	1.404	0.57
7	34	9	163	7.181	7.745	7.85
8	17	77	67	1.193	1.232	3.27
Av.	30	108	1688	5.654	5.909	3.43

A real-life large-scale GUC instance (1)

Case	Int.	Res.	Units	Buses	Lines	Cont.	Bin.
*4	48	10	70	6	10	15696	3360

• Evolution of the dual function:

• Evolution of the infeasibility:

Iter.	Time (h.)	Dual bound	Opt. cost (×10 ⁶ PTA)	Duality gap (%)	$\ x^* - \widetilde{x}^*\ _\infty$ (MW)
32+84	1.75	12.183	12.397	1.76	0.86

A real-life large-scale GUC instance (2)

UNIT COMMITMENT

A real-life large-scale GUC instance (3)

OPTIMAL HYDROTHERMAL DISPATCHING

