
1SHORT-TERM HYDROTHERMAL COORDINATION BY AUGMENTEDLAGRANGEAN RELAXATION: A NEW MULTIPLIER UPDATINGCesar Beltran, F.Javier HerediaStatistics and Operations Research DepartmentUniversitat Polit�ecnica de CatalunyaPau Gargallo 5, 08028-Barcelona. Spaine-mail: heredia@eio.upc.esPhone: +34-3-4017335FAX: +34-3-4015855Abstract : Augmented Lagrangean Relaxation Method (ALRM) is one of the most powerfull techniqueto solve the Short-Term Hydrothermal Coordination Problem (STHC Problem ). A crucial step whenusing the ALR Method is the multipliers updating. In this paper we present an e�cient new multiplierupdating procedure: the Gradient Method with Radar Step. The method has been successfully testedsolving large-scale exemples of the STHC Problem .Keywords : Augmented Lagrangean RelaxationMethod, Gradient Method with Radar Step, Large-scaleOptimization, Short-term Hydro-thermal Coordination Problem, Variable Duplication.IntroductionThe problem we are going to deal with is called the Short-term Hydro-thermal Coordination (SHTC)Problem . The objective of the problem is the optimization of the electrical production and distributionconsidering a short-term planning horizon (from one day to one week). Hydraulic and thermal plantsmust be coordinated in order to reach the customer demand of electricity at the minimum cost and witha reliable service.The model for the STHC Problem presented here considers the thermal park, the hydraulic park andthe transmission network. The starting point will be the paper by Batut and Renaud [1992] and thereforewe will use the Variable Duplication plus the Augmented Lagrangean Relaxation (ARL) Method. Theimprovement of Batut and Renaud Method will be theoretical and practical.Theoretically, one of themain drawbacks of the ALR Method is the multiplier updating because its heuristic character. We willintroduce an e�ective and non heuristic updating procedure. From a practical point of view, an e�ectivesoftware designed to solve the Optimum Short-Term Hydrothermal Scheduling Problem (Heredia andNabona [1995]) will be incorporated in order to speed up the whole algorithm.This paper has been structured in the following sections:1.- Formulation of the problem.2.- Solution Algorithm: We report the main features of the ALR Method and introduce a newmultiplier updating method, the Gradient Method with Radar Step.3.- Modeling the STHC Problem : We report our particular model for the STHC Problem fullyexplained in Heredia and Nabona [1995].4.- Solving the STHC Problem : The Gradient Method with Radar Step is implemented in theframework of the ALR Method in order to solve the STHC Problem .5.- Computational tests.6.- Conclusions.7.- References.FormulationThe optimization problems here considered are of the following type (P1):Min f(x) = CD1(x) +CD2(x)s:a: x 2 D1x 2 D2 9>=>; (1)Where:� D1 represents the feasible set de�ned by the constraints coupling the hydro, thermal and trans-mission systems: load constraints, spinning reserve constraints, etc.� D2 represents the operating domain of the thermal units.



2� CD1(x) represents the costs asociated with D1� CD2(x) represents the costs associated with D2We will use the method called Variable Duplication used already by the authors Batut and Renaud[1992]. The method of Variable duplication consists of exactly what the name proposes, duplicating thevector of the variables x giving way to ~x, to later add the constraint of equality i.e. x = ~x. Thus, we willsolve the following transformation of (P1):Min f(x; ~x) = CD1(x) +CD2(~x)s:a: x 2 D1~x 2 D2x = ~x 9>>>=>>>; (2)Solution algorithm.The Lagrangean Relaxation Method is the most promising procedure to solve the STHC Problem .The initial Classical Lagrangean Relaxation Method was ameliorated by the ALR Method during the lastdecade. Recent advances in the multiplier updating (Cutting Plane Methods and Bundle Methods )forthe Classical Lagrangean Relaxation have brought back to fashion this classical method. The multipliermethod that we present in this paper improves notably the multiplier updating for ALR Method whilekeeps its previous advantages in relation to the Classical Lagrangean Relaxation Method.Some advantages of the ALR Method are� In the ALR Method we maximize a concave function: the dual function qc(�).� The ALR Method allows us to obtain a saddle-point even in the in cases where the ClassicalLagrangean Relaxation Method presents a duality gap (Minoux [1983]). The solution of the STHCProblem by the Classical Lagrangean Relaxation Method usually yields an infeasible primal solutionxk due to the duality gap, whereas in the ALR Method a solution of the dual problem yields aprimal solution.� The ALR Method been a penalty method enjoys of its good performance characteristics and avoidsits ill conditioning due to the need of large penalty parameters.� Using the Classical Lagrangean Relaxation Method , the di�erentiability of the dual function cannotbe ensured. Therefore subgradient methods must be applied in the Classical Lagrangean RelaxationMethod . This di�culty can be overcome using an Augmented Lagrangean since the dual functionqc is di�erentiable for an appropriate c (Bertsekas [1995]). Thus, the multipliers can be updatedusing 'large steps'.The weaknesses of the ALR Method are:� The quadratic terms introduced by the Augmented Lagrangian are not separable. If we wantto solve a problem by decomposition, some methods such as the Auxiliary Problem Principle,Cohen [1980], or the Block Coordinate Descend (Bertsekas [1995 ]) must be used. On the otherhand the Classical Lagrangean Relaxation Method gives a separable Lagrangian.� The multiplier updating is done in a heuristic way (Bertsekas [1995]) that needs to be tuned.�k+1 = �k + ckrqc(�k) (3)We will introduce a new multiplier updating procedure that overcomes completely this di�culty: theGradient Method with Radar Step.



