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Motivation :
Nonlinear Optimization in Statistics (ll)
e This tutorial will be restricted to Nonlinear
Optimization techniques, useful for:

— Maximization of a likelihood function.
— Nonlinear regression.

e We will not cover other optimization techniques as:
— Combinatorial optimization.
— Global optimization.
— Nondifferentiable optimization.
— Heuristics.

e Let's go now to the contents of this tutorial... _p |

c
]
T
5
£
8
o
&
]
£
<
o
2
=
o
]
2
5
]

1BWSA-Tutorial-NLO-3

o
o
S
«
o
c
S
3
]
<
o
]
o
e
]
1]
<
.
1]
s

Motivation :
Nonlinear Optimization in Statistics (l)

“All statistical procedures are, in the ultimate analysis,
solutions to suitably formulated optimization problems.
Whether it is designing a scientific experiment, or planning a
large-scale survey for collection of data, or choosing a stochastic
model to characterize observed data, or drawing inference from
available data, such as estimation, testing of hypotheses, and
decision making, one has to choose an objective function and
minimize or maximize it subject to given constraints on
unknown parameters and inputs such as the costs involved.”

C.R. Rao, in “Mathematical Programming in Statistics”,
Arthanary and Dodge 1993
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Decision variables

Maximization of the likelihood function

e Current status Covariates in a simple linear model (Langohr, Gémez
— Model : Y=a+BZ+e ; YeR",ZcR,ecR"

e~N(0,6°1,)=Y|Z~N(a+pZ,6°1,)

a= [a ﬂ O']T eR .00 Constraints

— Zis the Current Status Covariate with cumulative
distribution W(z): the only observation is whether Z exceeds
the observed value z; or not; §; is the corresponding indicator
variable: §,= 117&'{

— Observations: [y, z; &,],i=1,2,...,n

Decision variables

— Covariate : Z is supposed to be discrete with possible
(ordered) values s, s,, ..., s,, and corresponding

S babiiiios Pty Ty 279
probabilities w=P(Z=s) , j=1....m Constraints

Tutorial on Nonlinear Optimization
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M Maximization of the likelihood function o Nonlinear regression: SIDS

H ¢ Maximum likelihood function : 3| H ¢ Nonlinear optimization problem associated to the
E L E SIDS model: Objective function f{x)

H L,@.8 =[] 1 fls;:90;= 2 R

g i=1 j=l Y ! ! Objective function f(x) g min *ZZ[tij(aiﬂbi’ci)_tij]z

P 0 m 1 1li-aBs,} b dibiei 233a

: TBn=l © P : o

e NG J - (Nonlinear Least-Squares Problem)

i=1 j=1

e The problem above corresponds to an Unconstrained Nonlinear
Optimization Problem (UNOP) :

(UNOP) m;g f(x)

e |If smoothness conditions are added to the model, the problem
becomes a Generally Constrained NOP :

{[sl,zi] if 8, =1

=1 , I; =
Vi =Yger} "z ,s,] otherwise

e The problem above corresponds to a Linearly
Constrained Nonlinear Optimization Problem (LCNOP):

(LCNOP) max{f(x)‘xe X} ; X={xe R" Ax=b,l$x£u}

(GCNOP) min{f(x) ‘ xe X} ; X:{xe R"

h(x)=0, g(x)< 0} g‘
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Nonlinear regression: SIDS Summary
e  Generalities
— General form of the Nonlinear Optimization Problem (NOP)
— Classification of the NOP .
— General strategy of the NO algorithms
— Desirable properties of the NO algorithms
— Local and Global optimization
o Unconstrained Nonlinear Optimization
— Fundamentals
— Methods that use first derivatives.
— Methods that use second derivatives.
— Nonderivatives methods.
— Nonlinear Least-Squares problems.
e Constrained Nonlinear Optimization.
— Fundamentals
— Linearly constrained NOP
— Generally constrained NOP
e Solvers for Nonlinear Optimization
—  Optimization libraries.
— Modeling languages }I |

e Sudden Infant Death Syndrome:

— The following nonlinear model was considered by
Murphy and Campbell (1987) as a part of their study
of the Sudden Infant Death Syndrome (SIDS).

— Given a data series of the daily temperature ¢; in
dayj of yeari (j=1,2,...,365 , i=1,2,...,5), the authors
proposed the following harmonic model:

2w
t;(a;,b;.c;)=a; 005(365] —b; )"' Ci

Decision variables x
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i=12345
j=12,...365

Tutorial on Nonlinear Optimization
Tutorial on Nonlinear Optimization
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Nonlinear Optimization Problem (NOP)

e The general (standard) form of the NOP is :

r_ng‘r} fx) Objective function

(NOP)qsubjectto: h(x) =0 Equality constraints
2(x)<0 Inequality constraints

where xe %" are the decision variables, or simply,
variables, and

R SR R SR g R SR

Usually, 1, h and g are required to be differentiable and
“smooth” (Lipschitz continuous, or so) to guarantee
good properties of the algorithms.
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Classification of the NOP
accordingly with the formulation

