
1NUMERICAL IMPLEMENTATION AND COMPUTATIONALRESULTS OF NONLINEAR NETWORK OPTIMIZATIONWITH LINEAR SIDE CONSTRAINTSF. Javier Heredia & Narc��s NabonaStatistics and Operations Research DepartmentUniversitat Polit�ecnica de CatalunyaPau Gargallo 5, 08028-Barcelonae-mail : heredia@eio.upc.es1. IntroductionThis paper deals with the solution of the nonlinear network 
ow problem withlinear side constraints. The problem to solve is the minimization of a nonlinear objectivefunction ( a cost function) whose variables are the values of the 
ows passing throughthe capacitated arcs of an oriented network. We expect also this 
ows to satisfy a set oflinear inequality constraints, called the side constrains . The mathematical expressionof this problem is : min f(x) (1)subj. to : Ax + ela = r (2)Tx + 1Iz = b (3)0 � x � u ; z � 0 ; 0 � a � 0 (4)we will refer to this problem as the NNS problem. In this formulation we have that :(1) is a nonlinear function f : IRn ! IR. f(x) is suposed to be twice continuouslydi�erenciable on the feasible set de�ned by the constraints (2) to (4). The variablesx 2 IRn represent the values of the arc 
ows in the network.(2) represents the Network Equations. Matrix A 2 IRm�n is the node-arc incidencematrix and r 2 IRm is the supply/demand vector. A root arc a has been introducedin order to have a full row rank constraint matrix.(3) is a set of t side constrains . We supose that t < m. The variables z 2 IR are theslacks of the original inequality (\�") side constraints.(4) u 2 IRn are the upper bounds assigned to the 
ows in each arc. Lower boundsl 2 IRn can be assimilated easily in this notation by making x̂ = x � l.



2We make the following assumptions about NNS :1) The graph G the oriented network arises from is connected.2) Matrix T has full row rank.3) Total supply equals total demand.Let y0 = (x0 z0 ) , y 2 IRn+t, be a feasible point for NNS. We consider thatthe subindex of slack variables zi denotes the number of the side constrains associatedwith the slack ( zi � yn+i ; i = 1; : : : ; t). In such a point, consider the columns ofthe constraint matrix �A = �A el 0T 0 1I �, and the associated variables, partitioned asusual into a basic ( �B), superbasic ( �S) and non basic ( �N ) sets It is important to showexplicitily the internal structure of matrix �A :�A = ( �B �S �N ) = m t s (n�m� s)AB AC 0 A �S 0 A �N 0 mTB T CECT �SE �S T �N E �N t (5)The symbols �B = B [ C, �S and �N stands for the sets of indices of basic, superbasicand nonbasic variables respectively. These symbols, used as supraindex of matricesA and T , represent the matrix formed with the columns of A or T associated withvariables in this sets. The column division of the basic matrix is the same proposedby Kennington & Helgason in [8] for the linear problem. Columns denoted by B arecalled key columns and are associated to the arcs of a spanning tree of the graphG. Columns denoted by C are called nonkey columns and can be linked to basic arcsnot belonging to the spanning tree, or to slacks. Matrix ESUP denotes a matrix of trows whose columns are the unitary vectors ei of IRt associated to the slacks zi with(n+ i) 2 SUP = fB; C; �S; �Ng.Kennington & Helgason show in [8] the procedure to compute systems �By = z andz0 = y0 �B, each one of dimension m + t solving systems of equations with matrix AB,that can be e�ciently computed exploiting the data structure of the spanning tree, andsystems of equations with coe�cient matrix Q = (T C EC ) � TBAB�1 (AC 0 ), of dimension t � t. Matrix Q is called the working basis, and plays a central role.These procedures are applied in [8] to solve the linear network 
ow problem with linearside constraints with an specialized simplex algorithm . The authors of this paper haveextended the method developed by Kennington & Helgason for the linear problem tothe nonlinear case. In this extension, the management of the basic matrix �B introduced



