IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Stochastic Programming Model for the Day-Ahead Bidding and Bilateral Contracts

Settlement Problem

F. Javier Heredia Marcos J. Rider Cristina Corchero

Group on Numerical Optimization and Modeling
Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya
International Workshop on Operational Research 08
Univ. Rey Juan Carlos, Madrid, 5-8 june, 2008
Work partially supported by the Ministerio de Educación y Ciencia of Spain under Project
DPI2005-09117-C02-01

Iberic Electrical Energy Market (MIBEL)

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

VPP auctions
VPP and GPU

The Model

The Solution

Conclusions

Derivatives Market

Physical Futures Contracts Financial and Physical Settlement. Positions are sent to OMEL's Mercado Diario for physical delivery. Financial Futures Contracts

OMIClear cash settles the differences between the Spot Reference Price and the Final Settlement Price

Bilateral Contracts

Organized markets

- Virtual Power Plants auctions (BPE)
- Distribution auctions (SD)
- International Capacity Interconnection auctions
- International Capacity Interconnection nomination

Non organized markets
- National BC before the spot market
- International BC before the spot market

National BC after the spot market

Day-Ahead Market

Day-Ahead Market Hourly action. The matching procedure takes place 24h before the delivery period. Physical futures contracts are settled through a zero price bid.

Iberic Electrical Energy Market (MIBEL)

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

VPP auctions
VPP and GPU

The Model

The Solution

Conclusion

Derivatives Market

Physical Futures Contracts Financial and Physical Settlement. Positions are sent to OMEL's Mercado Diario for physical delivery. Financial Futures Contracts OMIClear cash settles the differences between the Spot Reference Price and the Final Settlement Price

Bilateral Contracts

Day-Ahead Market

Day-Ahead Market
Hourly action. The matching procedure takes place
24h before the delivery period.
Physical futures contracts are settled through a zero

Physical futures contracts are settled through a ze price bid.

- This work is focused on:
 - Day-ahead market.
 - Virtual Power Plant Auctions (EPE)
 - National BC before and after the day-ahead market.

Virtual Power Plant auctions (VPP)

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem
MIBEL

VPP auctions
VPP and GPU

The Mod

The Solution

Conclusion

• The Royal Decree 1634/2006 imposes to Endesa and Iberdrola to hold a series of five **Virtual Power Plant** (VPP) auctions (EPE, starting July 2007) offering virtual power capacity at price λ^{V} to any party who is a member of the MIBEL.

Virtual Power Plant auctions (VPP)

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

VPP auctions
VPP and GPU

The Mode

The Solution

Conclusion

• The Royal Decree 1634/2006 imposes to Endesa and Iberdrola to hold a series of five **Virtual Power Plant** (VPP) auctions (EPE, starting July 2007) offering virtual power capacity at price λ^{ν} to any party who is a member of the MIBEL.

Virtual Power Plant auctions (VPP)

IWOR08 -Madrid Heredia,

Heredia, Rider, Corchero

The Problem

VPP auctions
VPP and GPU
Aim

The Model

The Solution

Conclusions

• The Royal Decree 1634/2006 imposes to Endesa and Iberdrola to hold a series of five **Virtual Power Plant** (VPP) auctions (EPE, starting July 2007) offering virtual power capacity at price λ^V to any party who is a member of the MIBEL.

IWOR08 -Madrid

Heredia, Rider, Corchero

MIBEL
VPP auctions
VPP and GPU

The Mod

The Solution

Conclusion

 The VPP capacity means that the buyer have up to \(\overline{p}^V\) MWh at his disposal.

IWOR08 -Madrid

Heredia, Rider, Corchero

MIBEL
VPP auctions
VPP and GPU
Aim

The Mode

The Solution

Canalucian

- The VPP capacity means that the buyer have up to \(\overline{p}^V\) MWh at his disposal.
- The buyer can exercise the right to use energy p̄^ν against an exercise price λ^ν ∈/MWh.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem
MIBEL
VPP auctions
VPP and GPU
Aim

The Mode

The Solution

Conclusion

- The VPP capacity means that the buyer have up to \(\overline{p}^{\nu}\) MWh at his disposal.
- The buyer can exercise the right to use energy p̄^V against an exercise price λ^V €/MWh.
- Energy p̄^V of the VPP is incorporated to the market through the Generic Programming Unit (GPU) and can be used to cover the national and international bilateral contracts duties and/or to sell it to the day-ahead market.