3The Gradient Method with Radar Step.The objective of the method is to maximize a di�erentiable and concave function q(�) withoutconstrictions. This method uses the same information than the Cutting Plane Methods but in a di�erentway. The tangent planes obtained in the course of the optimization give us a �rst order approximationof q(�) . The Cutting Plane Method directly optimizes the successive approximations of q(�). TheRadar Step Method uses the approximation to q(�) in order to compute the step length for an ascenddirection (such as the gradient). Although convergence of the Radar Step method has not been provedyet, experience shows a very good behavior regarding convergence.The Gradient-Radar Method can be summarized as follow:GRM1.- Take an initial estimate �0 of the optimum. Set k= 0.GRM2.- Compute the gradient vector gk := rq(�k) . Let �k be the �rst order approximation of q(�)at the point (�k; q(�k)) i.e. �k is the tangent plane de�ned by gk . Store the tangent plane �kGRM3.- If gk = 0 then stop. �k is the optimum.GRM4.- Computing the step length. Move on �k in such a way that �k+1 follows the line �k+1 =�k + �gk , with � > 0 . Keep moving up to the �rst stopping tangent plane �j with j < k, that means we stop the advance of �k+1 for a value of �, lets call this value �k. If no suchstopping plane exist set �k = stepkgkk , for a pre�xed value of step. Compute �k+1 = �k + �kgkGRM5.- Set k = k + 1 and go back to GRM2Augmented Lagrangean plus Gradient-Radar Method.The objective of the ALRMethod is to maximize a di�erentiable and concave function (the dual func-tion qc(�) ) without restrictions, characteristics fully coincident with the requirements of the Gradient-Radar Method. Note that in the resolution of the STHC Problem we must relax only equality restrictionsof the primal problem in order to get a dual problem with no restrictions upon the dual variables (mul-tipliers). Then the algorithm that we will use to solve the STHC Problem is summarized as follow:Suppose we want to solve (P3) Minff(x) : x 2 D;h(x) = 0g then the ALR Method solvesMaxfqc(�) : � 2 Rng whereqc(�) :=Minff(x) + �0h(x) + c k h(x) k2: x 2 Dg (4)qc(�) is called the Dual Function, andLc(x; �) = f(x) + �0h(x) + c k h(x) k2 (5)is called the Augmented Lagrangean Function. The ALR Method can be summarized in the followingsteps:ALR1.- Take an initial estimate �0 of the Lagrange Multipliers. Set k= 0.ALR2.- Compute qc(�k) to obtain xk.ALR3.- If the gradient of the dual function rqc(�k) = 0 then stop. xk optimizes (P3).ALR4.- Otherwise actualize the multipliers �k using the Gradient-Radar Method.ALR5.- Set k= k+1 and go back to ALR2.This new multiplier updating improves the classical updating in:� No parameter tuning needs to be done.� The Radar Step Method, unlike the classical multiplier updating method, is based on a directknowledge of the dual function given that uses a �rst order approximation of the dual function.� The information used by the Radar Step Method is free of any cost in the Lagrangean Frameworkbecause the gradient of the dual function is given by the unfeasibility of the relaxed constrictioni.e. rqc(�k) = h(xk)� The consequence of this almost free knowledge of the dual function is a computationally e�cientand faster updating method.



