Nonlinear Network Flows with Side Constraints 1

LARGE SCALE NONLINEAR NETWORK OPTIMIZATION
WITH LINEAR SIDE CONSTRAINTS

F. Javier Heredia & Narcis Nabona
Statistics and Operations Research Department,
Universitat Politecnica de Catalunya
Pau Gargallo 5, 08028-Barcelona

e-mail : heredia@eio.upc.es

ABSTRACT

This paper describes the work done by the authors on the design of an specialized algorithm for
solving the nonlinear network flow problem with linear side constraints. The algorithm has been
designed as an active set method for large scale problems employing the superbasic variable set
strategy of Murtagh & Saunders . Within the general framework of the active set method, the
special structure of the network flow problem is exploited nusing an extension of the Kenning-

ton & Helgason algorithm for linear network flow problems with side constraints.

1. . Introduction

1.1. . Formulation of the problem

The problem to solve is the minimization of a nonlinear objective function (a cost
function) whose variables are de values of the flows passing trough the capacitated arcs
of an oriented network. We expect also this flows to satisfy a set of linear inequality
constraints, called the side constrains . The mathematical expression of this problem is

.
:%
I
-

subject to :

~
)%
IN
NN N S
w
— e e e

A
8
IN

U

we will refer to this problem as the NNS problem. In this formulation we have that :

(1) is a nonlinear function f: R — R. f(x) is suposed to be twice continuously
differenciable on the feasible set defined by the constraints (2) to (4). The variables
x € R" represent the values of the arc flows in the network.

(2) represents the Network Equations. Matrix A € R™*" is the node-arc incidence
matrix and r € R™ is the supply/demand vector. This m equality constraints

Nonlinear Network Flows with Side Constraints 2

modelize the conservation of lows when passing through the nodes of the oriented
network associated with A.

(3) is a set of t side constrains . We supose that t < m.

(4) l,u € R are the upper and lower bounds assigned to the flows in each arc of the
oriented network.

1.2. . The Nonlinear Network Flow problem

The nonlinear network flow problem consists on the same problem expressed by
equations (1), eliminating the side constrains . Many researchers have focused their
attention on this topic. The usual way to tackle the problem is to combine a data
structure of the type proposed by Bradley Brown and Graves in [2] with the variant of
the active set method with superbasic variable introduced by Murtagh & Saunders in
[7]

It is well known that in the network flow problem the set of basic arcs form a rooted
spanning tree . All the operations involving the basic matrix B and its inverse B~
can be performed efficiently working with a reduced set of vectors that describe the
spanning tree . The actualization of B~ due to a change in the basic set of variables
can be also easily carried out through the modification of the vectors describing the
spanning tree (it must be noted that no factorizations of B are needed).

1.3. The Linear Network Flow Problem with Side Constraints

In this section we introduce the basic terminology, notation and strategy that will
allow the side constrains to be treated within the general network flow problem . We
follow basically the exposition presented by Kennington & Helgason in [6].

Let us focus our attention on the constraints of the NNS problem. We make the
following assumptions about NNS :

1) the graph the oriented network arises from is connected.
2) matrix S has full row rank.

3) total supply equals total demand

4) the lower bounds are null (I = (0)).

Let A be the constraint matrix of NNS :

A
A= __
T
Since the matrix 4 has rank m — 1 In order to have a full row rank constraint

matrix it 1s necessary to introduce a root arc connected to an arbitrary node, say node
I. The new expression of matrix A is :

Nonlinear Network Flows with Side Constraints 3

(A g
(7 0)

The next three propositions are essential for the characterization of the basis of A.
See [6] for its proof :

Proposition 1.: Every basis for A may be placed in the following form :

m 1

—~
t { D F
where B is a submatrix of (4 ¢!) and det (B) # 0
Proposition 2.: If B is invertible and B is invertible | then F — DB~ '(C is invertible.

Proposition 3.: If B is invertible and B is invertible,then :

1 B'+B'CQ'DB'" B 'CQ'
B = 7Q71D371 Qq

where matrix @, called the working basis is Q = F — DB~ '(C.

/

Proposition 3 is the key to the efficient solution of systems By = z and y'B = 2/
Consider the vectors y and z partitioned in the following way :

=) G

then, the solution of the system By = z can be efficiently calculated using the special
partition of the basis B :

lﬂ 21 - <B1 <Z1 + CQ71DBf1 Z1 - CQ*1 22>) (6)
- Q' <22 — DB Z1>

introducing the auxiliary vectors vy and 2 the operations stated in (6) can be done in
the following way :

Procedure P1:

Nonlinear Network Flows with Side Constraints 4

where < denotes a system solved via the spanning tree data structure.

The procedure for the special case z' = (0) is of special interest for later develope-
ments

Procedure P2:

1) y2 — Q71 22
2) y=—Cy?
3) y' & By' =

Similarly, the partition of B induces a partition on the vectors y and z when solving
the system y'B = 2’ :

yl :(yn | y2/) — (21/ | 22/)371 —
_ ((Z“ +:"B'CO D - ZQ’QqD) B! <22’ ' C> 0) (7)

as before, introducing the auxiliary vectors 41 and 2 the operations stated in (7) can
be performed in the four following steps :

Procedure P3:

1) 7 & B =2"

2) ="+ (€~) Q' D
3) y' B y'B =

4) y¥ = (ZQI*%'C Q!