IWOR08 -Madrid

Heredia, Rider, Corchero

MIBEL
VPP auctions
VPP and GPU
Aim

The Model

The Solutio

Conclusion

- The VPP capacity means that the buyer have up to p̄^V
 MWh at his disposal.
- The buyer can exercise the right to use energy p̄^ν against an exercise price λ^ν €/MWh.
- Energy \(\overline{\rho}^V\) of the VPP is incorporated to the market through the **Generic Programming Unit** (GPU) and can be used to cover the national and international bilateral contracts duties and/or to sell it to the day-ahead market.
- GPU can buy/purchase energy from the pool and B.C.

Objectives of the study

IWOR08 -Madrid

Heredia, Rider, Corchero

MIBEL
VPP auctions
VPP and GPU

Aim

i ne ivioae

The Solution

Conclusions

- The ojective of this study was to develop an stochastic programming model that allows a price-taker producer to decide
 - The economic dispatch of the bilateral contracts among the thermal and generic programming units.
 - The optimal bidding for both thermal and generic programming units, observing the MIBEL regulation.
 - The unit commitment of its thermal units;

Objectives of the study

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem
MIBEL
VPP auctions
VPP and GPU

Aim

The Mode

The Solution

Conclusions

- The ojective of this study was to develop an stochastic programming model that allows a price-taker producer to decide
 - The economic dispatch of the bilateral contracts among the thermal and generic programming units.
 - The optimal bidding for both thermal and generic programming units, observing the MIBEL regulation.
 - The unit commitment of its thermal units;

that maximizes the expected profit from its involvement in the spot market, bilateral contracts and virtual power plant capacity.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Woode

Assumptions

Variables

Thermal mo

GPII model

constraints

Stochastici

Final mode

The Solution

`onclusions

Price-taker GenCo.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

THE MOUE

Assumptions

Variables

Thermal mod

GPU model

constraints

Stochastic

Final mod

The Solutio

`onclusions

- Price-taker GenCo.
- T thermal units: convex gen. costs; start-up/shut-downs costs; min up/down time.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Assumptions

Variables

Thermal mod

GPU model

System constraints

Stochastici

Final mod

The Solutio

onclusions

- Price-taker GenCo.
- T thermal units: convex gen. costs; start-up/shut-downs costs; min up/down time.
- GPU associated to a VPP:
 p̄^ν MWh, λ^ν €/MWh.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

Assumptions

variables

Thermal mod

System

Stochasticit

Final mode

The Solution

Conclusions

- Price-taker GenCo.
- T thermal units: convex gen. costs; start-up/shut-downs costs; min up/down time.
- GPU associated to a VPP: \overline{p}^{v} MWh, $\lambda^{v} \in /MWh$.
- Both thermal units and GPU bid to the the day-ahead market.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

Assumptions

Variables

Thermal mod

GPU model

System

Stochastici

Final mode

The Solution

Conclusions

- Price-taker GenCo.
- T thermal units: convex gen. costs; start-up/shut-downs costs; min up/down time.
- GPU associated to a VPP:
 p̄^ν MWh, λ^ν €/MWh.
- Both thermal units and GPU bid to the the day-ahead market.
- \mathcal{B} bilateral contracts before the day-ahead market: $L^{\mathcal{B}}_{ii}$ MWh, $\lambda^{\mathcal{B}}_{ii} \in /$ MWh $\forall j \in \mathcal{B}$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Assumptions

variables

Thermal mo

System

constraints

Final mode

The Solution

Conclusio

- Price-taker GenCo.
- T thermal units: convex gen. costs; start-up/shut-downs costs; min up/down time.
- GPU associated to a VPP:
 p̄^ν MWh, λ^ν €/MWh.
- Both thermal units and GPU bid to the the day-ahead market.
- \mathcal{B} bilateral contracts before the day-ahead market: $L^{\mathcal{B}}_{ii}$ MWh, $\lambda^{\mathcal{B}}_{ii} \in /$ MWh $\forall j \in \mathcal{B}$
- Purchase/sell bilateral contracts after the day-ahead market: $(\overline{b}^{B} \text{ MWh}, \lambda^{B} \in /\text{MWh}), (\overline{b}^{S} \text{ MWh}, \lambda^{S} \in /\text{MWh})$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thermal mod

CDU

System

constraints

Final mode

The Solution

Conclusions

First stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}$

• u_{it} : unit commitment.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

. .

