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1. Introduction

This paper deals with the solution of the nonlinear network flow problem with
linear side constraints. The problem to solve is the minimization of a nonlinear objective
function ( a cost function) whose variables are the values of the flows passing through
the capacitated arcs of an oriented network. We expect also this flows to satisfy a set of
linear inequality constraints, called the side constrains . The mathematical expression
of this problem is :

min f(r) )
subj. to: Az + eja =7 (2)
Tax +fz=0 (3)
0<z<u;z>0;:0<a<0 (4)

we will refer to this problem as the NNS problem. In this formulation we have that :

(1) is a nonlinear function f:IR" — IR. f(x) is suposed to be twice continuously
differenciable on the feasible set defined by the constraints (2) to (4). The variables
x € IR" represent the values of the arc flows in the network.

(2) represents the Network Equations. Matrix A € R™*" is the node-arc incidence
matrix and r € IR™ is the supply/demand vector. A root arc a has been introduced
in order to have a full row rank constraint matrix.

(3) is a set of t side constrains . We supose that + < m. The variables z € IR are the
slacks of the original inequality (“<”) side constraints.

u € IR" are the upper bounds assigned to the flows in each arc. Lower bounds
4 R” the upper bound igned to the fl i h L bound
I € IR" can be assimilated easily in this notation by making & = = — /.



We make the following assumptions about NNS :

1) The graph G the oriented network arises from is connected.
2) Matrix T has full row rank.
3) Total supply equals total demand.

Let y = (2 | 2/) .,y € IR"*", be a feasible point for NNS. We consider that
the subindex of slack variables z; denotes the number of the side constrains associated
with the slack ( z; = yn4i , ¢ = 1,...,1). In such a point, consider the columns of
A e 0
T 0 1
usual into a basic (B), superbasic (S) and non basic (N) sets It is important to show
explicitily the internal structure of matrix A :

the constraint matrix A = , and the associated variables, partitioned as

™m t 3 (n—m —s)
A=(B | S | N)= AB AC|0 |49 0 AN o m (5
T8 TC|\ECTSES TN EN| ¢

The symbols B = BUC, § and N stands for the sets of indices of basic, superbasic
and nonbasic variables respectively. These symbols, used as supraindex of matrices
A and T, represent the matrix formed with the columns of 4 or T associated with
variables in this sets. The column division of the basic matrix is the same proposed
by Kennington & Helgason in [8] for the linear problem. Columns denoted by B are
called key columns and are associated to the arcs of a spanning tree of the graph
G. Columns denoted by C are called nonkey columns and can be linked to basic arcs
not belonging to the spanning tree, or to slacks. Matrix ESY? denotes a matrix of ¢
rows whose columns are the unitary vectors e; of IR! associated to the slacks z; with

(n+i)e SUP ={B,C.S,N}.

Kennington & Helgason show in [8] the procedure to compute systems By = z and
2’ = y'B, each one of dimension m + f solving systems of equations with matrix A5,

that can be efficiently computed exploiting the data structure of the spanning tree, and
systems of equations with coefficient matrix Q = (T¢ | E¢) — TBAB™! (A€ ] 0)
, of dimension t x t. Matrix ) is called the working basis, and plays a central role.
These procedures are applied in [8] to solve the linear network flow problem with linear
side constraints with an specialized simplex algorithm . The authors of this paper have
extended the method developed by Kennington & Helgason for the linear problem to
the nonlinear case. In this extension, the management of the basic matrix B introduced



in [8] and the special structure of the constraint matrix A has been used to allow the
treatment of the side constrains within the general framework of the pure nonlinear
network flow algorithms. The algorithm proposed by the authors has been presented in
[6]. An implementation of this algorithm has been coded in FORTRAN. In the following
sections the main features of the resulting program, called NOXCB, are described,
together with the very first computational results obtained.

2. Computation of a feasible solution.

Program NOXCB finds a feasible solution for NNS in the following way :

1. (Phase 0) Find & feasible for the network equations (A% = r)
2. (Phase 1) Define I = {7 T3 > bi}
3. Add excess variables to the side constrains : Ta + Tz — 1f =b
4. Define the starting point g as :
' " Lo 0 el T'% —b; 1€l
5. Solve
min Z fi
1€l
subj. to 1 Az + ea =r
Tx +fTz—1f=0b
0<z<u;z>0;a=0;f>0
with the feasible initial point .
If Z fi = 0 at the optimal point y* then y*' = (z*' | 2z*') is feasible for
1€l
NNS.
Remarks :

1) Step 1., called here phase 0, consists on the phase 1 of a pure linear network flow
problem. It is solved with the LEXA routines ( Nabona, [11] ).

