
Nonlinear Network Flows with Side Constraints 1LARGE SCALE NONLINEAR NETWORK OPTIMIZATIONWITH LINEAR SIDE CONSTRAINTSF. Javier Heredia & Narc��s NabonaStatistics and Operations Research DepartmentUniversitat Polit�ecnica de CatalunyaPau Gargallo 5, 08028-Barcelonae-mail : heredia@eio.upc.esABSTRACTThis paper describes the work done by the authors on the design of an specialized algorithm forsolving the nonlinear network
ow problem with linear side constraints. The algorithm has beendesigned as an active set method for large scale problems employing the superbasic variable setstrategy of Murtagh & Saunders . Within the general framework of the active set method, thespecial structure of the network
ow problem is exploited using an extension of the Kenning-ton & Helgason algorithm for linear network
ow problems with side constraints.1. . Introduction1.1. . Formulation of the problemThe problem to solve is the minimization of a nonlinear objective function (a costfunction) whose variables are de values of the
ows passing trough the capacitated arcsof an oriented network. We expect also this
ows to satisfy a set of linear inequalityconstraints, called the side constrains . The mathematical expression of this problem is: min f(x) (1)subject to : Ax = r (2)Tx � b (3)l � x � u (4)we will refer to this problem as the NNS problem. In this formulation we have that :(1) is a nonlinear function f :Rn ! R. f(x) is suposed to be twice continuouslydi�erenciable on the feasible set de�ned by the constraints (2) to (4). The variablesx 2 Rn represent the values of the arc
ows in the network.(2) represents the Network Equations. Matrix A 2 Rm�n is the node-arc incidencematrix and r 2 Rm is the supply/demand vector. This m equality constraints

Nonlinear Network Flows with Side Constraints 2modelize the conservation of
ows when passing through the nodes of the orientednetwork associated with A.(3) is a set of t side constrains . We supose that t < m.(4) l; u 2 Rn are the upper and lower bounds assigned to the
ows in each arc of theoriented network.1.2. . The Nonlinear Network Flow problemThe nonlinear network
ow problem consists on the same problem expressed byequations (1), eliminating the side constrains . Many researchers have focused theirattention on this topic. The usual way to tackle the problem is to combine a datastructure of the type proposed by Bradley Brown and Graves in [2] with the variant ofthe active set method with superbasic variable introduced by Murtagh & Saunders in[7] It is well known that in the network
ow problem the set of basic arcs form a rootedspanning tree . All the operations involving the basic matrix B and its inverse B�1can be performed e�ciently working with a reduced set of vectors that describe thespanning tree . The actualization of B�1 due to a change in the basic set of variablescan be also easily carried out through the modi�cation of the vectors describing thespanning tree (it must be noted that no factorizations of B are needed).1.3. The Linear Network Flow Problem with Side ConstraintsIn this section we introduce the basic terminology, notation and strategy that willallow the side constrains to be treated within the general network
ow problem . Wefollow basically the exposition presented by Kennington & Helgason in [6].Let us focus our attention on the constraints of the NNS problem. We make thefollowing assumptions about NNS :1) the graph the oriented network arises from is connected.2) matrix S has full row rank.3) total supply equals total demand4) the lower bounds are null (l = (0)).Let �A be the constraint matrix of NNS :�A = 0@ AT 1ASince the matrix A has rank m � 1 In order to have a full row rank constraintmatrix it is necessary to introduce a root arc connected to an arbitrary node, say nodel. The new expression of matrix �A is :

Nonlinear Network Flows with Side Constraints 3�A = �A elT 0 �The next three propositions are essential for the characterization of the basis of �A.See [6] for its proof :Proposition 1.: Every basis for �A may be placed in the following form :�B = mz}|{ tz}|{m� B Ct � D F ! (5)where B is a submatrix of (A el) and det (B) 6= 0Proposition 2.: If �B is invertible and B is invertible , then F �DB�1C is invertible.Proposition 3.: If �B is invertible and B is invertible,then :�B�1 = �B�1 +B�1CQ�1DB�1 �B�1CQ�1�Q�1DB�1 Q�1 �where matrix Q, called the working basis ,is Q = F �DB�1C.Proposition 3 is the key to the e�cient solution of systems �By = z and y0 �B = z0.Consider the vectors y and z partitioned in the following way :y = �m� y1t � y2� ; z = �m� z1t � z2�then, the solution of the system �By = z can be e�ciently calculated using the specialpartition of the basis �B :y =0@ y1y2 1A = �B�10@ z1z2 1A = �B�1 �z1 + CQ�1DB�1z1 � CQ�1z2�Q�1 �z2 �DB�1z1� � (6)introducing the auxiliary vectors
1 and
2 the operations stated in (6) can be done inthe following way :Procedure P1:1)
1 N:E: � B
1 = z12)
2 = z1 + CQ�1 �D
1 � z2�3) y1 N:E: � By1 =
14) y2 = Q�1 �z2 �D
1�

Nonlinear Network Flows with Side Constraints 4where N:E: � denotes a system solved via the spanning tree data structure.The procedure for the special case z1 = (0) is of special interest for later develope-mentsProcedure P2:1) y2 = Q�1z22)
1 = �Cy23) y1 N:E: � By1 =
1Similarly, the partition of �B induces a partition on the vectors y and z when solvingthe system y0 �B = z0 :y0 = (y10 y20) = (z10 z20) �B�1 == ��z10 + z10B�1CQ�1D � z20Q�1D�B�1 �z20 � z10B�1C�Q�1 � (7)as before, introducing the auxiliary vectors
1 and
2 the operations stated in (7) canbe performed in the four following steps :Procedure P3:1)
1 N:E: �
01B = z102)
02 = z10 + �
01C � z20�Q�1D3) y1 N:E: � y10B =
024) y20 = �z20 �
01C�Q�1Proceeding in this way the original problem of solving systems �By = z and y0 �B = z0,each one of dimensionm+ t, has been reduced to solving systems of equations involvingmatrix B, wich can be computed e�ciently exploiting the data structure of the spanningtree , and matrix Q, wich is of dimension t.2. Computation of a feasible solutionA feasible solution of NNS can be found solving two reduced problems, called here\phase 0 " and \phase 1 ".