Assumption

Variables

Thermal mode

GPU mode

System

Constituines

Final mode

The Solution

Conclusion

First stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}$

- u_{it} : unit commitment.
- \bullet b_{itj}^{T} , b_{ij}^{G} : energy allocated to

B.C. $j \in \mathcal{B}$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thermal mode

GPII model

System

Stochastici

Final mode

The Solution

Conclusion

First stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}$

• u_{it} : unit commitment.

- p_i^V : exercised VPP energy.
- $b_{itj}^{\mathsf{T}},\ b_{ij}^{\mathsf{G}}$: energy allocated to B.C. $j \in \mathcal{B}$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thermal mod

GPU mode

System

Charlantin

Final mode

The Solution

Conclusion

First stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}$

• u_{it} : unit commitment.

- p_i^V : exercised VPP energy.
- $b_{itj}^{\mathsf{T}},\ b_{ij}^{\mathsf{G}}$: energy allocated to B.C. $j \in \mathcal{B}$
- Selling/purchase bidding.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Assumption

Variables

GPII mode

System

constraints

Final mod

The Solution

Conclusion

First stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}$

- u_{it} : unit commitment.
- b_{itj}^{T} , b_{ij}^{G} : energy allocated to B.C. $i \in \mathcal{B}$
- p_i^V : exercised VPP energy.
- Selling/purchase bidding.
- Many other aux. variables.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thermal mod

GPII model

System

constraints

Final mode

The Solution

Conclusions

Second stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}, \ \forall s \in \mathcal{S}$

• $p_{it}^{T,s}$: Th.U.'s matched energy.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Assumption

Variables

Thermal mode

GPU model

System

Constraints

Final mode

The Solution

Conclusions

Second stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}, \ \forall s \in \mathcal{S}$

- $p_{it}^{T,s}$: Th.U.'s matched energy.
- $p_i^{\mathcal{B},s}$, $p_i^{\mathcal{S},s}$, $p_i^{\mathcal{R},s}$: GPU's bought/sold matched energy.

IWOR08 -Madrid

Heredia. Rider. Corchero

The Model

Variables

System

The Solution

Second stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}, \ \forall s \in \mathcal{S}$

- $p_{it}^{T,s}$: Th.U.'s matched energy.
- $p_i^{B,s}$, $p_i^{S,s}$, $p_i^{R,s}$: GPU's

- $b_i^{S,s}$, $b_i^{B,s}$: selling/buying B C after the D-A-M
- bought/sold matched energy.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thormal mo

GPII model

System

constraint

Stochastic

The Solution

Conclusions

Second stage variables: $\forall t \in \mathcal{T}, \ \forall i \in \mathcal{I}, \ \forall s \in \mathcal{S}$

- $p_{it}^{T,s}$: Th.U.'s matched energy.
- $p_i^{B,s}$, $p_i^{S,s}$, $p_i^{R,s}$: GPU's bought/sold matched energy.
- $b_i^{s,s}$, $b_i^{g,s}$: selling/buying B.C. after the D-A-M.
- Many other aux. variables.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thermal model

GPU model

constraints

Stochastic

The Solution

Conclusion

Matched energy at scenario s:

$$p_{it}^{T,s}(b_{it}^{T}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$
(1)

Case a: $b_{it}^T = 0$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thomas mad

Thermal model

GPU model

System

constraints

Final mode

The Solution

Conclusio

Matched energy at scenario s:

$$p_{it}^{T,s}(b_{it}^{T}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$
(1)

Case b: $0 < b_{i+}^{T} \le p_{i+}^{D,s}$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Variables

Thomas mad

Thermal model

GPU model

System

constraints

Stochastic

The Solution

Conclusion

Matched energy at scenario s:

$$p_{it}^{T,s}(b_{it}^{T}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$
(1)

Case b:

$$0 < b_{it}^{\mathsf{T}} \leq p_{it}^{\mathsf{D},s}$$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

. .