3in [8] and the special structure of the constraint matrix �A has been used to allow thetreatment of the side constrains within the general framework of the pure nonlinearnetwork 
ow algorithms. The algorithm proposed by the authors has been presented in[6]. An implementation of this algorithm has been coded in FORTRAN. In the followingsections the main features of the resulting program, called NOXCB, are described,together with the very �rst computational results obtained.2. Computation of a feasible solution.Program NOXCB �nds a feasible solution for NNS in the following way :1. (Phase 0) Find x̂ feasible for the network equations (Ax̂ = r)2. (Phase 1) De�ne I = �i : T ix̂ > bi	3. Add excess variables to the side constrains : Tx + 1Iz � 1If = b4. De�ne the starting point ŷ as :ŷ0 = ( x̂0 ẑ0 f̂ 0 ), ẑi = � bi � T ix̂ i 62 I0 i 2 I , f̂i = � 0 i 62 IT ix̂ � bi i 2 I5. Solve :min Xi2I fisubj. to : Ax+ ela = rTx + 1Iz � 1If = b0 � x � u ; z � 0 ; a = 0 ; f � 0with the feasible initial point ŷ.If Xi2I fi = 0 at the optimal point y� then y�0 = ( x�0 z�0 ) is feasible forNNS.Remarks :1) Step 1., called here phase 0, consists on the phase 1 of a pure linear network 
owproblem. It is solved with the LEXA routines ( Nabona, [11] ).2) The problem stated in step 5. is a linear network 
ow problem with linear sideconstraints. It is solved with an implementation of the algorithm proposed byKennington & Helgason ( see Heredia & Nabona [7] )



43. The algorithmThe structure of the proposed algorithm is outlined in this section. Assume thatin each iteration we have the following :1) A feasible vector y : �Ay = �r , 0 � x � u , 0 � z , �r0 = ( r0 b0 ).2) f(x) and g(x)0 = � g �B0 g �S0 g �N 0 �3) The tree structure of the matrix AB.4) The product form of the inverse Q�15) The Lagrange multipliers � satifying : �0 = g �B0 �B�16) The reduced gradient gz = Z 0g , gz 2 IRs :7) Depending on the method selected for the minimization on the null space, theCholesky factors R0R of a quasi-Newton aproximation to the reduced hessian Hz,Hz = Z 0HZ , Hz 2 IRs�s , H = r2f(x)The evaluation of the Lagrange multipliers �0 = ( �10 �20 ) = � gB0 gC0 � �B�1and the reduced gradient can take pro�t of the procedures explained in [8] and [6].We consider that phase 0 and phase 1 have been performed, providing a feasiblevector y. The sets C and �S with a subindex x or z denote the subset of indices associatedwith arcs or slacks respectively. The proposed algorithm goes through the followingsteps :0. INITIALIZATIONS1. If kgzk � TGR go to 3..2. CHANGE OF THE ACTIVE SET2.1. Select, if possible, q 2 �Nz to leave �N . Go to 2.4.2.2. Select, if possible, q 2 �Nx to leave �N . Go to 2.4.2.3. Go to 11.2.4. Update �N , �S,�,gz and R if QNM.3. COMPUTING A FEASIBLE DESCENT DIRECTION3.1. Find pz3.2. Find p0 = � p �B0 p �S 0 p �N 0 �4. LINESEARCH4.1. Find �� = minf� �B; � �Sg. If �� = 0, set �� = 0 and go to 5.4.2. Estimate �� such that f(y + ��p) = min0<�<��f(y + �p)4.3. Update : gz,� and R if QNM.5. IF �� < �� , GO TO 8.6. BASIS CHANGE : VARIABLE p LEAVE �B6.1. If �� = � �S go to 7.6.2. Select, if possible, q 2 �Sz to become basic.Otherwise, select q 2 �Sx to become basic.6.3. If �� = �B : p 2 B $ q 2 �S , update : �B, �S, Q�1, gz,� and R if QNM.6.4. If �� = �Cx : p 2 Cx $ q 2 �S , update : �B, �S, Q�1, gz,� and R if QNM.



56.5. If �� = �Cz : p 2 Cz $ q 2 �S , update : �B, �S, Q�1, gz,�. and R if QNM.7. ELIMATION OF DEGENERATED S.B. VARIABLES7.1. Transfer degenerated variables from �S to �N7.2. Update gz. If QNM, update R8. ELIMINATION OF SUPERBASIC SLACKS IF �Sz 6= ;[8.1] q 2 �Sz $ p 2 Cx[8.2] Update C, �S,gz,� and R if QNM.9. REINVERSION OF Q.10. GO TO 1.11. STOP : OPTIMAL SOLUTION FOUND.3.1. Change of the active setThe evaluation of the Lagrange multipliers �0 = g �N 0 � �0 �N is easily carried outtaking into account the partition of g �N 0 = � g �Nx 0 g �Nz 0 �, �N and �0 = ( �10 �20 ).In step 2. slacks are priced out before than arcs. If a slack is found to be a goodcandidate, then it becomes superbasic, but only temporarily, because it is interchangedwith a nonkey arc at the end of the current iteration (step 8.). This strategy tries toimprove the stability of the solution of the systems of equations with coe�cient matrixQ introducing in it as many identity columns as possible.3.2. Descent directionsA descent direction on the null space pz is obtained solving the system :Hzpz = �gz (6)Two di�erent techniques to solve system (6) have been implemented :1) A truncated Newton method (TNM).2) A quasi{Newton method (QNM).The truncated{Newton method follows the strategy exposed by Dembo & Steihaugin [4]. It is based on the solution of system (6) by a conjugated gradient (CG) method.With regards to the use of the second derivatives, the CG algorithm only needs theaproximation to the Hessian H to compute the products Z 0HZd, where the vectorsd are the directions generated by the CG method in each iteration. This productsare computed actually using a forward �nite di�erence to approximate the productH(Zd). Proceeding in this way it is neither necessary to compute, nor to store, anyapproximation to Hessian matrix.When the quasi{Newton method is selected, program NOXCB follows the method-ology exposed by Murtagh & Saunders in [9]. The Cholesky factors R of an approxima-tion to the reduced Hessian (R0R � Hz) must be stored, updated and retriangularized