¢ Unconstrained NOP:
(UNOP) min £(x)
e NOP with Simple Bounds:
(SBNOP) min{f(x)lf < x<u}
e Linearly Constrained NOP:

(LCNOP) min{f(x)‘xe X} ;X :{xe R"|Ax=b,I< xSu}

e Generally Constrained NOP:

h(x)=0, g(x)< 0}
I«
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(GCNOP) min{f(x) ‘ xe X} ; X:{xe R
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e Of course, max f{x) = min —f{x) =
1BWSA-Tutorial-NLO-9
Classification of the NOP
accordingly with the solution
e Consider the NOP expressed in the following way:

(NOP) min{f(x) ‘ xe X} ; X:{xe R" | h(x)=0, g(x)SO}

(X'is known as the feasible set)

NOP with optimal solution: The set {f{x)|xe X} is bounded below

rnjn{f(x):xf-*—xz2 xZO}

Infeasible problem : the feasible set X is empty:

min{j‘(x):x,2+x§ X, +X, S—l,le)}

Unbounded problem: The set {f{x)|xe X} is unbounded below
min{f(x) =—x}—x] ‘ x= 0}

Existence of at least one global minimum: guaranteed if fis
continuous and Xc 9" compact (Weierstrass Theorem)
1BWSA-Tutorial-NLO-10
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General strategy of the NO algorithms

® Given the feasible bounded NOP:

(NOP) min{ f(x) | xe X } ; x={xe %" | h()=0, g(x)SO}

the general strategy followed by most of the NO alg. is:

1. Find a first feasible solution x&.X (current solution).

2. If the current solution x satisfies the optimality conditions, then
STOP: x*:=x

3. If the current solution x does not satisfies the optimality conditions,

find, using the local information available on x, a new feasible iterate

xe X that improves the value of some merit function related with the

objective function f(x), or the objective function itself. Go to 2 with the

new current iterate.

1BWSA-Tutorial-NLO-12
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General strategy of the NO algorithms

min £(x;, X,

X4

1BWSA-Tutorial-NLO-13

/ initial point)’ "' > Contours of f

I«
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Local and Global optimization

e The methods presented here only seek for
local optima
— They converge to a point satisfying the first order

optimality conditions (or second order, depending on

the algorithm).
e Convexity : any local optima is
global if the NOP is convex, that

|S: Level curves of
Sx)

— If the objective function f(x) is
convex.

— If the feasible set X is convex.

— Example: minimization of a
quadratic pos. def f{x) over a politop

1BWSA-Tutorial-NLO-15
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Desirable properties of the NO
algorithms

e Robustness: they should perform well...
... on a wide variety of problems in their class
... for all reasonable choices of the initial variables
...without the need of “tuning”.
¢ Efficiency: low execution time and memory
requirements
e Accuracy: they should be able to identify the
solution with precision without being affected
by errors in the data or arithmetic rounding
errors.

1BWSA-Tutorial-NLO-14
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Fundamentals:

General Framework

Given (UNOP) m;f}f(x) , generate a sequence {x“}f;o
that converges to the optimal solution x*

1BWSA Barcelona June 2002

1. Initialize x*¥ € X' = 9" (current solution). k.=0
2. If the current solution x* satisfies the stopping criterium, then
x*:=xk. STOP:
Nonlinear optimization 3. If x* is not the optimal solut.ion,. find a n.ew iterate tha.t improves
enough the value of the objective function, and take it as the
new iterate. This is performed through the following steps:
3.1. Computation of a descent direction d ¥
3.2. Computation of a steplength o
3.3. Update: x**:=x¥ + ok d ¥ k:=k+1. Go to 2

1BWSA Barcelona June 2002

Algorithms for Unconstrained

|
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Unconstrained Nonlinear Optimization
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Fundamentals:
Stopping criterium: optimality conditions

Usual stopping criterium

Unconstrained Nonlinear Optimization

e Fundamentals
— General framework: optimality conditions; descent directions;

e First-Order Necessary Conditions
“If x* is a local minimizer and f'is continuously differentiable in an

linesearch open neighbourhood of x* , then Vfx*)=0"
— Measures of performance of the algorithms: global convergence; local e Second-Order Necessary Conditions
convergence.

“If x* is a local minimizer and f and V *f is continuous in an open
neighbourhood of x* , then Vf(x*)=0 and V *f(x*) is positive
semidefinite”

o Second-Order Sufficient Conditions.

“Suppose that V fis continuous in an open neighbourhood of x*
and that VAix*)=0 and V *f{x*) is positive definite. Then x* is a
strict local minimizer and f”

e The role of convexity.

“When f is convex, any local minimizer x* is a global minimizer
of f. If, in addition, fis differentiable, then any stationary
point x* is a global minimizer of f”

e Methods that use first derivatives
— Steepest Descent method (SD)
— Conjugate Gradient method (CG
— Quasi-Newton method (QN)
e Methods that use second derivatives
— Newton and Modified Newton methods (N, MN)
e Nonderivative methods
— Finite differences. coordinate descent and direct search.
e Nonlinear Least-squares problems:
— Gauss-Newton method (GN).
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Fundamentals:
Descent directions : identification

o Sufficient condition of descent:
IfVfix)d< 0 then d is a descent direction for f(x) at x.