4Modeling the STHC ProblemThe general expression of the Short-Term Hydrothermal Coordination problem (P1) could be de-veloped in several di�erent ways. The approach adopted in this paper follows the so called CoupledModel presented in Heredia and Nabona [1995]. This model takes into account the hydroelectric energygeneration system as well as the thermal system and the transmission network. The variable vector x ofproblem (P1) splits in three di�erent vectors, xH for the variables related with the hydroelectric system(volume, discharges and spillages of each reservoir), xT for the thermal variables (power output andspinning reserve of each thermal unit), and variables xE which accounts for the power 
ow through theelectric transmission network. In the Coupled Model the constraints relating all these variables (domainD1 of problem (P1)) are expressed through a network 
ow model with side constraints:AHTT 0@xHxTxE 1A = bHTT (6)h(xH ; xE ) = 0 (7)TISRxT � bISR (8)TDSRxT � bDSR (9)TKVLxE = 0 (10)xH � xH � �xH (11)xT � xT � �xT (12)xE � xE � �xE (13)where� (6): are the network constraints are those associated with the so calledHydro-Thermal-TransmissionExtended Network (HTTEN). The HTTEN integrates the replicated hydro network, which accountsfor the time and space coupling among the reservoirs of the river basin, the thermal equivalentnetwork which de�nes the relation between the power output and the spinning reserve level of eachthermal unit, and the transmission network, which formulates the conservation of the power 
owat the busses of the transmission system.� (7): these nonlinear side constraints de�nes the injection of the hydroelectric generation ( a nonlinearfunction of the variables xH ) into the appropriate busses of the transmission network.� (8),(9): These two sets of linear side constraints impose the satisfaction of the incremental anddecremental spinning reserve requirements of the whole system.� (10): these last set of linear side constraints are the formulation of the Kircho� Voltage Law. Theseconstraints, together with the power 
ow conservation equations formulated in (6), represents a dcapproach to the transmission network.� (11),(12),(13): upper and lower bounds to the variables.The formulation of the domain D1 as a network 
ow problem with side constraints allows the useof specialised network optimization codes. Also, the 
exibility of this model is such that other relevantsystem constraints can be easily added, as, for instance, security constraints and emission constraints(Chiva et al. [1995]).The operating domain D2 of problem (P1) copes with the restrictions of the unit commitmentproblem, namely, the minimum down time and maximum up time of the thermal units.The �rst term of the objective function of (P1), CD1(xT ) represents the cost of the fuel consumptionof the thermal units, and it is modeled as a quadratic function of the power output of each thermal unit.This term could also include an estimation of the cost of the power losses through a quadratic functionof some of the variables xE . The second part, CD2(x) includes the start-up and shut-down costs of thethermal units, and depends only on the thermal variables xT .



5Solving the Short-Term Hydrothermal Coordination Problem: the MACH algorithm.We will follow and improve the method described by Batut and Renaud [1992] in the solution ofthe STHC Problem . The method uses Augmented Lagrangean Relaxation and Duplication of variables,previous software used to solve the Dispatching Problem and the Optimal Power Flow can be incorporatedand the Augmented Lagrangean losses its separability.The algorithm we will use falls in the class of ALR Method but it enjoys of a better multiplierupdating than the classical versions. The non-separability of the Lagrangean is overcome using the BlockCoordinated Descent Method.Let's suppose we have the following information available : an initial estimate of the Lagrangemultipliers �0; a penaly parameter c; a positive integer K, which serves as an upper bound to the numberof iterations of the Block Coordinated Descend at each minimization of the Aumented Lagrangian; apositive integer N, which serves as an upper bound to the number of Lagrange multiplier updates; aninitial point x0 of the domain D1 and an initial point ~x0 of the domain D2. Let k = 0 y n = 0. Then thealgorithm proposed, called MACH (from \Modelo Acoplado de Coordinaci�on Hidrot�ermica") will be:MACH1.- [Test the terminating criteria ] If xk and ~xk satis�es the conditions of optimality, the algo-rithm �nishes with (xk; ~xk) as a solution . If n > N , the algorithm has failed.MACH2.