Nonlinear Network Flows with Side Constraints 52.1 Phase 0.During phase 0 a \pseudo{feasible " solution x̂, that consists of a feasible solutionto the NNS problem without side constraints, is found. This is carried out by �ndingthe a feasible initial solution for problem :min cxsubject to : Ax = r (8)0 � x � uwith an arbitrary vector of costs coe�cients c 2 Rn.2.2 Phase 1.The solution of (8), x̂, is feasible for network constraints but, in general, will violatesome of the side constraints. Let I denote the set of indeces for the side constrainsviolated at x̂: I = �i : T ix̂ > bi	Inequalities (3) can be transformed into equalities by adding basic slacks in the sideconstrains not violated at x̂ (fi > 0; i 62 I) and substracting arti�cial variables (wichrepresent the infeasibilities) from the remaining (� violated)side constrains (ei > 0; i 2I). Slacks of violated side constrains are considered non basic (fi = 0; i 2 I) :T ix̂+ fi = bi i 62 IT ix̂� ei = bi i 2 I� T x̂+ Îẑ = b (9)where Î stands for a modi�ed identity matrix de�ned as :Î =0@ d1 0. . .0 dt1A with� di = +1 if i 62 Idi = �1 if i 2 Iand variables ẑ of (9) being : ẑi = � fi if i 62 Iei if i 2 I (10)Once slacks and arti�cial variables have been introduced, the following linear prob-lem can be posed : min {̂zsubject to : Ax = rTx + Îz = b (11)l � x � u z � 0

Nonlinear Network Flows with Side Constraints 6The vector of cost coe�cients {̂ is de�ned as :{̂ = � {̂j = 0 if j 62 I{̂j = 1 if j 2 Ithat is, the objective function is the sum of infeasibilities, given that {̂z = Pi2I zi. Afeasible initial point (x̂ ẑ)0 to problem (11) is given by the pseudo{feasible solutionx̂ and the vector ẑ formed as show in (10). Problem (11) is solved through a variationof the Kennington & Helgason algorithm for linear
ows with linear side constraints. Ifthe method gets to eliminate all the infeasibilities (� {̂z = 0), the optimal solution to(11) will be feasible for NNS.3. Structure of the active set constraint matrix3.1. Partition of the constraints matrixConsider the NNS problem introduced in subsection 1.1 with the same assumptionsas in subsection 1.3 plus the inclusion of the slacks z for the side constrains and theroot arc a : min f(x)subj. to : Ax + ela = r (12)Tx + Iz = b0 � x � u ; z � 0 ; 0 � a � 0From now on , NNS will denote problem (12).Consider the constraints matrix of NNS :�A = �A el 0T 0 I� (13)partitioned as usual into a basic matrix �B, a superbasicmatrix �S and a non basicmatrix�N : �A = (�B �S �N) (14)Let y = (x z)0 , y 2 Rn+t, be a feasible point for the NNS . In this notation weconsider that the subindex of slack variables zi denotes the number of the side constrainsassociated with the slack, so zi � yn+i ; i = 1; : : : ; t.Consider the usual partition of the variables indices of y induced by (14) :f xz }| {1; : : : ; n; zz }| {(n + 1); : : : ; (n + t)g = �B [�S [�N (15)

Nonlinear Network Flows with Side Constraints 73.2. Internal structure of matrices �B, �S and �NIt is important to establish the inner structure of the three matrix �B, �S and �N .We introduced the notation MSUP to indicate a new matrix formed with the columnsof M associated to variables yi with i 2 SUP. Matrix ESUP denotes a matrix of trows whose columns are the unitary vectors ei of Rt associated to the slacks zi with(n+ i) 2 SUP.Matrix �B in (14) has the same internal partition shown in (5). The basic columnsthat belong to B are called the key columns , and those of C the nonkey columns .Extrapolating this internal structure to �B, two new sets on indices could be de�ned as�B = B [C (16)and the internal structure of �B is :�B = B CD F = m tAB AC 0 mTB T CEC t (17)Matrices �S and �N are similar :�S = sA �S 0 mT �SE �S t (18)
�N = (n�m� s)A �N 0 mT �N E �N t (19)And, �nally, the matrix of n+ t� s active constraints looks like :

Nonlinear Network Flows with Side Constraints 8
Â = AB AC 0 A �S 0 A �N 0TB T CECT �SE �S T �N E �N0 I (20)

The special structure of these matrices will be exploited in the following section inorder to perform e�ciently the step of the algorithm proposed. It will be particularlyuseful in the management of matrix Z, which expands the null{space of the activeconstraints Â. The null{space matrix Z has been taken as the usual variable reductionmatrix : Z = 0BBB@� �B�1 �SI0 1CCCA (21)The treatement of Z in the NNS problem is more di�cult than in the pure network
ow problem , where �B = B and �S = AB. It must be noticed, however , that matrixZ is never computed explicitily in the algorithm developped. The algorithm uses onlythe internal structure of �B and �S shown in (12) and (13) to perform operations with Zand Z 04. The algorithm.In order to de�ne the NNS problem, some information must be given to the al-gorithm at the beginning of the optimization process, and kept accessible during thewhole process. This information is :