2) The problem stated in step 5. is a linear network flow problem with linear side
constraints. It is solved with an implementation of the algorithm proposed by

Kennington & Helgason ( see Heredia & Nabona [7] )



3. The algorithm

The structure of the proposed algorithm is outlined in this section. Assume that
in each iteration we have the following :

1) A feasible vector y : Ay =7 ,0<ax<u,0<z, 7" =(r | V).
7 7 7

2) f(z) and g(x)' = (g8 | ¢5 | ¢V)

3) The tree structure of the matrix AB.

4) The product form of the inverse Q'

5) The Lagrange multipliers 7 satifying : 7’ = gBIB*1

6) The reduced gradient g. = Z'¢g , g. € IR* :

7) Depending on the method selected for the minimization on the null space, the
Cholesky factors R'R of a quasi-Newton aproximation to the reduced hessian H.,

H.=Z7'HZ ,H. e R, H=V%f(x)

The evaluation of the Lagrange multipliers 7/ = (7'’ | 72y = (gBI | gcl> B!
and the reduced gradient can take profit of the procedures explained in [8] and [6].

We consider that phase (0 and phase 1 have been performed, providing a feasible
vector y. The sets C and S with a subindex # or z denote the subset of indices associated
with arcs or slacks respectively. The proposed algorithm goes through the following
steps :

0. INITTALIZATIONS
1. If ||g.]| > TGR go to 3..
2. CHANGE OF THE ACTIVE SET
2.1. Select, if possible, ¢ € N, to leave N'. Go to 2.4.
2.2. Select, if possible, ¢ € N, to leave N'. Go to 2.4.
2.3. Go to 11.
2.4. Update N,S,7.g. and R if QNM.
3. COMPUTING A FEASIBLE DESCENT DIRECTION
3.1. Find p.
3.2. Findp' = (p8" | »5° | pV')
4. LINESEARCH
4.1. Find o = min{a®, a5} If & =0, set o* = 0 and go to 5.
4.2. Estimate o* such that f(y + a*p) = min f(y + ap)

I<a<a
4.3. Update : ¢.,m and R if QNM. =t

. IF o <a, GO TO 8.
6. BASIS CHANGE : VARIABLE p LEAVE B

6.1. If o* = a% go to 7.

6.2. Select, if possible, ¢ € S. to become basic.

Otherwise, select ¢ € S, to become basic.
6.3. fa=af :peBeogeS , update: B.S, Q' g.,m and R if QNM.
6.4. fa=a% : pelC, - qeS , update: B.S, Q' ¢g.,m and R if QNM.

o)1
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6.5. fa=a% :pelC. - q¢eS ,update: B.S,Q ', ¢g.,m. and R if QNM.
7. ELIMATION OF DEGENERATED S.B. VARIABLES
7.1. Transfer degenerated variables from S to A
7.2. Update ¢g,. If QNM, update R
8. ELIMINATION OF SUPERBASIC SLACKS IF S. +# ()
8.1 ¢ € S. <= p € C,
[8.2] Update C,S,g.,7 and R if QNM.
9. REINVERSION OF (.
10. GO TO 1.
11. STOP : OPTIMAL SOLUTION FOUND.

3.1. Change of the active set

/
The evaluation of the Lagrange multipliers ¢/ = gV — 7'N is easily carried out

taking into account the partition of gNl = (gi\/’l | gé\fl>7 N and 7' = (7r1l | 72 ).
In step 2. slacks are priced out before than arcs. If a slack is found to be a good
candidate, then it becomes superbasic, but only temporarily, because it is interchanged
with a nonkey arc at the end of the current iteration (step 8.). This strategy tries to
improve the stability of the solution of the systems of equations with coefficient matrix
@ introducing in it as many identity columns as possible.

3.2. Descent directions

A descent direction on the null space p, is obtained solving the system :

Hzpz = —4g: (6)

Two different techniques to solve system (6) have been implemented :

1) A truncated Newton method (TNM).
2) A quasi Newton method (QNM).