6whenever a change in the matrix Hz occurs. Matrix Hz is modi�ed when �B or �S changeand when a nonzero step is performed in the real variables x. In the �rst case, after theaddition or removal of certain number of rows/columns of R, the factor R is retriangu-larized via succesive Givens rotations. When a change in the variables is made , factorsR0R are updated with a complementary DFP formula. In order to update the factor Rit is necessary to perform a set of operations involving matrices �B, Z and �S wich cantake advantage of the structure exhibited by �A in (5).Once pz has been found, a feasible descent direction p0 = � p �B0 p �S 0 p �N 0 � canbe obtained making p = Zpz, that can be e�ciently computed following the proceduresexposed in [6].3.3. LinesearchIf � �B and � �S denote the maximal step length allowed by variables in �B and �S,respectively, a limited linesearch with 0 � � � �� = minf� �B; � �Sg must be executed inorder to the basic and superbasic bounds not to be violated by the iterated point. Infact, we must solve a nonlinear problem with simple constraints.Bertsekas in [1] introduces a method to solve this kind of problems where more thanone variable can be set to one of its bound simultaneously. Program NOXCB followsthe scheeme presented by Toint & Tuyttens in [12] to execute this special linesearch.In particular, the present version of NOXCB makes use of the quasi{active boundsstrategy for �nding the search direction p. In this strategy the algorithm for �ndingthe descent direction p acts only over the components of p associated with superbasicvariables without quasi{active bounds, and takes for the other components the reducedgradient direction. We will refer to this linesearch as LSBE. When a Bertsekas stepcannot be performed, a cubic �t with safeguards is made between � = 0 and � = ��.A cubic �t is also used when �S � �Sz, that is, the only superbasic variable existing isa slack. We will refer to this linesearch as LSCF. Both subroutines, LSBE and LSCFprovide, not only and estimation of ��, but also the new values of y, f(x) and g(x).3.4. Pivot operationsThe simultaneous presence in the network of arcs Cx and arcs �Sx makes the inter-pretation and the management of the pivot operation more di�cult than in the purenonlinear network 
ow problems. In presence of side constraints, it is possible for anarc p 2 B to change its value without forming cycle with any superbasic arc q 2 �Sx.The nonkey arcs can also change its value without being in a superbasic cycle. Thisspecial behaviour of the arcs of the spanning tree must be taken into account in thepivot operations.



74. Update of Q�1Matrix Q�1, the inverse of the working basis is found once at the beginning of the�rst iteration and updated when a change in the set �B occurs. Kennington & Helgasonexplain in [8] the way to update matrix Q�1 after a simplex pivot in the linear networkcase. In the nonlinear problem the procedure to update Q�1 when variables p 2 �Band q 2 �S are interchanged is similar as in the linear case. The only di�erence isthat the algorithm implemented can reorder the nonkey columns when q 2 �Sz. Thisreordering forces a new update of the type Q�1i+1 = Q�1i Ppk, with Ppk an elementarypermutation matrix. Reinversion takes place after a certain number of updates. MatrixQ�1 is stored in product form as an eta �le with a set of complementary vectors. Thiseta �le holds the coe�cients of the eta columns of the last reinversion and the infor-mation of all the updatings made since the last reinversion. This information is eithercoe�cients of column/row eta or two numbers denoting a nonkey column permutation.The reinversion routines implements the algorithm P3 proposed by Hellerman & Rarickin [5] and partial pivoting to ensure numerical stability.5. Input �les and user-written subroutinesIn order to de�ne the NNS problem, some information must be given to programNOXCB at the beginning of the optimization process. This information consists on aninput data �le and a subroutine. The data �le contains :1) The value of m, n, t and the number of non zero elements of the side constrains .2) Two vectors describing the oriented network.3) The vector of arc capacities4) The supply/demand vector5) The right-hand side vector of the side constraints.6) The vectors containing the sparse representation of the side constrains .The actual version of NOXCB stores the supply/demand vector, the capacity vectorand the elements of the side constraints as integer arrays. The user must provide asubroutine that computes the value of the objective function f(x) and the gradientvector g(x) = rf(x) at a given point x.A set of tolerances and control parameters are stored in a COMMON area. Itsdefault values are read from an input �le that users can easily modify . Some otheroperational parameters are requested interactively at the beginning of the execution.