Nonlinear Network Flows with Side Constraints 91) The objective function f(x) and its gradient g(x) = rf(x). The Hessian isnot really needed.2) The vectors containing the description of the network.3) The (probably sparse) representation of the side constrains matrix T .4) The vector of arc capacities u.Having this information stored in core, suppose that our algorithm has guided theoptimization process to the vector y = (y �B y �S y �N) , feasible for NNS. In sucha point we assume the next items to be available :5) Some internal representation of the set of indices �B, �S and �N .6) The vectors describing the spanning tree .7) The inverse of the working basis , stored in some e�cient way.8) Depending on the speci�c implementation of the algorithm, it would benecessary to keep in memory some approximation to the reduced Hessian .4.1. Computation of the Lagrange multipliersLagrange multipliers are de�ned as the solution to the system arisinig from the �rstorder necessary condition of minimum :Â0� = g ; 0@ �B0 0�S0 0�N 0 I1A0@ �� 1A = 0BBB@ g �Bg �Sg �N 1CCCA (22)Vector � is intensivily used during each iteration, whereas � is only needed whenthe active set of constraints change. Both can be easily computed using the structureof Â studied before. The Lagrange multipliers � are calculated from the system :�0 = g �B0 �B�1 ; (�10 �20) = (gB 0 gC 0) �B�1 (23)which can be solve e�ciently via procedure P3. �1 represents the Lagrange multipliersassociated with the network constraints and �2 is linked to the side constrains .The expression of the Lagrange multipliers � taking into account the partition ofg �N , �N and � is :� =0@ �1�2 1A =0@ g �Nx0 1A��A �N0 T �N00 E �N0 �0@ �1�2 1A ==0@ g �Nx0 1A��A �N0�1 + T �N0�2E �N0�2 � (24)

Nonlinear Network Flows with Side Constraints 10where g �Nx stands for the components of g �N related with the true variables x.The computational procedure used to evaluate � is :Procedure P4:1) For 8i 2 �S do :1.1) If i > n (slacks) : �i := ��i1.2) If i � n (arcs) :1.2.1) Find \from node" k and \to node" l for arc i.1.2.2)
1 := �1k � �2l1.2.3)
2 := T �N00i�21.2.4) �i := g �Ni �
1 �
2Notice that only one matrix-vector product T �N0�2 of reduced dimension(n � m � s) � tmust be computed explicitily in step 1.2.3) .4.2. Computation of the reduced gradientOnce � has been found, the reduced gradient gz = Z 0g ; gz 2 Rs can be obtainedfrom the expression :gz = �� � �B�1 �S�0 I 0 �0BBB@ g �Bg �Sg �N 1CCCA =0@ g �Sx0 1A��A �S0�1 + T �S0�1E �S0�2 � (25)It must be noticed that � and gz are found via the same procedure.Once gz is computed, the next step is to �nd a direction of search along which theobjective function decreases and feasibility is preserved.4.3. Search directionsSupose that vector pz is an aproximation to the solution of the unconstrainedproblem : min 12p0zZ 0HZpz + g0Zpz (26)which represents the minimization of a quadratic local aproximation to the projec-tion of function f(x) over the null{space of Â. Matrix Hz = Z 0HZ ; Hz 2 Rs�s is the

Nonlinear Network Flows with Side Constraints 11reduced Hessian and vector gz = Z 0g ; gz 2 Rs is the reduced gradient . pz is obtainedsolving the system : Z 0HZpz = �Z 0g (27)Once pz has been found, a feasible direction of movement p = (p �B p �S p �N)can be obtained from the relation :p = Zpz =0BBB@� �B�1 �Spzpz0 1CCCA (28)The algorithmic procedure to compute (28) is :Procedure P5:1) p �N = (0)2) p �S = pz3) For 8i 2 �S do :3.1) If i � n (arcs) :
 P1 � �B0@
1
2 1A = 0@AiTi 1AIf i > n (slacks) :
 P2 � �B0@
1
2 1A = 0@ 0ei�n1A3.2) 0@ pBpC 1A :=0@ pBpC 1A� pzi0@
1
2 1ATwo di�erent alternative techniques for solving system (27) have been implemented: 1) A truncated Newton method (TNM).2) A quasi{Newton method (QNM).The truncated{Newton method follows the strategy exposed in [4]. It is based onthe solution of system (27) by a conjugated gradient (CG) method.With regards to the use of the second derivatives, the CG algorithm only needsthe aproximation to the Hessian H to compute the products Z 0HZd, where the vectorsd are the directions generated by the CG method in each iteration. This products arecomputed actually by the procedure :

