Optimal Thermal and Virtual Power Plants Operation in the Day-ahead Electricity Market

F. Javier Heredia Marcos J. Rider Cristina Corchero f.javier.heredia@upc.edu marcos.rider@upc.edu cristina.corchero@upc.edu Group on Numerical Optimization and Modeling Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

This work was supported by the Ministerio de Educación y Ciencia of Spain under Project DPI2005-09117-C02-01

May 29, 2008

F. Javier Heredia, Marcos J. Rider, Cristina Corchero APMOD 2008

Introduction and motivation

- The new rules of the Iberic electrical energy production market operation (June 2008) bring new challenges in the modeling and solution of the production market operation.
- The Royal Decree 1634/2006 imposes to Endesa and Iberdrola to hold a series of five auctions offering virtual power plant (VPP) capacity to any party who is a member of the MIBEL.
- This work develops an stochastic programming model for a Generation Company (GenCo) to find the optimal management of a VPP in the day-ahead market under the most recent bilateral contracts regulation rules of Iberic energy market.

Introduction and motivation

- The VPP capacity means that the buyer of this product will have the capacity to generate MWh at his disposal.
- The buyer can exercise the right to produce against an exercise price that is set in advance, by paying an option premium.
- The energy resulting from the exercise of the VPP options can be used by buyers both:
 - To contribute to the covering of the national and international bilateral contracts prior to the day-ahead market; or
 - To sell it to the day-ahead market.
- In this last case, the unmatched VPP energy, if any, can be sold through national bilateral contracts after the day-ahead market.

Introduction and motivation

> The model allows a price-taker generation company to decide

- The unit commitment of its thermal units;
- The economic dispatch of the bilateral contracts between the thermal and generic programming units; and
- The optimal bid for both thermal and generic programming units, observing the lberic peninsular regulation.
- Maximizing the expected profit from its involvement in the spot market, bilateral contracts and virtual power plan capacity.

Optimization model

- Consider a GenCo with a set of T thermal generation units (coal, nuclear, fuel, gas, combined cycle) and a generic programming unit (GPU).
- The GPU is the unit that managment the VPP options, and can be integrated into the energy production system.
- Assume that the GenCo has agreed to physically provide the energy amounts L^B_{ij} at hour i ∈ I = {1, 2, ..., 24} of day D for each one of the j ∈ B bilateral contracts.
- This energy L^B_{ij} can be provided both by the real thermal units T and the GPU, that is:

$$\sum_{t\in\mathcal{T}}b_{itj}^{\tau}+b_{ij}^{\scriptscriptstyle G}=L_{ij}^{\scriptscriptstyle B}\quad j\in\mathcal{B}\,,\ i\in\mathcal{I} \tag{1}$$

The spot price

- The spot price λ^D_i is an stochastic variable with the characteristics of a financial time series.
- This random variable is discretized on a fan of scenarios λ^{D,s} with probabilities P^s = P(λ^{D,s}) for all scenarios s ∈ S.
- The spot market has been characterized by an auto-regressive integrated moving average model ARIMA.
- Once the model has been fitted, there has been done many simulations of it in order to obtain many possible scenarios of prices.
- Finally the set of scenarios has been reduced preserving at maximum the characteristics of the simulated tree.

- * 同 * * き * * き * … き

Modellization of the thermal units

- ► Regarding the thermal unit t, the model proposed performs three basic decisions for each hourly auction i ∈ I:
 - Its commitment (binary variable u_{it});
 - The energy assigned to each bilateral contract $(b_{it}^{T} = \sum b_{itj}^{T})$;
 - The optimal selling bid.
- Under the price-taker assumption and MIBEL rules, the matched energy at scenario s resulting from the clearing of the day-ahead market can be expressed as:

$$p_{it}^{T,s}(b_{it}^{T},\lambda_{i}^{D,s}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall t \in \mathcal{T} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$

$$(2)$$

where $p_{it}^{D,s}$ is a constant that depends on the characteristics of the thermal unit and the spot price at scenario *s*, $\lambda_i^{D,s}$.

Modellization of the thermal units

The non-differentiable expression (2) can be incorporated into the optimization model through an equivalent set of mixed-linear constraints.

$$p_{it}^{T,s} = p_{it}^{D,s} u_{it} + v_{it}^{s} - b_{it}^{T}$$

$$p_{it}^{D,s} (z_{it}^{s} + u_{it} - 1) \leq b_{it}^{T}$$

$$b_{it}^{T} \leq p_{it}^{D,s} (1 - z_{it}^{s}) + \overline{p}_{t} (z_{it}^{s} + u_{it} - 1)$$

$$0 \leq p_{it}^{T,s} \leq p_{it}^{D,s} (1 - z_{it}^{s}) \leq p_{it}^{D,s} u_{it}$$

$$0 \leq v_{it}^{s} \leq (\overline{p}_{t} - p_{it}^{D,s}) (z_{it}^{s} + u_{it} - 1)$$

$$p_{it}^{s} = p_{it}^{T,s} + b_{it}^{T}$$

$$b_{it}^{T} \in [0, \overline{p}_{t}]$$

$$z_{it}^{s} \in \{0, 1\}$$

$$(3)$$

F. Javier Heredia, Marcos J. Rider, Cristina Corchero APMOD 2008

► The Eq. (4) are used to formulate the minimum up and down times for thermal unit t.

글 > 글

• where \mathcal{U}^{T} is the initial feasible set of those variables.