Proceeding in this way the original problem of solving systems By = z andy'B = 2/,
each one of dimension m +#, has been reduced to solving systems of equations involving
matrix B, wich can be computed efficiently exploiting the data structure of the spanning
tree , and matrix (), wich is of dimension f.

2. Computation of a feasible solution

A feasible solution of NNS can be found solving two reduced problems, called here
“phase 0 7 and “phase 1 7.

Nonlinear Network Flows with Side Constraints 5)
2.1 Phase 0.

During phase 0 a “pseudo feasible 7 solution 7, that consists of a feasible solution
to the NNS problem without side constraints, is found. This is carried out by finding
the a feasible initial solution for problem :

min cr
subject to: Ax =r (8)
< <u

with an arbitrary vector of costs coefficients ¢ € R”™.
2.2 Phase 1.

The solution of (8), 7, is feasible for network constraints but, in general, will violate
some of the side constraints. Let T denote the set of indeces for the side constrains
violated at Z:

T={i:T'% > b}

Inequalities (3) can be transformed into equalities by adding basic slacks in the side
constrains not violated at (f; > 0,7 € I) and substracting artificial variables (wich
represent the infeasibilities) from the remaining (= violated)side constrains (e; > 0,7 €
I). Slacks of violated side constrains are considered non basic (f; = 0,7 € 1) :

T+ fi=b ¢l N

where T stands for a modified identity matrix defined as :

dy 0

e >
I

=41 i
: W”h{df—1 ifiel
0 d;

and variables Z of (9) being :

e; ifrel

2{_{ﬁ if i 1 (10)

Once slacks and artificial variables have been introduced, the following linear prob-
lem can be posed :

min 2z
subject to : Ax =r
Toe+1z=5b (11)

Nonlinear Network Flows with Side Constraints 6

The vector of cost coefficients 7 is defined as :

. 1, =0 ifj¢&1
;=1 ifjel
that is, the objective function is the sum of infeasibilities, given that iz = Y., z;. A

feasible initial point (# | 2)" to problem (11) is given by the pseudo feasible solution
and the vector Z formed as show in (10). Problem (11) is solved through a variation
of the Kennington & Helgason algorithm for linear flows with linear side constraints. If
the method gets to eliminate all the infeasibilities (= 7z = 0), the optimal solution to

(11) will be feasible for NNS.
3. Structure of the active set constraint matrix

3.1. Partition of the constraints matrix

Consider the NNS problem introduced in subsection 1.1 with the same assumptions
as in subsection 1.3 plus the inclusion of the slacks z for the side constrains and the
root arc a :

min f(r)
subj. to: Az + ea =7 (12)

Tax +Iz=5%
0<oe<u:2>0:0<a<y

From now on , NNS will denote problem (12).
Consider the constraints matrix of NNS :

NCER) a3

partitioned as usual into a basic matrix B, a superbasic matrix S and a non basic matrix

N

A=(B | S| N) (14)

Lety=(x | =z)I ,y € R""" be a feasible point for the NNS . In this notation we
consider that the subindex of slack variables z; denotes the number of the side constrains
associated with the slack, so z; = yp4;, 1 =1,...,1.

Consider the usual partition of the variables indices of y induced by (14) :

T z

P mmathannn
{1,....n;(n+1),...,(n+H)} =BUSUN (15)

Nonlinear Network Flows with Side Constraints 7
3.2. Internal structure of matrices B, S and N

It is important to establish the inner structure of the three matrix B, S and N.
We introduced the notation MSY? to indicate a new matrix formed with the columns
of M associated to variables y; with i € SUP. Matrix ESY? denotes a matrix of
rows whose columns are the unitary vectors e; of R' associated to the slacks z; with
(n41i)€e SUP.

Matrix B in (14) has the same internal partition shown in (5). The basic columns
that belong to B are called the key columns , and those of C the nonkey columns
Extrapolating this internal structure to B, two new sets on indices could be defined as

B=BUC(C (16)

and the internal structure of B is :

m, t
B — B C |= AB AC 0| m (17)
D F TB TC\EC| +
Matrices S and N are similar :
S
s =[A%0| m (18)
TIES ¢

(n—m — s)

N = AN 0 | m (19)

TN EN| ¢

And, finally, the matrix of n + f — s active constraints looks like :

Nonlinear Network Flows with Side Constraints 8

AB A€ 0 |49 0 AN 0

T8 TC\EC\TSES TN EN

>
I
~~
N
)
~—

The special structure of these matrices will be exploited in the following section in
order to perform efficiently the step of the algorithm proposed. Tt will be particularly
useful in the management of matrix Z, which expands the null space of the active
constraints A. The null space matrix Z has been taken as the usual variable reduction
matrix :

-B'S
7z = | (21)

0

The treatement of Z in the NNS problem is more difficult than in the pure network
flow problem , where B = B and S = AB. Tt must be noticed, however , that matrix
Z is never computed explicitily in the algorithm developped. The algorithm uses only
the internal structure of B and S shown in (12) and (13) to perform operations with Z
and 7'

4. The algorithm.

In order to define the NNS problem, some information must be given to the al-
gorithm at the beginning of the optimization process, and kept accessible during the
whole process. This information is :

Nonlinear Network Flows with Side Constraints 9

1) The objective function f(x) and its gradient g(x) = Vf(x). The Hessian is
not really needed.