Nonlinear Network Flows with Side Constraints 12Procedure P6:1)
1 P5 � Zd2)
2 = g(x + �
1)� g(x)� � H
13)
2 P4 � Z 0
1in step 2) of P6 a forward �nite di�erence technique is applied to approximate theproduct H
1. Proceeding in this way it is neither necessary to compute, nor to store,any approximation to Hessian matrix.The quasi{Newton version follows the metodology exposed in [7]. The Choleskyfactors R of an approximation to the reduced Hessian (R0R � Hz) must be stored,updated and retriangularized whenever a change in the matrix Hz occurs. Matrix Hzis modi�ed when :1) �B or �S change (an exchange between B and C doesn't requires R to beupdate).2) A nonzero step is performed in the real variables.In the �rst case, after the addition or removal of certain number of rows/columnsof R, the factor R is retriangularized via succesive Givens rotations. When a change inthe variables is made , factors R0R are updated with a complementary DFP formula.The two alternatives techniques implemented have the common features of :1) Only an approximation to the solution of (27) is found.2) No second derivatives are used.and di�er in that :1) Memory requirements : TNM has not extra memory requirements, whileQNM must keep stored the factors of the aproximation to the reduced Hes-sian.2) Extra gradient evaluations : QNM only needs one extra evaluation of g(x)for the updating of the reduced Hessian aproximation when the active setis change. On the contrary, TNM needs, in the implementation developped,one evaluation per CG{iteration (P6 , step 2)). So, if problem NNS has acostly objective function, QNM should be preferable to TNM.3) Computational e�ort : Leaving aside the evaluation of g(x), TNM needs onecall of procedures P3, P4 and P5 at each CG{iteration. QNM must updateand retriangularize the upper matrix R.

Nonlinear Network Flows with Side Constraints 134.4. LinesearchThe solution to (27) provides a descent direction that :1) Preserves feasibility for the set of active constraints 8� > 02) Violates the simple bound of a basic or superbasic variable for certain � >�� > 0Therefore, if � �B and � �S denote the maximal step length allowed by variables in�B and �S, respectively, a limited linesearch with 0 � � � �� = minf� �B; � �Sg must beexecuted in order to the superbasic and basic bounds not to be violated by the iteratedpoint. In fact, we must solve a nonlinear problem with simple constraints.Bertsekas in [1] introduces a method to solve this kind of problems where morethan one variable can be set to one of its bound simultaneously. This is a very usefulproperty for NNS problem, because it introduces the posibility of eliminating more thanone superbasic variable in each reduced gradient iteration.We have follow the scheeme presented by Toint & Tuyttens in [8] for this speciallinesearch. We will refer to this linesearch as LSBE. In particular, the actual algorithmmakes use of the quasi{active bounds strategy for �nding the search direction p. In thisstrategy the algorithm for �nding the descent direction p acts only over the componentsof p associated with superbasic variables without quasi{active bounds, and takes for theother components the steepest descent direction.When a Bertsekas step (that means, �� > �� � � �S) cannot be performed, a cubic�t is made between � = 0 and � = �� using f(x),g(x) ,f(x + ��p) and g(x+ ��p). If thecubic �t fails, line search of the type �k+1 = �j�k ; j = 0; 1; : : : ; 0 � � � 1 is used.A cubic �t is also used when y �S � z �S , that is, the only superbasic variable existing isa slack, and when �S = ;. We will refer to this linesearch as LSAC.Both subroutines, LSBE and LSAC provide, not only and estimation of ��, butalso the new values of y, f(x) and g(x).5. Update of Q�1 and RMatrices Q�1 and R are stored, updated and, eventually, recomputed, during theoptimization process. We deal in this section with those processes, commenting onlythe most peculiar characteristics of the algorithm implemented.5.1. Working basis inverse updateKennington & Helgason present in [6] the way to update matrixQ�1 after a simplexpivot in the linear network case. Here are presented only the results. For a more detailedexplanation, see [6] pag. 172{174.

Nonlinear Network Flows with Side Constraints 14Consider that, after a pivot, the relation between the old and the new basic matrixis : �B�1i+1 = E �B�1i (29)with : E = mz}|{ tz}|{m� E1 E2t � E3 E4 ! (30)where E (eta) may be either an elementary column matrix or a permutation matrix.The following cases can be distinguish :1) The nonkey column p 2 C leaves the basis.1.1) If the entering variable q is to be placed in the same position left by p :Q�1i+1 = E4Q�1i (UIQ1)being E the elementary column matrix that updates �B�1i .1.2) If the entering variable q is to be placed in the position of variable k 6= p :Q�1i+1 = Q�1i Ppk (UIQ2)being Ppk an elementary permutation matrix. Go to case 1.1)2) The key column p 2 �B leaves the basis.2.1) If there is an arc q 2 C forming cycle with the leaving arc p, exchange columnsp and q of �B : Q�1i+1 = E5Q�1i (UIQ3)being E5 the elementary row matrix :E5 = 0BBB@ I 0 0: : : : : : : : : : : : : : : :�e0pB�1C: : : : : : : : : : : : : : : :0 0 I1CCCAand go to case 1).2.2) If doesn't exists any arc q 2 C forming cicle with the leaving arc p :Q�1i+1 = Q�1i (UIQ4)