The truncated Newton method follows the strategy exposed by Dembo & Steihaug
in [4]. Tt is based on the solution of system (6) by a conjugated gradient (CG) method.
With regards to the use of the second derivatives, the CG algorithm only needs the
aproximation to the Hessian H to compute the products Z'H Zd, where the vectors
d are the directions generated by the CG method in each iteration. This products
are computed actually using a forward finite difference to approximate the product
H(Zd). Proceeding in this way it is neither necessary to compute, nor to store, any
approximation to Hessian matrix.

When the quasi Newton method is selected, program NOXCB follows the method-
ology exposed by Murtagh & Saunders in [9]. The Cholesky factors R of an approxima-
tion to the reduced Hessian (R'R &~ H.) must be stored, updated and retriangularized



whenever a change in the matrix H. occurs. Matrix H. is modified when B or § change
and when a nonzero step is performed in the real variables x. In the first case, after the
addition or removal of certain number of rows/columns of R, the factor R is retriangu-
larized via succesive Givens rotations. When a change in the variables is made , factors
R'R are updated with a complementary DFP formula. In order to update the factor R
it is necessary to perform a set of operations involving matrices B, Z and S wich can
take advantage of the structure exhibited by A in (5).

/

Once p. has been found, a feasible descent direction p’ = (pB | pSl

) ean
be obtained making p = Zp., that can be efficiently computed following the procedures
exposed in [6].

3.3. Linesearch

If of and o denote the maximal step length allowed by variables in B and S,
respectively, a limited linesearch with 0 < o < o = min{a®, a®} must be executed in
order to the basic and superbasic bounds not to be violated by the iterated point. In
fact, we must solve a nonlinear problem with simple constraints.

Bertsekas in [1] introduces a method to solve this kind of problems where more than
one variable can be set to one of its bound simultaneously. Program NOXCB follows
the scheeme presented by Toint & Tuyttens in [12] to execute this special linesearch.
In particular, the present version of NOXCB makes use of the quasi active bounds
strategy for finding the search direction p. In this strategy the algorithm for finding
the descent direction p acts only over the components of p associated with superbasic
variables without quasi active bounds, and takes for the other components the reduced
gradient direction. We will refer to this linesearch as LSBE. When a Bertsekas step
cannot be performed, a cubic fit with safeguards is made between o = 0 and o = «.
A cubic fit is also used when § = §., that is, the only superbasic variable existing is
a slack. We will refer to this linesearch as LSCF. Both subroutines, LSBE and LSCF

provide, not only and estimation of a*, but also the new values of y, f(2) and g(x).
3.4. Pivot operations

The simultaneous presence in the network of arcs C, and arcs S, makes the inter-
pretation and the management of the pivot operation more difficult than in the pure
nonlinear network flow problems. In presence of side constraints, it is possible for an
arc p € B to change its value without forming cycle with any superbasic arc ¢ € S,..
The nonkey arcs can also change its value without being in a superbasic cycle. This
special behaviour of the arcs of the spanning tree must be taken into account in the
pivot operations.



4. Update of Q'

Matrix Q ', the inverse of the working basis is found once at the beginning of the
first iteration and updated when a change in the set B occurs. Kennington & Helgason
explain in [8] the way to update matrix Q' after a simplex pivot in the linear network
case. In the nonlinear problem the procedure to update Q' when variables p € B
and ¢ € & are interchanged is similar as in the linear case. The only difference is
that the algorithm implemented can reorder the nonkey columns when ¢ € S.. This
reordering forces a new update of the type Q;_H = Qﬂppk7 with P,; an elementary
permutation matrix. Reinversion takes place after a certain number of updates. Matrix
Q' is stored in product form as an eta file with a set of complementary vectors. This
eta file holds the coefficients of the eta columns of the last reinversion and the infor-
mation of all the updatings made since the last reinversion. This information is either
coefficients of column /row eta or two numbers denoting a nonkey column permutation.
The reinversion routines implements the algorithm P* proposed by Hellerman & Rarick
in [5] and partial pivoting to ensure numerical stability.