86. Computational results6.1. Short Term Hydro-Thermal Coordination of Electricity GenerationThe developement of program NOXCB was motivated by the work of the authorsin the �eld of the Hydro-Thermal Coordination of Electricity Generation. This problemdeals with the study of a reservoir system for hydroelectric generation that must supplycertain amounts of electric energy at a time intervals of a given period of time. Theevolution in time of the reservoir system is modelled by dividing the whole period oftime into a certain number of intervals. At each interval the state of each reservoir isdescribed by the initial and �nal volume of water, the water in
ows ( natural in
ow andwater discharges from upstream reservoirs ) , and the water discharges. A replicatednetwork representing the reservoir system at each interval can be constructed. Thenonlinear objective function is the sum of thermal generation at each interval, being thethermal generation equivalent to the load minus hydro generation. Hydro generationis the sum of generations at each reservoir, which is a nonlinear function of initial and�nal volume and water discharges. Side constraints come either from hydro generationlimitations or from irrigation constraints. Generation limits are generally imposed ateach interval. The sum of generations at each reservoir ( here simpli�ed to be a linearfunction of water discharges) must be within limits. Irrigation constraints are linearcombinations of some discharges of reservoirs, at the same or in several time intervals,that must also be within limits.6.2. Numerical resultsThe numerical results for a set of real Hydro-Thermal Coordination problems arepresented in this last section. These problems represents several reservoirs systemslocated in Spain. Times are in seconds for executions on a VAXstation 3200 (VEGA)and a VAX 6410 (NEFTIS). # % it. time it. time it. timenodes arcs s.c. s.c. Ph.0 Ph.0 Ph.1 Ph.1 Ph.2 Ph.2TER01 49 228 24 49 82 2.9 16 0.3 171 10.7TER02 49 228 5 10 82 1.2 2 2.2 320 28.3EBRE01 79 390 26 33 282 8.1 1 0.2 601 52.1EBRE02 79 390 4 5 282 8.1 1 0.2 585 42.5(NEFTIS)Due to the high cost of the evaluation of f(x) for this kind of problems, QNMseems to be preferable than TNM, as shown in the next table :



9it. time time/ calls calls timePh.2 Ph.2 iter. f(x) ite. p �STER01 161 37.8 0.235 440 2.73 44% TNM(VEGA) 168 30.2 0.180 313 1.86 13% QNMEBRE01 1443 399.0 0.277 7272 5.04 63% TNM(NEFTIS) 1403 136.5 0.097 2796 1.99 9% QNMThe use of a Bertsekas like linesearch does not seem to improve the behaviour ofprogram NOXCB. The following table shows the results of the numerical experimentswith (LSBE) and without (LSCF) the Bertsekas linesearch :it. time time calls calls time #Ph.2 Ph.2 iter. f(x) ite. �� �STER01 172 27.7 0.161 322 1.87 51% 8 LSBE(VEGA) 198 30.5 0.154 355 1.79 49% 8 LSCFTER02 810 244.1 0.301 1849 2.28 58% 45 LSBE(VEGA) 908 239.0 0.263 1686 1.86 49% 45 LSCFEBRE01 1545 159.4 0.103 3592 2.32 70% 18 LSBE(NEFTIS) 1403 136.6 0.097 2796 1.99 64% 18 LSCFThe current version of program NOXCB does not produce total execution timeslower than those of the general purpuse program MINOS ([10]). However, additionalcomputational experiments have still to be performed to compare the behaviour of bothprograms starting at the same feasible point.REFERENCES[1] D.P. Bertsekas, \Constrained optimization and Lagrange multiplier methods" ,(Academic Press, London, 1982).[2] G.H. Bradley, G.G. Brown and G.W. Graves,\Design and implementation of largescale transshipment algorithms" Management Science 24 (1977) 1{34.[3] R.S. Dembo,\A primal truncated newton algorithm with application to large-scalenonlinear network optimization", Mathematical Programming Studies 31 (1987)43{71.
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