Variables

Thermal model

Thermal model

GPU model

System

Carabania

Final mode

The Solution

Conclusio

Matched energy at scenario s:

$$p_{it}^{T,s}(b_{it}^{T}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$
(1)

Case c:

$$p_{it}^{\scriptscriptstyle D,s} < b_{it}^{\scriptscriptstyle T}$$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

Assumptions

Variables

Thermal model

GPU mode

System constraints

Final mode

The Solution

Conclusio

Matched energy at scenario s:

$$p_{it}^{T,s}(b_{it}^{T}) = \begin{cases} p_{it}^{D,s} - b_{it}^{T} & \text{if } b_{it}^{T} \leq p_{it}^{D,s} & \forall i \in \mathcal{I} \\ 0 & \text{if } b_{it}^{T} > p_{it}^{D,s} & \forall s \in \mathcal{S} \end{cases}$$
(1)

• The non-differentiable expression (1) can be formulated as a set of linear constraints, with auxiliary variables $v_{it}^s \geq 0$ and $z_{it}^s \in \{0,1\}$.

$$\left. \begin{array}{l} p_{it}^{s} = p_{it}^{\tau,s} + b_{it}^{\tau} \\ p_{it}^{\tau,s}, b_{it}^{\tau} \in \Omega_{it}^{\tau,s}(u_{it}, v_{it}^{s}, z_{it}^{s}) \end{array} \right\} \forall t \in \mathcal{T}, \ \forall s \in \mathcal{S} \ \ (2)$$

• Unit commitment constraints:

$$u_{it} \in \Omega_{it}^{U}(a_{it}, e_{it}) \quad \forall i \in \mathcal{I}, \forall t \in \mathcal{T}$$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

.

Variables

Thermal mo

GPU model

System

Stochastic

The Solution

onelucione

 Under the price-taker assumption and the MIBEL rules, the optimal selling (OSB) and buying (OBB) biddings for the GPU are:

$$\begin{aligned}
\mathsf{OSB}_{i}(b_{i}^{\mathsf{G}}, p_{i}^{\mathsf{V}}) &= ([p_{i}^{\mathsf{V}} - b_{i}^{\mathsf{G}}]^{+}, \lambda^{\mathsf{S}}) \\
\mathsf{OBB}_{i}(b_{i}^{\mathsf{G}}, p_{i}^{\mathsf{V}}) &= ([b_{i}^{\mathsf{G}} - \overline{p}^{\mathsf{V}}]^{+} + \min\{b_{i}^{\mathsf{G}}, \overline{p}^{\mathsf{V}} - p_{i}^{\mathsf{V}}\}, \lambda^{\mathsf{B}})
\end{aligned}$$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

Variables

Thermal mo

GPU model

System constraints
Stochasticity

The Solution

Conclusions

 Under the price-taker assumption and the MIBEL rules, the optimal selling (OSB) and buying (OBB) biddings for the GPU are:

$$\begin{aligned}
\mathsf{OSB}_{i}(b_{i}^{\mathsf{G}}, p_{i}^{\mathsf{V}}) &= ([p_{i}^{\mathsf{V}} - b_{i}^{\mathsf{G}}]^{+}, \lambda^{\mathsf{S}}) \\
\mathsf{OBB}_{i}(b_{i}^{\mathsf{G}}, p_{i}^{\mathsf{V}}) &= ([b_{i}^{\mathsf{G}} - \overline{p}^{\mathsf{V}}]^{+} + \min\{b_{i}^{\mathsf{G}}, \overline{p}^{\mathsf{V}} - p_{i}^{\mathsf{V}}\}, \lambda^{\mathsf{B}})
\end{aligned}$$

with

- λ^s and λ^B the price of the selling and buying B.C. after the d-a-m.
- p_i^V the exercised energy of the VPP
- b_i^c : the contribution to the B.C. before the d-a-m.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

....