2) The vectors containing the description of the network.

3) The (probably sparse) representation of the side constrains matrix 7.

4) The vector of arc capacities u.

Having this information stored in core, suppose that our algorithm has guided the
optimization process to the vector y = (y® | ¢ | yN) , feasible for NNS. In such
a point we assume the next items to be available :

5) Some internal representation of the set of indices B,S and N .

6) The vectors describing the spanning tree .

7) The inverse of the working basis , stored in some efficient way.

8) Depending on the specific implementation of the algorithm, it would be
necessary to keep in memory some approximation to the reduced Hessian .

4.1. Computation of the Lagrange multipliers

Lagrange multipliers are defined as the solution to the system arisinig from the first
order necessary condition of minimum :

B
9
) B0 T _
AXN=g ; S0 _1=14° (22)
N1 o _
N

g

Vector 7 is intensivily used during each iteration, whereas o is only needed when
the active set of constraints change. Both can be easily computed using the structure
of A studied before. The Lagrange multipliers © are calculated from the system :

7T/:gB/Bf1 : (WH | 7Tzl)z(glil | gC/)Bf1 (23)

which can be solve efficiently via procedure P3. 7' represents the Lagrange multipliers
associated with the network constraints and 7?2 is linked to the side constrains .

The expression of the Lagrange multipliers ¢ taking into account the partition of
gV, N and 7 is :

o .qN’m (A/\/’/ TN/) 7!
oc=1—1= — |~ N1
o2 0 0 F

[/ AN'W1—|—TN'7T2
= - E./\/'lﬂ_Q (24)

Nonlinear Network Flows with Side Constraints 10

where gN’”’ stands for the components of gN related with the true variables x.
The computational procedure used to evaluate o is :

Procedure P4:

1) For Vi € § do:

1.1) If i > n (slacks) : 0; :== —m;
1.2) If i < n (arcs) :
1.2.1) Find “from node” k and “to node” [for arc 1.
1.2.2) 4y :==m, - 77
1.2.3) 4 := TV 22
)

N

1.24) o, :=q:" — 71 — 72

Notice that only one matrix-vector product TV'z? of reduced dimension
(n — m — s) x t
must be computed explicitily in step 1.2.3) .

4.2. Computation of the reduced gradient

Once 7 has been found, the reduced gradient ¢g. = Z’q; g. € R® can be obtained
from the expression :

P
—_— qS AS/ 1 TSI 1
B o T 4 s
g:=(-(B'S) |1 0| |=|— (pS_2) (25)
_ 0
o

It must be noticed that ¢ and ¢. are found via the same procedure.
Once ¢, is computed, the next step is to find a direction of search along which the
objective function decreases and feasibility is preserved.

4.3. Search directions

Supose that vector p, is an aproximation to the solution of the unconstrained
problem :

. 1 / 7 7
min §pZZ HZp., + ¢ Zp. (26)

which represents the minimization of a quadratic local aproximation to the projec-

tion of function f(x) over the null space of A. Matrix H, = Z'HZ ., H. € R**"is the

Nonlinear Network Flows with Side Constraints 11

reduced Hessian and vector g, = Z'qg , g. € R’ is the reduced gradient . p. is obtained
solving the system :

Z'HZp. = —7Z'g (27)
Once p. has been found, a feasible direction of movement p = (p® | p% | pN)
can be obtained from the relation :
—~ B 'Sp.
p=7Zp. = p- (28)
0

The algorithmic procedure to compute (28) is :

Procedure P5:

1) pV =(0)
2) pS = Pz
3) ForVie S do:
0 A
3.1) Ifign(a,rcs):’yﬂB =1
gl T;
7! 0
Ifi>n(sla,cks):’y£B =1 =
v €i—n
PP PP o
32) | —)= — | —psi | —
p° p° 7?

Two different alternative techniques for solving system (27) have been implemented

1) A truncated Newton method (TNM).
2) A quasi Newton method (QNM).

The truncated Newton method follows the strategy exposed in [4]. Tt is based on
the solution of system (27) by a conjugated gradient (CG) method.

With regards to the use of the second derivatives, the CG algorithm only needs
the aproximation to the Hessian H to compute the products Z'H Zd, where the vectors
d are the directions generated by the CG method in each iteration. This products are
computed actually by the procedure :

Nonlinear Network Flows with Side Constraints 12
Procedure P6:

1) 7 &2 Zd
gz ten) —g(x)
2) y2 =

€
P
3) o — Z'y

%H"h

in step 2) of P6 a forward finite difference technique is applied to approximate the
product H~y. Proceeding in this way it is neither necessary to compute, nor to store,
any approximation to Hessian matrix.

The quasi Newton version follows the metodology exposed in [7]. The Cholesky
factors R of an approximation to the reduced Hessian (R'R ~ H.) must be stored,
updated and retriangularized whenever a change in the matrix H, occurs. Matrix H,
is modified when :

1) B or § change (an exchange between B and C doesn’t requires R to be
update).
2) A nonzero step is performed in the real variables.

In the first case, after the addition or removal of certain number of rows/columns
of R, the factor R is retriangularized via succesive Givens rotations. When a change in
the variables is made , factors R'R are updated with a complementary DFP formula.