5. Input files and user-written subroutines

In order to define the NNS problem, some information must be given to program
NOXCB at the beginning of the optimization process. This information consists on an
input data file and a subroutine. The data file contains :

1) The value of m, n, t and the number of non zero elements of the side constrains .
2) Two vectors describing the oriented network.

3) The vector of arc capacities

4) The supply/demand vector

5) The right-hand side vector of the side constraints.

G) The vectors containing the sparse representation of the side constrains .

The actual version of NOXCB stores the supply/demand vector, the capacity vector
and the elements of the side constraints as integer arrays. The user must provide a
subroutine that computes the value of the objective function f(2) and the gradient
vector g(x) = Vf(x) at a given point .

A set of tolerances and control parameters are stored in a COMMON area. Tts
default values are read from an input file that users can easily modify . Some other
operational parameters are requested interactively at the beginning of the execution.



6. Computational results

6.1. Short Term Hydro-Thermal Coordination of Electricity (Generation

The developement of program NOXCB was motivated by the work of the authors
in the field of the Hydro-Thermal Coordination of Electricity Generation. This problem
deals with the study of a reservoir system for hydroelectric generation that must supply
certain amounts of electric energy at a time intervals of a given period of time. The
evolution in time of the reservoir system is modelled by dividing the whole period of
time into a certain number of intervals. At each interval the state of each reservoir is
described by the initial and final volume of water, the water inflows ( natural inflow and
water discharges from upstream reservoirs ) , and the water discharges. A replicated
network representing the reservoir system at each interval can be constructed. The
nonlinear objective function is the sum of thermal generation at each interval, being the
thermal generation equivalent to the load minus hydro generation. Hydro generation
is the sum of generations at each reservoir, which is a nonlinear function of initial and
final volume and water discharges. Side constraints come either from hydro generation
limitations or from irrigation constraints. Generation limits are generally imposed at
each interval. The sum of generations at each reservoir ( here simplified to be a linear
function of water discharges) must be within limits. Irrigation constraints are linear
combinations of some discharges of reservoirs, at the same or in several time intervals,
that must also be within limits.

6.2. Numerical results

The numerical results for a set of real Hydro-Thermal Coordination problems are
presented in this last section. These problems represents several reservoirs systems
located in Spain. Times are in seconds for executions on a VAXstation 3200 (VEGA)
and a VAX 6410 (NEFTIS).

# % it.  time it. time it. time

nodes arcs s.c. s.c. Ph.0 Ph.0 Ph.1 Ph.1 Ph.2 Ph.2

TERO1 | 49 228 24 49 82 2.9 16 0.3 171 10.7
TERO2 | 49 228 5 10 82 1.2 2 22 320 283
EBREO1| 79 390 26 33 282 8.1 1 02 601 52.1

EBRE02| 79 390 4 5 282 8.1 1 0.2 585 425
(NEFTIS)

Due to the high cost of the evaluation of f(a) for this kind of problems, QNM
seems to be preferable than TNM, as shown in the next table :



it.  time time/ calls calls time

Ph.2 Ph.2 iter. f(z) ite. p°
TERO1 | 161 37.8 0.235 440 2.73 44% TNM
(VEGA) | 168 30.2 0.180 313 1.86 13% QNM
EBRE01|1443 399.0 0.277 7272 5.04 63% TNM
(NEFTTS) |1403 136.5 0.097 2796 1.99 9% QNM

The use of a Bertsekas like linesearch does not seem to improve the behaviour of
program NOXCB. The following table shows the results of the numerical experiments
with (LSBE) and without (LSCF') the Bertsekas linesearch :

it.  time time calls calls time

#
Ph.2 Ph.2 iter. f(x) ite. «* S
8
8

TERO1 | 172 27.7 0.161 322 1.87 51%
(VEGA) 198 30.5 0.154 355 1.79 49% LSCF
TER02 | 810 244.1 0.301 1849 2.28 58% 45 L.SBE
(VEGA) 908 239.0 0.263 1686 1.86 49% 45 LSCF
EBRE01|1545 159.4 0.103 3592 2.32 70% 18 L.SBE
(NEFTIS) [1403 136.6 0.097 2796 1.99 64% 18 LSCF

I.SBE

The current version of program NOXCB does not produce total execution times
lower than those of the general purpuse program MINOS ([10]). However, additional
computational experiments have still to be performed to compare the behaviour of both
programs starting at the same feasible point.
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