Nonlinear Network Flows with Side Constraints 15Kennington & Helgason didn't consider case 1 divided into subcases but the algo-rithm presented needs the new update UIQ2 because it usually change the order of twononkey columns when the entering variable q is a slack.The inverse of the working basis is found once at the beginning of the �rst iterationand updated when a change in the set �B occurs. Reinversion takes place after a certainnumber of updatings. The Q�1 is stored as an eta �le with a set of complementaryvectors. This eta �le holds the coe�cients of the eta columns of the last reinversion andthe information of all the updatings made since the last reinversion. This informationis either coe�cients of column/row eta (UIQ1 and UIQ3) or two numbers denoting anonkey column permutation (UIQ2). The reinversion routines implements the row andcolumn reordering system proposed by Hellerman & Rarick in [5] and partial pivotingto ensure numerical stability.5.2. Updating the approximation to the factors of the HessianThe management of factors R follows the procedure exposed byMurtagh & Saunders in [7]. We only comment some peculiarities related to the specialNNS problem.Four di�erents updates of factor R can take place :1) UR1 : Addition of one superbasic variable. The update formula is :~R0 ~R = �R0R Z 0vv0Z z0v �In order to update R it is necessary to perform a set of matrix operations thatcan be computed e�ciently using the procedures exposed in early sections. Thosematrix operations and its related procedures are :a) z = �B�1 �Nq found via P1, if q � n (arc) and via P2 if q > n (slack).b) Aproximation of vector v = Hz by �nite di�erences. Equivalent to step 2) ofprocedure P6.c) r = Z 0v found using procedure P4.2) UR2 : Quasi{Newton updates. Takes into account a change in the superbasicvariables. The complementary DFP formula has been used.3) UR3 : Change of matrix �B. In this case, the basic variable p 2 �B is exchange withthe superbasic variable q 2 �S. The modi�cation of R is :~R0 ~R = (I+ ve0q)R0R(I+ eqv0)

Nonlinear Network Flows with Side Constraints 16In order to �nd vector v two matrix operations must be done :a) ��p0 = e0p �B�1. This operation is computed by P3. If p 2 B, P3 ,must be appliedsetting z1 = ep and z2 = (0) otherwise, if p 2 C, the correct assignment isz1 = (0) and z2 = ep.b) w = �S0 ��p = �A �S0 ��p1 + T �S0 ��p2E �S0 ��p2 � . Vector w can be evaluated with a proce-dure similar to P4.It must be stressed that the update of gz and �, wich is made using vectors ��p andw, takes also advantage of this special computation.3) UR4 : Removal of a superbasic variable q 2 �S. The same update than in thegeneral case.6. Statement of the algorithmThe structure of the proposed algorithm is outlined in this section. We considerthat phase 0 and phase 1 have been performed, providing a feasible vector y. The setsC and �S with a subindex x or z denote the subset of indices associated with arcs orslacks.[0] Let y = (y �B y �N) (initially �S = ;).[0.1] Compute f(x) and g(x).[0.2] Compute 0@ �1�2 1A0 P3 � g �B0 �B�1.[0.3] Compute Q�10 .[1] If kgzk � TGR goto [3].[2] Change of the active set.[2.1] Compute �2 through �2 = �E �N0�2.If the slack yq (� zq�n) can leave �N , goto [2.4][2.2] Compute �1 through procedure P4.If the arc yq can leave �N , goto [2.4][2.3] Go to [11][2.4] Updates�N := �Nnq.

Nonlinear Network Flows with Side Constraints 17If q � n, �Sx := �Sx [q.If q > n , �Sz := �Sz [q.Update � and gz.If QNM used, update UR1.[3] Computing a feasible descent direction.[3.1] Find �SQA the set of superbasic variables with quasi{active bounds.[3.2] Set pQAz := �gQAz .[3.3] Find pzq ; q 62 �SQA through TNM or QNM.[3.4] Find p P5 � p = Zpz.[4] Linesearch[4.1] Find � �B and � �S , the maximal step lenght for basic and superbasicvariables. If �� = minf� �B; � �Sg = 0, set �� = ��. Goto [6].[4.2] If �S � �Sz , �nd ��,~y = y + ��p, f(~y) and g(~y) via LSAC.If �S 6� �Sz , �nd ��,~y = y + ��p, f(~y) and g(~y) via LSBE.[4.3] Updates for the variables changeCompute gz P4 � Z 0g.Compute � P3 � g �B0 �B�1.If QNM used, perform update UR2.[5] If �� < �� , goto [8][6] �� = � �B : basis change, variable p leave �B[6.1] If �Sz 6= ;, select, if possible, slack q to become basic. Otherwise, selecta suitable superbasic arc q 2 �Sx to become basic[6.2] If �� = �B :[6.2.1] If q 2 �Sz then :Select arc k 2 Cx to interchange with p 2 BB := Bnp [kC := Cnk [pUpdate Q�1 using UIQ3.Interchange q 2 �Sz with p 2 C�Sz := ;, �Sx := �Sx [pC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7][6.2.2] If q 2 �Sx then :If p forms cycle with q

Nonlinear Network Flows with Side Constraints 18If 9k 2 Cx forming cycle with p, do :B := Bnp [kC := Cnk [pUpdate Q�1 using UIQ3.C := Cnp [q�S := �Snq [pUpdate Q�1 using UIQ1.Goto [7]If 6 9k 2 Cx forming cycle with p, do:B := Bnp [q�S := �Snq [pUpdate Q�1 using UIQ5.Goto [7]If p doesn't forms cycle with qSelect arc k 2 Cx to interchange with p 2 B do:B := Bnp [kC := Cnk [pUpdate Q�1 using UIQ3.C := Cnp [q�S := �Snq [pUpdate Q�1 using UIQ1.Goto [7][6.3] If �� = �Cx :[6.3.1] If q 2 �Sz then :Interchange q 2 �Sz with p 2 C�Sz := ;, �Sx := �Sx [pC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7][6.3.2] If q 2 �Sx then :Interchange q 2 �Sx with p 2 Cx�Sx := �Sxnq [pCx := Cxnp [pUpdate Q�1 using UIQ1.Goto [7][6.4] If �� = �Cz :[6.4.1] If q 2 �Sz then :