The two alternatives techniques implemented have the common features of :

1) Only an approximation to the solution of (27) is found.
2) No second derivatives are used.

and differ in that :

1) Memory requirements : TNM has not extra memory requirements, while
QNM must keep stored the factors of the aproximation to the reduced Hes-
sian.

2) Extra gradient evaluations : QNM only needs one extra evaluation of ¢(x)
for the updating of the reduced Hessian aproximation when the active set
is change. On the contrary, TNM needs, in the implementation developped,
one evaluation per CG iteration (P6 , step 2)). So, if problem NNS has a
costly objective function, QNM should be preferable to TNM.

3) Computational effort : Leaving aside the evaluation of g(x), TNM needs one
call of procedures P3, P4 and P5 at each CG iteration. QNM must update

and retriangularize the upper matrix R.

Nonlinear Network Flows with Side Constraints 13
4.4. Linesearch

The solution to (27) provides a descent direction that :

1) Preserves feasibility for the set of active constraints Vo > 0
2) Violates the simple bound of a basic or superbasic variable for certain o >
a >0

Therefore, if a® and a® denote the maximal step length allowed by variables in
B and 8, respectively, a limited linesearch with 0 < a < a = min{a®, 4%} must be
executed in order to the superbasic and basic bounds not to be violated by the iterated
point. In fact, we must solve a nonlinear problem with simple constraints.

Bertsekas in [1] introduces a method to solve this kind of problems where more
than one variable can be set to one of its bound simultaneously. This is a very useful
property for NNS problem, because it introduces the posibility of eliminating more than
one superbasic variable in each reduced gradient iteration.

We have follow the scheeme presented by Toint & Tuyttens in [8] for this special
linesearch. We will refer to this linesearch as LSBE. In particular, the actual algorithm
makes use of the quasi active bounds strategy for finding the search direction p. In this
strategy the algorithm for finding the descent direction p acts only over the components
of p associated with superbasic variables without quasi active bounds, and takes for the
other components the steepest descent direction.

When a Bertsekas step (that means, a* > o = o) cannot be performed, a cubic
fit is made between o = 0 and o = a using f(2),9(x) ,f(x + ap) and g(x + ap). If the
cubic fit fails, line search of the type apy1 = Blag , 7 =0,1,... ; 0 < 8 <1 is used.
A cubic fit is also used when y® = 2%, that is, the only superbasic variable existing is
a slack, and when & = (). We will refer to this linesearch as LSAC.

Both subroutines, LSBE and LSAC provide, not only and estimation of o*, but
also the new values of y, f(2) and g(x).

5. Update of Q' and R

Matrices Q' and R are stored, updated and, eventually, recomputed, during the
optimization process. We deal in this section with those processes, commenting only
the most peculiar characteristics of the algorithm implemented.

5.1. Working basis inverse update
Kennington & Helgason present in [6] the way to update matrix Q' after a simplex

pivot in the linear network case. Here are presented only the results. For a more detailed
explanation, see [6] pag. 172 174.

Nonlinear Network Flows with Side Constraints 14

Consider that, after a pivot, the relation between the old and the new basic matrix

18 :
B., = EB;" (29)
with :
m 1
=
p-m{(B B (30)
1 { E3 E4

where E (eta) may be either an elementary column matrix or a permutation matrix.
The following cases can be distinguish :

1) The nonkey column p € C leaves the basis.

1.1) If the entering variable ¢ is to be placed in the same position left by p :

Qity = EaQ; (U1Q1)
being E the elementary column matrix that updates B;1

1.2) If the entering variable ¢ is to be placed in the position of variable k # p :
Q74-11 = Q;1ppk (UIQQ)

being P,; an elementary permutation matrix. Go to case 1.1)
2) The key column p € B leaves the basis.

2.1) If there is an arc ¢ € C forming cycle with the leaving arc p, exchange columns
pand g of B :

Q. = EsQ; " (U1Q3)

being Fs5 the elementary row matrix :

1 0 0
Er3 = €;B71C
0 0 1

and go to case 1).

2.2) If doesn’t exists any arc ¢ € C forming cicle with the leaving arc p :

Qi = Q' (UIQ4)

Nonlinear Network Flows with Side Constraints 15

Kennington & Helgason didn’t consider case 1 divided into subcases but the algo-
rithm presented needs the new update UIQ2 because it usually change the order of two
nonkey columns when the entering variable ¢ is a slack.

The inverse of the working basis is found once at the beginning of the first iteration
and updated when a change in the set B occurs. Reinversion takes place after a certain
number of updatings. The Q' is stored as an eta file with a set of complementary
vectors. This eta file holds the coefficients of the eta columns of the last reinversion and
the information of all the updatings made since the last reinversion. This information
is either coefficients of column/row eta (UIQ1 and UIQ3) or two numbers denoting a
nonkey column permutation (UIQ2). The reinversion routines implements the row and
column reordering system proposed by Hellerman & Rarick in [5] and partial pivoting
to ensure numerical stability.