- [Minimize the augmented Lagrangian in D1 ] With xk as an initial point and ~xk as a �xedvector, execute a procedure to solve the following subproblem:minx2D1 Lc(x) = Lc(x; ~xk; �k) (14)including measures of security to cope with unboundedness. Let xk+1 be the calculatedsolution.MACH3.- [Minimize the augmented Lagrangian in D2 ] With ~xk as an initial point and xk+1 as a �xedvector, execute a procedure to solve the following subproblem:min~x2D2 Lc(~x) = Lc(xk+1; ~x; �k) (15)including measures of security to cope with unboundedness. Let ~xk+1 be the calculatedsolution.MACH4.- [Repeat steps MACH2 and MACH3 until no progress can be done] If k � K then go toMACH5) Else if k xk+1 � xk k > � o k ~xk+1 � ~xk k > � (16)Set k = k + 1 and go back to step MACH1.MACH5.- [Update the multiplier estimates using the Gradient-radar Step]�n+1 = �n + �(xk+1 � ~xk+1) (17)MACH6.- [Update the � iteration count] Set n = n+ 1, k = k + 1 and go back to step MACH1.One of the advantages of the Duplication Variable framework is the possibility of incorporatingpreexisting software. In step MACH2 of the MACH algorithm the minimization of the AugmentedLagrangean subject to the constraints (6) to (13) is needed. This is a nonlinear network 
ow problem withside constraints which can be solved either with general purpose optimization packages or with specialisedprocedures. The implementation reported in this paper is based on the specialised code NOXCB Herediaand Nabona [1992]. This code implements an active set method which exploits the network structurethrough primal partitioning techniques (Kennington and Helgason [1982]) to solve the nonlinear networkproblem with linear side constraints. To handle the nonlinear constraint (7) a successive linearizationmethod presented in Heredia and Nabona [1995] is used. In this method, a sequence of subproblemsare solved. In these subproblems the nonlinear constraints (7) are linearized over the optimal solutionof the previous subproblem. The linearizations stops when a given convergence criterion is reached.Furthermore, this framework will allow in the future to incorporate new packages, as for example InteriorPoint based software to solve step MACH2.



6In stepMACH3 a classical Dynamical ProgrammingProcedure has been implemented. The charac-teristics of the subproblem (15) (binary variables plus separability), in our opinion, makes the DynamicalProgramming Procedure one of the best options.A second major feature of the Duplication Variable framework is the possibility of incorporating newconstrictions. The Lagrangean Relaxation performed is independent of the system constrictions (demand,spinning reserve, etc.) and therefore new constrictions such as pollution regulations can be easily addedwith no need of adding a new set of Lagrangean multipliers.Computational tests.So far we have tested the method considering the Hydraulic and Thermal Systems without Distribu-tion Network, although the software developed can incorporate the Distributin Network. The problemssolved fall in the medium and large-scale size. From 24 to 168 hours, about 10 thermal units and 10 hy-droelectric stations. After our experience with the MACH package, the main conclusions are: (1) Usuallythe method reaches the optimumwithin 20 or less multiplier updating, in front of the 100 or more neededby the classical multiplier updating. (2) Usually there is no dual gap and the primal solution obtained isready to be used, unlike the Classical Lagrangean Relaxation Method.References.Batut J. and Renaud A. 1992. \Daily Generation Scheduling Optimization with Transmission Con-straints: A New Class of Algorithms", IEEE, Transaction on Power Systems, Vol. 7, No. 3,August 1992, pp. 982-987.Bertsekas D. P. 1995. \Nonlinear Programming", Ed. Athena Scienti�c, Belmont, Massachusetts (USA).Chiva A., Heredia F.J. and Nabona N. 1995. sl \Network Model of Short-Term Optimal HydrothermalPower Flow with Security Constraints", Stockholm Power Tech. Proceedings, vol. PS, pp. 67-73.Cohen G. 1980. \Auxiliary Problem Principle and Decomposition of Optimization problems", Journal ofOptimization theory and Applications, Vol. 32, No. 3, November 1980.Heredia, F.J., N. Nabona. 1992. \Numerical implementation and computational results of nonlinearnetwork optimization with linear side constraints", in Proceedings of the 15th IFIP Conferenceon System Modelling and Optimization. P. Kall editor. Springer{Verlag. pp. 301-310.Heredia F.J. and Nabona N. 1995. \Optimum Short-Term Hydrothermal Scheduling with SpinningReserve through Network Flows", IEEE, Transaction on Power Systems, Vol.10, No. 3, pp.1642-1651, August 1995.Kennington, J.L., R.V. Helgason. 1980. \Algorithms for network programming" , John Wiley & Sons,New York.Minoux, Michel. 1983. \Programation Mathematique". Vol. 1. Ed. Dunod. Paris.