Nonlinear Network Flows with Side Constraints 19Interchange q 2 �Sz with p 2 Cz�Sz := �Sznq [pCz := Cznp [qUpdate Q�1 using UIQ1.Goto [7].[6.4.2] If q 2 �Sx then :Interchange q 2 �Sx with p 2 Cz�Sz := �Sz [q�Sx := �SxnqC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7].[7] Update �S[7.1] Remove from �S all the superbasic variables set to one of its bounds byLSBE.[7.2] If QNM used, apply UR4 as many times as superbasic variables deleted.[8] If �Sz 6= ; do :[8.1] Select a suitable p 2 C to interchange with q.[8.2] UpdatesC := Cnp [q.�S := �Snq [p.gz,� as usual, using a) and b) of UR3.If QNM used, perform UR3.[9] Reinversion of Q Performed each NRI updatings of Q�1[10] Goto [1][11] STOP : optimal solution found.this is the basic structure of the algorithm developed. However, some remarks mustbe made.6.3. In
uence of a basic columns reordering on UR3At steps [6.2.1] , [6.3.1] and [6.4.2] a two{column permutation can be applied. Ithas been explained above how this internal interchange a�ects the update of the workingbasis. It can be proved that a basic column permutation doesn't a�ect the standardupdate UR3, so, no special update of R must be performed in this cases.6.4. Management of the slacksThe algorithm described dispenses an special treatement to the slacks. First, instep [2], when a nonbasic variable to leave its active bound is being looked for, slacks

Nonlinear Network Flows with Side Constraints 20are scanned before than arcs. If a slack is found to be a good candidate, then it becomessuperbasic, but only temporarily, because it is interchanged with a nonkey arc at theend of the present iteration (step [8]). This strategy tries to improve the stability of thesolution of the systems of equations with coe�cient matrix Q introducing in it as manyidentity columns as possible.6.5. Trial step pz = �eqThere is an alternative way to manage the variable q which has been relaxed fromone of its bounds in step [2] and added to �S. It consists in �xing the values of theremaining superbasic variables and performing a null{space step of the form :pz =0BBBB@ pz1...pzspzq1CCCCA = 0BBB@ 0�11CCCA (31)with pzq = +1 if the new superbasic variable has been relaxed from its lower bound andpzq = �1 otherwise. It can be proved easily that this step is a descent direction. Thenew component of the reduced gradient is equal to the Lagrange multiplier associatedwith variable q : gzq = ��q (32)testing the descent condition : g0zpz = ��qpzq < 0 (33)the last inequality holds if we have selected q properly.Once computed p �B from pz a linesearch LSCF is made. If the result of linesearch isthe maximal step length, then superbasic variable s+1 is removed from �S and added to�B, so, the number of superbasic variables has not increased. If such a situation happens,the iteration performed is nothing di�erent than a simplex pivot between superbasic s+1and the basic variable associated with the maximal step length.If linesearch provides an �� < ��, then if the temporary superbasic variable is anarc, it remains in �S. If it is a slack, then an interchange with a nonkey arc is done asin step [8].6.6. Description of the pivot operations in terms of the network structureThe simultaneous presence in the network of arcs Cx and arcs �Sx makes the inter-pretation and the management of the pivot operation a bit more di�cult than in thepure nonlinear network
ow problems. In the pure nonlinear network problem, it canbe assured that if the
ow of a basic arc p change due to a step in the superbasic arcsthen, it exist at least one superbasic arc that forms cycle with arc p. However, in thepresence of side constraints, it is possible for an arc p 2 B to change its value without

Nonlinear Network Flows with Side Constraints 21forming cycle with any superbasic arc q 2 �Sx. From (6) and (28), the step pB can beexpressed as :pB = �B�1 (A �S 0) pz �B�1 (AC 0)�Q�1DB�1 (A �S 0) �Q�1T �S� pz(34)From (34) it is clear that :pBp 6= 0) �pA �S 6= (0) or �pAC 6= (0)where �p is the row of B�1 associated with arc p.The nonkey arcs can also change its value without been in a superbasic cycle, asshown in the following expression, build also from (6) and (28) :pC = �Q�1 �(T �S 0) �DB�1 (A �S 0)� pz (35)If a superbasic slack q is selected in [6.1] to become basic, and the variable p isan arc from the spanning tree , then, it will be necessary to perform a key non{keycolumn interchange before the slack q has been entered in �B. It can be assured thatthis previous interchange will be always possible because of the expression of the pivotelement associated with slack q. If variable q has been selected to become basic, itspivot element must be di�erent from zero. The pivot vector associated with slack q is :w = �B�1 �Sq = �B�10@ 0eq 1A (36)and the component associated with arc p is :wp = ��pCQ�1eq (37)So, wp 6= 0) �pC 6= 0, that is, there exists nonkey arcs forming cycle with arc p.7. Statement of the algorithmThe structure of the proposed algorithm is outlined in this section. We considerthat phase 0 and phase 1 have been performed, providing a feasible vector y. The setsC and �S with a subindex x or z denote the subset of indices associated with arcs orslacks.[0] Let y = (y �B y �N) (initially �S = ;).[0.1] Compute f(x) and g(x).