Variables

Thermal mo

GPU model

Systom

constraints

Final mod

The Solution

Conclucione

$$\begin{array}{l} \bullet \ \ \text{The GPU's } \textit{matched sold } (p_i^{\mathcal{S},s}) \text{ and } \textit{matched bought} \\ (p_i^{\mathcal{B},s} + p_i^{\mathcal{R},s}) \text{ energy at each scenario } s \in \mathcal{S} \text{ are:} \\ p_i^{\mathcal{S},s} (b_i^{\mathcal{G}}, p_i^{\mathcal{V}}) = \left\{ \begin{array}{ll} [p_i^{\mathcal{V}} - b_i^{\mathcal{G}}]^+ & \text{if } s \in \mathcal{M}_i^{\mathcal{S}} \\ 0 & \text{if } s \not \in \mathcal{M}_i^{\mathcal{S}} \\ p_i^{\mathcal{B},s} (b_i^{\mathcal{G}}, p_i^{\mathcal{V}}) = \left\{ \begin{array}{ll} \min\{b_i^{\mathcal{G}}, \overline{p}^{\mathcal{V}} - p_i^{\mathcal{V}}\} & \text{if } s \in \mathcal{M}_i^{\mathcal{B}} \\ 0 & \text{if } s \not \in \mathcal{M}_i^{\mathcal{B}} \\ p_i^{\mathcal{R},s} (b_i^{\mathcal{G}}) = \left\{ \begin{array}{ll} [b_i^{\mathcal{G}} - \overline{p}^{\mathcal{V}}]^+ & \text{if } s \in \mathcal{M}_i^{\mathcal{B}} \\ 0 & \text{if } s \not \in \mathcal{M}_i^{\mathcal{B}} \\ \end{array} \right. \end{array} \right. \ \, \forall s \in \mathcal{S}$$

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

Variable

Thermal

GPU model

System constraints

Final mode

The Solution

Conclusions

• The GPU's matched sold $(p_i^{s,s})$ and matched bought $(p_i^{g,s} + p_i^{g,s})$ energy at each scenario $s \in \mathcal{S}$ are:

$$\begin{aligned} p_i^{S,s}(b_i^G, p_i^V) &= \begin{cases} [p_i^V - b_i^G]^+ & \text{if } s \in \mathcal{M}_i^S \\ 0 & \text{if } s \notin \mathcal{M}_i^S \end{cases} \\ p_i^{B,s}(b_i^G, p_i^V) &= \begin{cases} \min\{b_i^G, \overline{p}^V - p_i^V\} & \text{if } s \in \mathcal{M}_i^B \\ 0 & \text{if } s \notin \mathcal{M}_i^B \end{cases} & \forall i \in \mathcal{I} \\ p_i^{B,s}(b_i^G) &= \begin{cases} [b_i^G - \overline{p}^V]^+ & \text{if } s \in \mathcal{M}_i^B \\ 0 & \text{if } s \notin \mathcal{M}_i^B \end{cases} & \forall s \in \mathcal{S} \end{aligned}$$

• These non-differentiable expressions can be formulated through an equivalent set of linear constraints with auxiliary variables $w_i^{G,s} \ge 0$ and $y_i^{G,s} \in \{0,1\}$.

$$p_i^{s,s}, p_i^{s,s}, p_i^{R,s} \in \Omega_i^{c,s}(w_i^{c,s}, y_i^{c,s}) \quad \forall i \in \mathcal{I} , \ \forall s \in \mathcal{S}$$
 (4)

Modellization: system constraints

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problen

The Model

.

Variables

Thermal r

GPU mode

System constraints

Stochasti

The Solution

onclusions

• The energy L_{ij}^{B} of the *j*-th B.C. before the d-a-m can be provided both by the thermal units \mathcal{T} and the GPU:

$$\sum_{t \in \mathcal{T}} b_{itj}^{\mathsf{T}} + b_{ij}^{\mathsf{G}} = L_{ij}^{\mathsf{B}} \quad \forall j \in \mathcal{B} , \forall i \in \mathcal{I}
b_{it}^{\mathsf{T}} = \sum_{j \in \mathcal{B}} b_{itj}^{\mathsf{T}} \quad \forall t \in \mathcal{T}
b_{i}^{\mathsf{G}} = \sum_{j \in \mathcal{B}} b_{ij}^{\mathsf{G}}$$

$$\begin{cases}
\forall i \in \mathcal{I} \\
\forall i \in \mathcal{I}
\end{cases} (5)$$

Modellization: system constraints

IWOR08 -Madrid Heredia, Rider.