5.2. Updating the approximation to the factors of the Hessian

The management of factors R follows the procedure exposed by
Murtagh & Saunders in [7]. We only comment some peculiarities related to the special

NNS problem.
Four differents updates of factor R can take place :
1) URI : Addition of one superbasic variable. The update formula is :
-, = R'R 7'v
I JR—
RR(?)'Z ZI7)>
In order to update R it is necessary to perform a set of matrix operations that

can be computed efficiently using the procedures exposed in early sections. Those
matrix operations and its related procedures are :

a) z = B7'N, found via P1, if ¢ < n (arc) and via P2 if ¢ > n (slack).

b) Aproximation of vector v = Hz by finite differences. Equivalent to step 2) of
procedure P6.

c) r = Z"v found using procedure P4.

2) UR2 : Quasi Newton updates. Takes into account a change in the superbasic
variables. The complementary DFP formula has been used.

3) UR3 : Change of matrix B. In this case, the basic variable p € B is exchange with
the superbasic variable ¢ € S. The modification of R is :

R'R— (T+ 7)e;)R'R(I + eqv')

Nonlinear Network Flows with Side Constraints 16

In order to find vector v two matrix operations must be done :

a) g = e;Bf1 . This operation is computed by P3. If p € B, P3 .must be applied
setting z' = e, and 22 = (0) otherwise, if p € C, the correct assignment is

P (0) and 22 = €p-

St opl S ap2
bh) w=S'B= (A ﬂES—/l—ﬂz; s) . Vector w can be evaluated with a proce-

dure similar to P4.

It must be stressed that the update of ¢, and 7, wich is made using vectors 3P and
w, takes also advantage of this special computation.

3) UR4 : Removal of a superbasic variable ¢ € S. The same update than in the
general case.

6. Statement of the algorithm

The structure of the proposed algorithm is outlined in this section. We consider
that phase 0 and phase 1 have been performed, providing a feasible vector y. The sets
C and § with a subindex x or z denote the subset of indices associated with arcs or
slacks.

0] Let y = (y® | o) (initially S = 0).

[0.1] Compute f(x) a,nld g(x).

7r
[0.2] Compute | 22 g% B,

7T2

[0.3] Compute Q.
[1] If ||g-|| > TGR goto [3].

[2] Change of the active set.

[2.1] Compute 2 through 62 = — EN/7x2.
If the slack y, (= z4—n) can leave N, goto [2.4]
[2.2] Compute o' through procedure P4.
If the arc y, can leave N, goto [2.4]
[2.3] Go to [11]
[2.4] Updates
N = N\g.

Nonlinear Network Flows with Side Constraints 17

If¢g<n,S,:=85,Ugq.
Ifg>n,S.=8.Ug.
Update 7 and g¢..

If QNM used, update URT.

[3] Computing a feasible descent direction.

3.1] Find S24 the set of superbasic variables with quasi active bounds.
P q

[3.2] Set p2A = 424

[3.3] Find p.,, ¢ ¢ S24 through TNM or QNM.

[3.4]

Find p 2 p=27p..

[4] Linesearch

[4.1] Find of and o®, the maximal step lenght for basic and superbasic
variables. If & = min{a® o} =0, set o* = . Goto [6].

[4.2] f S = 8., find o*,§ =y + a*p, f(7) and ¢(g) via LSAC.
S #£S., find a*,g =y + a*p, f(y) and ¢(y) via LSBE.

[4.3] Updates for the variables change

Compute ¢, il Z'q.

Compute 7 s g% B,
If QNM used, perform update UR2.

5] If o* < a , goto [8]

[6] o* = oB : basis change, variable p leave B

[6.1] Tf S. # 0, select, if possible, slack ¢ to become basic. Otherwise, select
a suitable superbasic arc ¢ € S, to become basic

[6.2] Tf & = o :
[6.2.1] If ¢ € S. then :
Select arc k € C, to interchange with p € B

B:=B\pUk

C:=C\kUp

Update Q' using UIQ3.
Interchange ¢ € S, withpe C

S.=08,:=8,Up
C:=C\pUgq
If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7]
[6.2.2] If ¢ € S, then :

If p forms cycle with ¢

Nonlinear Network Flows with Side Constraints 18

If 4k € C, forming cycle with p, do :

B:=B\pUk

C:=C\kUp

Update Q' using UIQ3.
C:=C\pUgq

S:=8S\¢qUp

Update Q' using UIQ1.
Goto [7]

If Ak € C, forming cycle with p, do:

B:=B\pUgq
S:=8S\¢qUp
Update Q' using UIQ5.
Goto [7]

If p doesn’t forms cycle with ¢

Select arc k € C, to interchange with p € B do:

B:=B\pUk
C:=C\kUp

Update Q' using UIQ3.
C:=C\pUgq
S:=8S\¢qUp

Update Q' using UIQ1.
Goto [7]

[6.3] Tf & = o :

[6.3.1] If ¢ € S. then :
Interchange ¢ € S. withpée C

S, =0,8, =8, Up
C:=C\pUgq
If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7]
[6.3.2] If ¢ € S, then :

Interchange ¢ € S, with p € C,

S, =8:\qUp

C,:=C,\pUp

Update Q" using UIQ1.
Goto [7]

[6.4] Tf & = o= :

[6.4.1] If ¢ € S. then :

Nonlinear Network Flows with Side Constraints 19

Interchange ¢ € S. with p e C.

S.:=8.\qUp

C.:=C,\pUgq
Update Q" using UIQ1.
Goto [7].