Nonlinear Network Flows with Side Constraints 22[0.2] Compute 0@ �1�2 1A0 P3 � g �B0 �B�1.[0.3] Compute Q�10 .[1] If kgzk � TGR goto [3].[2] Change of the active set.[2.1] Compute �2 through �2 = �E �N0�2.If the slack yq (� zq�n) can leave �N , goto [2.4][2.2] Compute �1 through procedure P4.If the arc yq can leave �N , goto [2.4][2.3] Go to [11][2.4] Updates�N := �Nnq.If q � n, �Sx := �Sx [q.If q > n , �Sz := �Sz [q.Update � and gz.If QNM used, update UR1.[3] Computing a feasible descent direction.[3.1] Find �SQA the set of superbasic variables with quasi{active bounds.[3.2] Set pQAz := �gQAz .[3.3] Find pzq ; q 62 �SQA through TNM or QNM.[3.4] Find p P5 � p = Zpz.[4] Linesearch[4.1] Find � �B and � �S , the maximal step lenght for basic and superbasicvariables. If �� = minf� �B; � �Sg = 0, set �� = ��. Goto [6].[4.2] If �S � �Sz , �nd ��,~y = y + ��p, f(~y) and g(~y) via LSAC.If �S 6� �Sz , �nd ��,~y = y + ��p, f(~y) and g(~y) via LSBE.[4.3] Updates for the variables changeCompute gz P4 � Z 0g.Compute � P3 � g �B0 �B�1.If QNM used, perform update UR2.[5] If �� < �� , goto [8][6] �� = � �B : basis change, variable p leave �B[6.1] If �Sz 6= ;, select, if possible, slack q to become basic. Otherwise, selecta suitable superbasic arc q 2 �Sx to become basic[6.2] If �� = �B :

Nonlinear Network Flows with Side Constraints 23[6.2.1] If q 2 �Sz then :Select arc k 2 Cx to interchange with p 2 BB := Bnp [kC := Cnk [pUpdate Q�1 using UIQ3.Interchange q 2 �Sz with p 2 C�Sz := ;, �Sx := �Sx [pC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7][6.2.2] If q 2 �Sx then :If 9k 2 Cx forming cycle with p, do :B := Bnp [kC := Cnk [pUpdate Q�1 using UIQ3.C := Cnp [q�S := �Snq [pUpdate Q�1 using UIQ1.Goto [7]If 6 9k 2 Cx forming cycle with p, do:B := Bnp [q�S := �Snq [pUpdate Q�1 using UIQ5.Goto [7][6.3] If �� = �Cx :[6.3.1] If q 2 �Sz then :Interchange q 2 �Sz with p 2 C�Sz := ;, �Sx := �Sx [pC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7][6.3.2] If q 2 �Sx then :Interchange q 2 �Sx with p 2 Cx�Sx := �Sxnq [pCx := Cxnp [pUpdate Q�1 using UIQ1.Goto [7]

Nonlinear Network Flows with Side Constraints 24[6.4] If �� = �Cz :[6.4.1] If q 2 �Sz then :Interchange q 2 �Sz with p 2 Cz�Sz := �Sznq [pCz := Cznp [qUpdate Q�1 using UIQ1.Goto [7].[6.4.2] If q 2 �Sx then :Interchange q 2 �Sx with p 2 Cz�Sz := �Sz [q�Sx := �SxnqC := Cnp [qIf internal reordering is needed, do UIQ2 and UIQ1If internal reordering isn't needed, UIQ1Goto [7].[7] Update �S[7.1] Remove from �S all the superbasic variables set to one of its bounds byLSBE.[7.2] If QNM used, apply UR4 as many times as superbasic variables deleted.[8] If �Sz 6= ; do :[8.1] Select a suitable p 2 C to interchange with q.[8.2] UpdatesC := Cnp [q.�S := �Snq [p.gz,� as usual, using a) and b) of UR3.If QNM used, perform UR3.[9] Reinversion of Q Performed each NRI updatings of Q�1[10] Goto [1][11] STOP : optimal solution found.this is the basic structure of the algorithm developed. However, some remarks mustbe made.7.1. In
uence of a basic columns reordering on UR3At steps [6.2.1] , [6.3.1] and [6.4.2] a two{column permutation can be applied. Ithas been explained above how this internal interchange a�ects the update of the workingbasis. It can be proved that a basic column permutation doesn't a�ect the standardupdate UR3, so, no special update of R must be performed in this cases.

Nonlinear Network Flows with Side Constraints 257.2. Management of the slacksThe algorithm described dispenses an special treatement to the slacks. First, instep [2], when a nonbasic variable to leave its active bound is being looked for, slacksare scanned before than arcs. If a slack is found to be a good candidate, then it becomessuperbasic, but only temporarily, because it is interchanged with a nonkey arc at theend of the present iteration (step [8]). This strategy tries to improve the stability of thesolution of the systems of equations with coe�cient matrix Q introducing in it as manyidentity columns as possible.7.3. Trial step pz = �eqThere is an alternative way to manage the variable q which has been relaxed fromone of its bounds in step [2] and added to �S. It consists in �xing the values of theremaining superbasic variables and performing a null{space step of the form :pz =0BBBB@ pz1...pzspzq1CCCCA = 0BBB@ 0�11CCCA (38)with pzq = +1 if the new superbasic variable has been relaxed from its lower bound andpzq = �1 otherwise. It can be proved easily that this step is a descent direction. Thenew component of the reduced gradient is equal to the Lagrange multiplier associatedwith variable q : gzq = ��q (39)testing the descent condition : g0zpz = ��qpzq < 0 (40)the last inequality holds if we have selected q properly.Once computed p �B from pz a linesearch LSCF is made. If the result of linesearch isthe maximal step length, then superbasic variable s+1 is removed from �S and added to�B, so, the number of superbasic variables has not increased. If such a situation happens,the iteration performed is nothing di�erent than a simplex pivot between superbasic s+1and the basic variable associated with the maximal step length.If linesearch provides an �� < ��, then if the temporary superbasic variable is anarc, it remains in �S. If it is a slack, then an interchange with a nonkey arc is done asin step [8].7.4. Description of the pivot operations in terms of the network structureThe simultaneous presence in the network of arcs Cx and arcs �Sx makes the inter-pretation and the management of the pivot operation a bit more di�cult than in thepure nonlinear network
ow problems. In the pure nonlinear network problem, it can