Modellization of the generic programming unit

- Through the GU the GenCo has at its disposal up to p̄^ν MWh of capacity at a price λ^ν, and also the possibility of buying and selling energy from the pool.
- The optimal decisions involving the management of the GPU are, for each hourly auction of the day-ahead market,
 - The "generation. of the VPP (p_i^v) ,
 - The energy $b_i^{_G} = \sum_{j \in \mathcal{B}} b_{ij}^{_G}$ to be allocated to bilateral contracts,
 - The optimal selling and buying bid to the pool, which depends on the scenario.
- Once again, under the price-taker assumption the optimal selling and buying bid functions for the GU can be developed and used to derive the expressions of the *matched sold* (p_i^{s,s}) and *matched bought* (p_i^{B,s}) energy at each scenario s ∈ S.

Modellization of the generic programming unit

$$p_i^{s,s}(b_i^G, p_i^V) = \begin{cases} [p_i^V - b_i^G]^+ & \text{if } s \in \mathcal{M}_i^S \\ 0 & \text{if } s \notin \mathcal{M}_i^S \\ p_i^{B,s}(b_i^G, p_i^V) = \begin{cases} \min\{b_i^G, \overline{p}^V - p_i^V\} \text{ if } s \in \mathcal{M}_i^B \\ 0 & \text{if } s \notin \mathcal{M}_i^B \end{cases} \quad \forall s \in \mathcal{S} \end{cases}$$

 In case the energy b^G_i exceeds the maximum VPP capacity p^V a mandatory accepting-price buying bid p^{R,s}_i must be placed:

$$p_i^{R,s}(b_i^G) = \begin{cases} [b_i^G - \overline{p}^V]^+ & \text{if } s \in \mathcal{M}_i^B & \forall i \in \mathcal{I} \\ 0 & \text{if } s \notin \mathcal{M}_i^B & \forall s \in \mathcal{S} \end{cases}$$

The these non-differentiable expressions can be formulated through an equivalent set of mixed-linear constraints.

Final model

► Additionally, any GU operating in the MIBEL must satisfy at each hour *i* ∈ *I* that the net energy balance of the GU must be zero, with the help, if necessary, of the so called *bilateral contracts after de day-ahead market*.

$$p_i^{V} + p_i^{B,s} + p_i^{R,s} + b_i^{B,s} = p_i^{S,s} + b_i^{S,s} + b_i^{G} \qquad \forall s \in \mathcal{S}, \forall i \in \mathcal{I}$$

- The objective of the producer is to maximize the expected profit from its involvement in the spot market, bilateral contracts and virtual power plan capacity.
- The model corresponds to a mixed quadratic two-stage stochastic programming problem.

- The model was solved with real data of a Spanish generation company and market prices.
 - 25 Day-ahead market price scenarios;
 - 24 hours of study;
 - 10 thermal units;
 - 2 bilateral contracts;
- The model was tested for three different cases:
 - (a) A GenCo without GPU;
 - (b) A GenCo with GPU but without VPP capacity; and
 - (c) A GenCo with GPU and VPP capacity.
- The model has been implemented and solved with AMPL/CPLEX 11.
- The CPU time using a Dell Optiplex 745 with two processors at 2.13 GHz and 2 Gb of RAM memory is approximately 200 s.

The mathematical characteristics of the model.

Case	Constraints	Real variables	Binary variables
(a)	41464	17340	6720
(b)	45064	17988	7344
(c)	48088	18636	7368

The expected profit values for all study cases

Case (a)	Case (b)	Case (c)
617.624,95€	692.587,52€	1.005.643,91€

æ

- The results show that the worse profit is obtained with case (a), where the thermal units are responsible to cover bilateral contracts, losing an opportunity to obtain a greater profit selling its energy to the day-ahead market.
- Case (b) obtains a greater profit than case (a), due to the possibility of being able to buy cheaper energy in the day-ahead market to cover the bilateral contracts and to avoid the use of expensive thermal units.
- The greater profit is obtained in the case (c) where the VPP capacity is used to sell in the day-ahead market and to cover part of the bilateral contracts, using the same advantages of the case (b).

Unit commitment of the thermal units for all study cases.

F. Javier Heredia, Marcos J. Rider, Cristina Corchero

APMOD 2008

- < ∃ →

æ

Sold and bought optimal bid of the GPU for the study cases B and C.

Operation planning for study case (c).

F. Javier Heredia, Marcos J. Rider, Cristina Corchero

APMOD 2008

Conclusions

- The main contributions of this paper are:
 - A new model for the optimal thermal bid function and matched energy who takes into account the presence of bilateral contracts.
 - The mathematical modellization of the generic programming units and the Virtual Power Plants.
 - The modellization of the optimal bid functions and matched energy of the GPU.
 - The inclusion in the optimization model of the bilateral contracts after the day-ahead market.
 - The consideration of the most recent regulations of the MIBEL energy market.

æ

Optimal Thermal and Virtual Power Plants Operation in the Day-ahead Electricity Market

F. Javier Heredia Marcos J. Rider Cristina Corchero f.javier.heredia@upc.edu marcos.rider@upc.edu cristina.corchero@upc.edu Group on Numerical Optimization and Modeling Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

This work was supported by the Ministerio de Educación y Ciencia of Spain under Project DPI2005-09117-C02-01

May 29, 2008

F. Javier Heredia, Marcos J. Rider, Cristina Corchero APMOD 2008