[6.4.2] If g € S, then :

Interchange ¢ € S, withp e C,

S.:=85.Ugq
S = 8:\¢
C:=C\pUgq

If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7].
[7] Update S

[7.1] Remove from S all the superbasic variables set to one of its bounds by
LSBE.
7.2] Tf QNM used, apply UR4 as many times as superbasic variables deleted.
8] S, # 0 do:

[8.1] Select a suitable p € C to interchange with g¢.
[8.2] Updates

C:=C\pUygq.

S:=8\qUp.

g.,7 as usual, using a) and b) of UR3.

If QNM used, perform UR3.

[9] Reinversion of) Performed each NRI updatings of Q'
[10] Goto [1]
[11] STOP : optimal solution found.

this is the basic structure of the algorithm developed. However, some remarks must
be made.

6.3. Influence of a basic columns reordering on UR3

At steps [6.2.1] , [6.3.1] and [6.4.2] a two column permutation can be applied. It
has been explained above how this internal interchange affects the update of the working
basis. It can be proved that a basic column permutation doesn’t affect the standard
update UR3, so, no special update of R must be performed in this cases.

6.4. Management of the slacks

The algorithm described dispenses an special treatement to the slacks. First, in
step [2], when a nonbasic variable to leave its active bound is being looked for, slacks

Nonlinear Network Flows with Side Constraints 20

are scanned before than arcs. If a slack is found to be a good candidate, then it becomes
superbasic, but only temporarily, because it is interchanged with a nonkey arc at the
end of the present iteration (step [8]). This strategy tries to improve the stability of the
solution of the systems of equations with coefficient matrix () introducing in it as many
identity columns as possible.

6.5. Trial step p. = +e,

There is an alternative way to manage the variable ¢ which has been relaxed from
one of its bounds in step [2] and added to S. Tt consists in fixing the values of the
remaining superbasic variables and performing a null space step of the form :

Pz
: 0
pz = pZS = (31)
P, +1

with p., = +1if the new superbasic variable has been relaxed from its lower bound and
P-4 = —1 otherwise. Tt can be proved easily that this step is a descent direction. The
new component of the reduced gradient is equal to the Lagrange multiplier associated
with variable ¢ :

testing the descent condition :

.qlzpz = 04Dz < 0 (33)

the last inequality holds if we have selected ¢ properly.

Once computed p? from p. a linesearch LSCF is made. If the result of linesearch is
the maximal step length, then superbasic variable s+ 1 is removed from § and added to
B, so, the number of superbasic variables has not increased. If such a situation happens,
the iteration performed is nothing different than a simplex pivot between superbasic s41
and the basic variable associated with the maximal step length.

If linesearch provides an «* < «, then if the temporary superbasic variable is an
arc, it remains in S. If it is a slack, then an interchange with a nonkey arc is done as
in step [8].

6.6. Description of the pivot operations in terms of the network structure

The simultaneous presence in the network of arcs C,, and arcs S, makes the inter-
pretation and the management of the pivot operation a bit more difficult than in the
pure nonlinear network flow problems. In the pure nonlinear network problem, it can
be assured that if the flow of a basic arc p change due to a step in the superbasic arcs
then, it exist at least one superbasic arc that forms cycle with arc p. However, in the
presence of side constraints, it is possible for an arc p € B to change its value without

Nonlinear Network Flows with Side Constraints 21

forming cycle with any superbasic arc ¢ € S,. From (6) and (28), the step p® can be
expressed as :

PP = BT(AS | 0)p. BN(AC | 0)(Q'DBT(AS | 0)Q'T)p.
(34)
From (34) it is clear that :

p, # 0= BPAS £(0) or prAC#£(0)

where (37 is the row of B~ associated with arc p.
The nonkey arcs can also change its value without been in a superbasic cycle, as
shown in the following expression, build also from (6) and (28) :

pP’=-Q (TS | 0)-DB (A5 | 0))p. (35)

If a superbasic slack ¢ is selected in [6.1] to become basic, and the variable p is
an arc from the spanning tree , then, it will be necessary to perform a key non key
column interchange before the slack ¢ has been entered in B. It can be assured that
this previous interchange will be always possible because of the expression of the pivot
element associated with slack ¢. If variable ¢ has been selected to become basic, its
pivot element must be different from zero. The pivot vector associated with slack ¢ is :

0
w=B""'S,=B""[_ (36)
€q
and the component associated with arc p is :
w, = —APCQ e, (37)

So,
wy, # 0= pPC #0

, that is, there exists nonkey arcs forming cycle with arc p.

7. Statement of the algorithm

The structure of the proposed algorithm is outlined in this section. We consider
that phase 0 and phase 1 have been performed, providing a feasible vector y. The sets
C and § with a subindex x or z denote the subset of indices associated with arcs or
slacks.

0] Let y = (y® | o) (initially S = 0).
[0.1] Compute f(x) and g(x).

Nonlinear Network Flows with Side Constraints 22

1 ’

7r
[0.2] Compute | Ria g% B,

7T2

[0.3] Compute Q.
[1] If ||g-|| > TGR goto [3].

[2] Change of the active set.

[2.1] Compute 2 through 62 = — EN/7x2.
If the slack y, (= z4—n) can leave N, goto [2.4]
[2.2] Compute o' through procedure P4.
If the arc y, can leave N, goto [2.4]
[2.3] Go to [11]
[2.4] Updates
N = N\g.
If¢g<n,S,:=85,Ugq.
Ifg>n,S.=8.Ug.
Update 7 and g¢..
If QNM used, update URT.