Corchero

The Model

THE MOULE

Variables

Thormal me

CDII madal

System constraints

Stochastici Final mode

The Solution

Conclusions

• The energy L_{ij}^{B} of the j-th B.C. before the d-a-m can be provided both by the thermal units \mathcal{T} and the GPU:

$$\sum_{t \in \mathcal{T}} b_{itj}^{\mathcal{T}} + b_{ij}^{\mathcal{G}} = L_{ij}^{\mathcal{B}} \quad \forall j \in \mathcal{B}, \ \forall i \in \mathcal{I} \\
b_{it}^{\mathcal{T}} = \sum_{j \in \mathcal{B}} b_{itj}^{\mathcal{T}} \quad \forall t \in \mathcal{T} \\
b_{i}^{\mathcal{G}} = \sum_{j \in \mathcal{B}} b_{ij}^{\mathcal{G}}$$

$$\begin{cases}
\forall i \in \mathcal{I} \\
\forall i \in \mathcal{I}
\end{cases} (5)$$

• At each hour $i \in \mathcal{I}$ the net energy balance of the GPU must be zero (PDBF=0 constraint).

$$p_i^V + p_i^{B,s} + p_i^{R,s} + b_i^{B,s} = p_i^{S,s} + b_i^{S,s} + b_i^G$$

$$\forall s \in \mathcal{S} , \forall i \in \mathcal{I}$$
 (6)

The spot price

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model
Assumptions
Variables
Thermal model
GPU model
System

System constraints Stochasticity Final model

The Solution

Conclusio

- Spot market price, λ_i is a random variable that has to be represented through a set of scenarios
- Price scenario construction:
 - Set of 261 historical daily scenarios, from the start-up of the MIBEL (July 1, 2007) to the day in study (May 8, 2008).
 - Reduction of the number of scenarios preserving at maximum the characteristics of the observed data ¹

Gröwe-Kuska et al. Scenario Reduction and Scenario Tree Construction for Power Management Problems

Modellization: final model

IWOR08 -Madrid

Heredia. Rider. Corchero

The Model

System

Final model

The Solution

• The final model is a two-stage mixed quadratic stochastic programming problem:

máx
$$B_{\lambda^D}(u, a, e, p^T, p^V, p^S, p^B, p^R, b^S, b^R)$$

s.t.:

- Eq. (2) Thermal's matched energy $p_{it}^{T,s}$ Eq. (3) Unit commitment const.
- Eq. (4) GPU's matched energy $p_i^{s,s}$, $p_i^{g,s}$, $p_i^{g,s}$
- Eq. (5) Bilateral contracts \mathcal{B} covering
- Eq. (6) GPU's net energy balance const.

Modellization: final model

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

Assumption

_. . .

Thermal m

GPU mode

constraints

Final model

The Solution

onclusions

 The final model is a two-stage mixed quadratic stochastic programming problem:

$$\left(\begin{array}{l} \text{máx } B_{\lambda^D}(u, a, e, p^T, p^V, p^S, p^B, p^R, b^S, b^R) \\ \text{s.t.} : \end{array}\right)$$

- Eq. (2) Thermal's matched energy $p_{it}^{\tau,s}$
- Eq. (3) Unit commitment const.
- Eq. (4) GPU's matched energy $p_i^{S,s}$, $p_i^{B,s}$, $p_i^{R,s}$
- Eq. (5) Bilateral contracts ${\cal B}$ covering
- Eq. (6) GPU's net energy balance const.

where B_{λ^D} represents the expected profit w.r.t the spot prices from the GenCo's involvement in the spot market, bilateral contracts and virtual power plan capacity.

Case study

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Mode

The Solution

Case study

Results Analysis

onclusion

- The model was solved with real data of a Spanish generation company and market prices.
 - 50 Day-ahead market price scenarios;
 - 24 hours of study;
 - 10 thermal units;
 - 2 bilateral contracts;

Case study

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Case study Results

Results Analysis

- The model was solved with real data of a Spanish generation company and market prices.
 - 50 Day-ahead market price scenarios;
 - 24 hours of study;
 - 10 thermal units;
 - 2 bilateral contracts;
- The model was tested for three different cases:
 - (a) A GenCo without GPU;
 - (b) A GenCo with GPU but without VPP capacity; and
 - (c) A GenCo with GPU and VPP capacity.