Nonlinear Network Flows with Side Constraints 26be assured that if the
ow of a basic arc p change due to a step in the superbasic arcsthen, it exist at least one superbasic arc that forms cycle with arc p. However, in thepresence of side constraints, it is possible for an arc p 2 B to change its value withoutforming cycle with any superbasic arc q 2 �Sx. From (6) and (28), the step pB can beexpressed as :pB = �B�1 (A �S 0) pz �B�1 (AC 0)�Q�1DB�1 (A �S 0) �Q�1T �S� pz(41)From (41) it is clear that :pBp 6= 0) �pA �S 6= (0) or �pAC 6= (0)where �p is the row of B�1 associated with arc p. The nonkey arcs can also change itsvalue without been in a superbasic cycle, as shown in the following expression, buildalso from (6) and (28) :pC = �Q�1 �(T �S 0) �DB�1 (A �S 0)� pz (42)In step [6.2.2], a nonkey arc forming cycle with the outgoing key arc is �rst searched.If such an arc doesn't exist, then a direct pivot between key arc p an superbasic arc qmust be made. Therefore, this operation can be only be performed if arcs p and q formcycle. This condition always holds, as it will be proof. The pivot vector associated tovariable q is : w = �B�1 �Sq = �B�10@AqTq 1A (43)using formula (6), (43) can be expressed as :w = 0@w1w21A = �B�1Aq +B�1C �Q�1DB�1Aq �Q�1Tq�Q�1 �Tq �DB�1Aq� � (44)we are assuming that doesn't exist nonkey cycles, so B�1C = 0 and (44) can be exe-pressed as : w = 0@w1w21A = � B�1AqQ�1 �Tq �DB�1Aq�� (45)comparing the �rst m elements of (43) and (45) we obtain :��jAq = �jAq ; j = 1; : : : ;m (46)if q has been selected properly in step [6.1], its pivot element must be di�erent fromzero : ��pAq 6= 0) �pAq 6= 0

Nonlinear Network Flows with Side Constraints 27so, arcs p and q forms cycle, and a direct pivot is allowed.If a superbasic slack q is selected in [6.1] to become basic, and the variable p isan arc from the spanning tree , then, it will be necessary to perform a key non{keycolumn interchange before the slack q has been entered in �B. It can be assured thatthis previous interchange will be always possible because of the expression of the pivotelement associated with slack q. If variable q has been selected to become basic, itspivot element must be di�erent from zero. The pivot vector associated with slack q is :w = �B�1 �Sq = �B�10@ 0eq 1A (47)and the component associated with arc p is :wp = ��pCQ�1eq (48)So, wp 6= 0) �pC 6= 0, that is, there exists nonkey arcs forming cycle with arc p.8. ExamplesThe numerical results for two problems with the same set of constraints and twodi�erents objective functions. The dimensions of the problem are :Number of arcs : n = 228Number of nodes : m = 49Number of s.c.: t = 248.1. Problem 1Objective function : Cheap quadratic function.it. it. it. calls Cx Cx Cz Cz �S f(x) tPh.0 Ph.1 Ph.2 f(x) Ph.1 Ph.2 Ph.1 Ph.2 it. (sec.)TNM 82 13 129 92 12 8 12 16 0 0.7 8.5QNM 82 13 112 86 12 8 12 16 0 0.7 9.78.2. Problem 2Objective function : Costly polynomial function

Nonlinear Network Flows with Side Constraints 28it. it. it. calls Cx Cx Cz Cz �S f(x) tPh.0 Ph.1 Ph.2 f(x) Ph.1 Ph.2 Ph.1 Ph.2 it. (sec.)TNM 82 13 205 559 12 18 12 6 15 2.7 27.1QNM 82 13 191 338 12 18 12 6 9 1.7 17.5

Nonlinear Network Flows with Side Constraints 29
BIBLIOGRAPHY

[1] D.P. Bertsekas,\Constrained optimization and Lagrange multipliermethods", (Aca-demic Press, London, 1982).[2] G.H. Bradley, G.G. Brown and G.W. Graves,\Design and implementation of largescale transshipment algorithms" Management Science 24 (1977) 1{34.[3] R.S. Dembo,\A primal truncated newton algorithm with application to large-escalenonlinear network optimization", Mathematical Programming Studies 31 (1987)43{71.[4] R.S. Dembo and T. Steihaug, \Truncated{Newton algorithms for large{scale un-constrained optimization", Mathematical Programming 26 (1983) 190{212.[5] E. Hellerman and D. Rarick,\Reinversion with the preassigned pivot procedure",Mathematical Programming 1 (1971) 195{216.[6] J.L. Kennington and R.V. Helgason,\Algorithm for network programming",(JohnWiley & Sons, New York, 1980).[7] B.A. Murtagh and M.A. Saunders,\Large{scale linearly constrained optimization",Mathematical Programming 14 (1978) 41{72.[8] Ph.L. Toint and D.Tuyttens,\On large scale nonlinear network optimization", Math-ematical Programming 48 (1990) 125{159.