[3] Computing a feasible descent direction.

Find S24 the set of superbasic variables with quasi active bounds.
Set, pA .= —¢24,

1]
2]
3] Findp.,,q¢& S24 through TNM or QNM.
4] Find p ks p=Zp..

[4] Linesearch

[4.1] Find of and o®, the maximal step lenght for basic and superbasic
variables. If & = min{a® o} =0, set o* = . Goto [6].

[4.2] f S = 8., find o*,§ =y + a*p, f(7) and ¢(g) via LSAC.
S #£S., find a*,g =y + a*p, f(y) and ¢(y) via LSBE.

[4.3] Updates for the variables change
Compute ¢, lind 7'g.

Compute 7 s g% B,
If QNM used, perform update UR2.

5] If o* < a , goto [8]

[6] o* = oB : basis change, variable p leave B

[6.1] Tf S. # 0, select, if possible, slack ¢ to become basic. Otherwise, select
a suitable superbasic arc ¢ € S, to become basic

(6.2] Tf v = o

Nonlinear Network Flows with Side Constraints 23

[6.2.1] If ¢ € S. then :
Select arc k € C, to interchange with p € B

B:=B\pUk

C:=C\kUp

Update Q" using UIQ3.
Interchange ¢ € S, withpe C

S, =0,8, =8, Up
C:=C\pUgq
If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7]
[6.2.2] If ¢ € S, then :

If 4k € C, forming cycle with p, do :

B:=B\pUk

C:=C\kUp

Update Q" using UIQ3.
C:=C\pUgq

S:=8\qUp

Update Q" using UIQ1.
Goto [7]

If Ak € C, forming cycle with p, do:

B:=B\pUgq
S:=8\qUp

Update Q" using UIQ5.
Goto [7]

[6.3] Tf & = o :

[6.3.1] If ¢ € S. then :
Interchange ¢ € S. withpée C

S, =0,8, =8, Up
C:=C\pUgq
If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7]
[6.3.2] If ¢ € S, then :

Interchange ¢ € S, with p € C,

S, =8:\qUp

C,:=C,\pUp

Update Q" using UIQ1.
Goto [7]

Nonlinear Network Flows with Side Constraints 24

[6.4] Tf o = %= :

[6.4.1] If ¢ € S. then :

Interchange ¢ € S. with p e C.

S.:=8.\qUp

C.:=C,\pUgq
Update Q" using UIQ1.
Goto [7].

[6.4.2] If g € S, then :

Interchange ¢ € S, withp e C,

S.:=85.Ugq
S = 8:\¢
C:=C\pUgq

If internal reordering is needed, do UIQ2 and UIQ1
If internal reordering isn’t needed, UIQ1
Goto [7].
[7] Update S

[7.1] Remove from S all the superbasic variables set to one of its bounds by
LSBE.

[7.2] If QNM used, apply UR4 as many times as superbasic variables deleted.
8] Tf S. # 0 do :

1] Select a suitable p € C to interchange with ¢.
.2] Updates

C:=C\pUygq.

S:=8\qUp.

g.,7 as usual, using a) and b) of UR3.

If QNM used, perform UR3.

[9] Reinversion of) Performed each NRI updatings of Q'
[10] Goto [1]
[11] STOP : optimal solution found.

this is the basic structure of the algorithm developed. However, some remarks must
be made.

7.1. Influence of a basic columns reordering on UR3

At steps [6.2.1] , [6.3.1] and [6.4.2] a two column permutation can be applied. It
has been explained above how this internal interchange affects the update of the working
basis. It can be proved that a basic column permutation doesn’t affect the standard
update UR3, so, no special update of R must be performed in this cases.

Nonlinear Network Flows with Side Constraints 25
7.2. Management of the slacks

The algorithm described dispenses an special treatement to the slacks. First, in
step [2], when a nonbasic variable to leave its active bound is being looked for, slacks
are scanned before than arcs. If a slack is found to be a good candidate, then it becomes
superbasic, but only temporarily, because it is interchanged with a nonkey arc at the
end of the present iteration (step [8]). This strategy tries to improve the stability of the
solution of the systems of equations with coefficient matrix () introducing in it as many
identity columns as possible.

7.3. Trial step p. = +e,

There is an alternative way to manage the variable ¢ which has been relaxed from
one of its bounds in step [2] and added to S. Tt consists in fixing the values of the
remaining superbasic variables and performing a null space step of the form :

Pz
: 0
Pz = D= - (38)
o +1

with p., = +1if the new superbasic variable has been relaxed from its lower bound and
P-4 = —1 otherwise. Tt can be proved easily that this step is a descent direction. The
new component of the reduced gradient is equal to the Lagrange multiplier associated
with variable ¢ :

-qu = —0q4 (39)

testing the descent condition :

.qlzpz = 04Dz < 0 (40)

the last inequality holds if we have selected ¢ properly.

Once computed p? from p. a linesearch LSCF is made. If the result of linesearch is
the maximal step length, then superbasic variable s+ 1 is removed from § and added to
B, so, the number of superbasic variables has not increased. If such a situation happens,
the iteration performed is nothing different than a simplex pivot between superbasic s41
and the basic variable associated with the maximal step length.