Case study: results

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Case stud

Analysis

Conclusion

• The mathematical characteristics of the model.

Case	Constraints	Real variables	Binary variables	CPU time ⁽¹⁾
(a)	79921	31417	12720	142s
(b)	86026	35086	12792	108s
(c)	89758	37525	12816	1500s

(1): AMPL/CPLEX11 (default options)

2*CPU AMD Opteron 2222 (3 GHz) dual core 32GB RAM

Case study: results

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Mode

The Solution

Case study
Results
Analysis

Conclusions

• The mathematical characteristics of the model.

	Case	Constraints	Real variables	Binary variables	CPU time ⁽¹⁾
	(a)	79921	31417	12720	142s
	(b)	86026	35086	12792	108s
	(c)	89758	37525	12816	1500s
-					

(1): AMPL/CPLEX11 (default options) 2*CPU AMD Opteron 2222 (3 GHz) dual core 32GB RAM

• The expected profit values for all study cases

Case (a)	Case (b)	Case (c)
609.150,08€	664.349,62€	898.642,41€
	(GPU)	(GPU+VPP)

Case study: analysis of the solution

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Case study

Analysis

Conclusions

Unit commitment of the thermal units for all study cases.

Case study

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution
Case study

Results Analysis

Conclusion

 Optimal selling and buying biddings (OSB_i, OBB_i) of the GPU for the study cases (b) (GPU) and (c) (GPU+VPP).

Case study: analysis of the solution

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Case study

Results

Analysis

Conclusions

• Operation planning for study case (c) (GPU+VPP).

Case study: analysis of the solution

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Case study Results Analysis

Conclusions

 Optimal thermal bidding curves for study case (c) (GPU+VPP).

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Conclusions

• A new two-stage stochastic programming model has been presented and tested with the following characteristics:

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Mode

The Solution

- A new two-stage stochastic programming model has been presented and tested with the following characteristics:
 - A new model for the optimal thermal bidding function and matched energy who takes into account the presence of bilateral contracts.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

- A new two-stage stochastic programming model has been presented and tested with the following characteristics:
 - A new model for the optimal thermal bidding function and matched energy who takes into account the presence of bilateral contracts.
 - The mathematical modellization of the generic programming units and the Virtual Power Plants.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

- A new two-stage stochastic programming model has been presented and tested with the following characteristics:
 - A new model for the optimal thermal bidding function and matched energy who takes into account the presence of bilateral contracts.
 - The mathematical modellization of the generic programming units and the Virtual Power Plants.
 - The modellization of the optimal bidding functions and matched energy of the GPU.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Conclusions

 A new two-stage stochastic programming model has been presented and tested with the following characteristics:

- A new model for the optimal thermal bidding function and matched energy who takes into account the presence of bilateral contracts.
- The mathematical modellization of the generic programming units and the Virtual Power Plants.
- The modellization of the optimal bidding functions and matched energy of the GPU.
- The inclusion in the optimization model of the bilateral contracts after the day-ahead market.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Conclusions

The Model

 A new two-stage stochastic programming model has been presented and tested with the following characteristics:

- A new model for the optimal thermal bidding function and matched energy who takes into account the presence of bilateral contracts.
- The mathematical modellization of the generic programming units and the Virtual Power Plants.
- The modellization of the optimal bidding functions and matched energy of the GPU.
- The inclusion in the optimization model of the bilateral contracts after the day-ahead market.
- The consideration of the most recent regulations of the MIBEL energy market.

IWOR08 -Madrid

Heredia, Rider, Corchero

The Problem

The Model

The Solution

Conclusions

Stochastic Programming Model for the Day-Ahead Bidding and Bilateral Contracts Settlement Problem

F. Javier Heredia Marcos J. Rider Cristina Corchero

Group on Numerical Optimization and Modeling
Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya
International Workshop on Operational Research 08
Univ. Rey Juan Carlos, Madrid, 5-8 june, 2008
Work partially supported by the Ministerio de Educación y Ciencia of Spain under Project
DPI2005-09117-C02-01