If linesearch provides an «* < «, then if the temporary superbasic variable is an
arc, it remains in S. If it is a slack, then an interchange with a nonkey arc is done as
in step [8].

7.4. Description of the pivot operations in terms of the network structure
The simultaneous presence in the network of arcs C,, and arcs S, makes the inter-

pretation and the management of the pivot operation a bit more difficult than in the
pure nonlinear network flow problems. In the pure nonlinear network problem, it can

Nonlinear Network Flows with Side Constraints 26

be assured that if the flow of a basic arc p change due to a step in the superbasic arcs
then, it exist at least one superbasic arc that forms cycle with arc p. However, in the
presence of side constraints, it is possible for an arc p € B to change its value without
forming cycle with any superbasic arc ¢ € S,. From (6) and (28), the step p® can be
expressed as :

PP=—B (A5 | 0)p.— B (A | 0)(Q DB (45 | 0)-Q 'T)p.
(41)
From (41) it is clear that :

py #0= PAT£(0) or prAT#£(0)

where /37 is the row of B~ associated with arc p. The nonkey arcs can also change its
value without been in a superbasic cycle, as shown in the following expression, build

also from (6) and (28) :

P =-Q " ((T% | 0) DB (A% [0))p. (42)

In step [6.2.2], a nonkey arc forming cycle with the outgoing key arc is first searched.
If such an arc doesn’t exist, then a direct pivot between key arc p an superbasic arc ¢
must be made. Therefore, this operation can be only be performed if arcs p and ¢ form
cycle. This condition always holds, as it will be proof. The pivot vector associated to
variable ¢ is :

Aq
w= B! S, = B '| __ (43)
T

q

using formula (6), (43) can be expressed as :

(P pC@ s Q)

) Q' (T,~ DB 'A,)

we are assuming that doesn’t exist nonkey cycles, so B~ 'C' = 0 and (44) can be exe-
pressed as :

w
B4,
w = — | = <Q1 (Tq B DB1Aq>> (45)

w
comparing the first m elements of (43) and (45) we obtain :
BA, =pA, , j=1,....m (46)

if ¢ has been selected properly in step [6.1], its pivot element must be different from
7ero :

BPA, #0=pB"A, #0

Nonlinear Network Flows with Side Constraints 27

so, arcs p and ¢ forms cycle, and a direct pivot is allowed.

If a superbasic slack ¢ is selected in [6.1] to become basic, and the variable p is
an arc from the spanning tree , then, it will be necessary to perform a key non key
column interchange before the slack ¢ has been entered in B. It can be assured that
this previous interchange will be always possible because of the expression of the pivot
element associated with slack ¢. If variable ¢ has been selected to become basic, its
pivot element must be different from zero. The pivot vector associated with slack ¢ is :

0
w=B'S, =B [__ (47)
€q
and the component associated with arc p is :
w, = —3ACQ e, (48)

So,
wy, # 0= pPC #0

, that is, there exists nonkey arcs forming cycle with arc p.

8. Examples

The numerical results for two problems with the same set of constraints and two
differents objective functions. The dimensions of the problem are :

Number of arcs : n = 228
Number of nodes : m = 49

Number of s.c.: + = 24
8.1. Problem 1

Objective function : Cheap quadratic function.

it. it. it. calls C, C C C. S flx) ¢

PL.0 Ph.l Ph.2 f(r) Ph.l Ph.2 Ph.l Ph.2 i, (sec.)
TNM[82 13 120 92 12 8 12 16 0 07 85
oNM|[82 13 112 86 12 8 12 16 0 07 97

8.2. Problem 2

Objective function : Costly polynomial function

TNM
QNM

Nonlinear Network Flows with Side Constraints

1t. it. it. calls C, C., C, C. S flx) ¢

Ph.0 Ph.1 Ph.2 f(x) Ph.1 Ph.2 Ph.1 Ph.2 it. (sec.)
82 13 205 539 12 18 12 6 15 27 271
82 13 191 338 12 18 12 6 9 1.7 175

[1]

Nonlinear Network Flows with Side Constraints 29

BIBLIOGRAPHY

D.P. Bertsekas, “Constrained optimization and Lagrange multiplier methods”, (Aca-|j
demic Press, London, 1982).

G.H. Bradley, G.G. Brown and G.W. Graves,“Design and implementation of large
scale transshipment algorithms” Management Science 24 (1977) 1 34.

R.S. Dembo,“A primal truncated newton algorithm with application to large-escale
nonlinear network optimization”, Mathematical Programming Studies 31 (1987)
43 71.

R.S. Dembo and T. Steihaug, “Truncated Newton algorithms for large scale un-
constrained optimization”, Mathematical Programming 26 (1983) 190 212.

E. Hellerman and D. Rarick, “Reinversion with the preassigned pivot procedure”,
Mathematical Programming 1 (1971) 195 216.

J.L. Kennington and R.V. Helgason,“Algorithm for network programming”,(John
Wiley & Sons, New York, 1980).

B.A. Murtagh and M.A. Saunders,“Large scale linearly constrained optimization”,
Mathematical Programming 14 (1978) 41 72.

Ph.L. Toint and D.Tuyttens,“On large scale nonlinear network optimization”, Math-|
ematical Programming 48 (1990) 125 159.