20 |

Fundamentals:

Practical stopping criterium

e The robust numerical implementation of the stopping
criterium ||V£ (x¥)||=0 could be quite sophisticated. The
algorithm will stop either ...

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

_ 2 2
... If the measure of the relative size of the gradient at 00 S()=0875x +0.8x; + . [ 200
x¥ is smalll: =350x, —300x, ~|1875
max{ xt, 1} 1 150
max Vf(x¥),|<el
iz maxq | £ (x*)| 1

i
100 \ Descent directions: Vf{x)d< 0

N

... or the measure of the relative change of the
variables x* in the last step is small :

Vf(x)d=0 . depends on Vf(x)

max n
Isisn|maxy x; , 1

Unconstrained Nonlinear Optimization
Unconstrained Nonlinear Optimization

Where gis the machine precision 1«4 400 -0 O &0 100 180 200 280
1

1BWSA-Tutorial-UNO-5 1BWSA-Tutorial-UNO-7

Fundamentals:

Descent directions : computation

Fundamentals:

Descent directions : definition

e Descent direction :
e Methods that use firsts derivatives:

— Steepest descent: dk = -Vfxk
— Conjugate Gradient: dk = -Vfxky+pk dv!

— Quasi-Newton Methods: d* = - B*Vfxb),
B simetric, pos. def.
o Methods that use second derivatives:

— Newton Method : dk = - [V2Ax0) IV AxXK)

d¥e 9" is a descent direction for the problem UNOP over
xkif: J@e R |Vaeo,a@]: f(*F+ad*)< f(x")

- x(o)=x* +od*
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e The properties of these methods will be studied later.

f(x)=0.875x7 +0.8x2
—350x, —300x,
1BWSA-Tutorial-UNO-6
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Fundamentals:

Steplength
2501 e xis the current iterate
200 e dis the current search
descent direction
1501 (for instance d =-Vf(x)')
1004 . .
w2 e The next iterate will
504 lie in the half line
x(o)=x+od , x20
ol
501 * We must decide how
far to move from x
100 along d:

-0 a0 0 &0 x11EIEI 180 200 240 steplength o*

1BWSA-Tutorial-UNO-9
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Fundamentals:

Exact linesearch (quadratic functions)

e Linesearch : o*=argmin{ f(x+ad) | >0}

e |n our example: min £(x)=0.875x] +0.8x3 —350x, —300x,

0 350
x=M ; d=—Vf(x)'=[ ] (V/()d =|V/ ()] <0)

300
S(x@) = f(x+od)= ﬂxmfll

_ 0. 350)7 [3500) ]
_'f(o “ 300 _'f(300(x)_ !

30000
=0.875(3500)% + 0.8(3000t)* +  aooxt)
-350(3500) — 300(3000r) soom
=179187.50* - 2125000 a0

07 04 06 08 1

g £ 3
w =3583750%~212500=0 ; o*=0.5939
o

1BWSA-Tutorial-UNO-11
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Fundamentals:

Computing the steplength: linesearch

e Linesearch : o*=argmin{ f(x+ad) | a=0}

x(@)=x+od
X
2 300
2002
\\\ED X

X5

N\
-10000
B
-20000%
3000
40000+ 5 i
o000 f(x)=0.875x7 +0.8x7

F(or)) it ~350x, -300x,

1BWSA-Tutorial-UNO-10
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Fundamentals:

Inexact linesearch (general functions)

e Problem: when f(x) is not quadratic the optimal steplength o*

must be estimated numerically.

e Purpose of the inexact linesearch :

to identify o = argmin{ f(x* +o*d*) | 20} such that...
... provides significant reduction of /( x)
... without spending too much time in the computation.

o Rationale of the inexact linesearch methods:

—  Define a criterium for the inf(x)
—  Find somehow an interval [ . 04, ] containing o*.
- Set a:=a,, the trial steplength.
— Repeat Until_ f(xk+od*) satisfies the
Find (bisection, interpolation) a trial steplength o€ [ o, . Cax]
Update [ o, Onax] -
End Repeat
- Setof:=

1BWSA-Tutorial-UNO-12
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Fundamentals:

Inexact linesearch (general functions)
e Sufficient decrease condition: (Wolfe conditions)
fEE +od") < f(F) +[eVf (x)d - (W)
VI(x* +od*yd* >,V (x*)d" (W2)

0<¢ <e, <1
(o) = f(x* +od®)

e Vf (x)d* / \

76N+t e
/

. a
Ve I«

o acceptable o acceptable
1BWSA-Tutorial-UNO-13
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Fundamentals:

Global convergence

To ensure “global” convergence, several assumptions
must be imposed to the objective function, the search
direction and the steplength. Roughly speaking:

— The objective f must be bounded below and

continuously differentiable.

— The gradient Vf must be smooth (Lipschitz continuous).

— The search direction 4 * must be a descent direction.

— The steplengths o must satisfy the Wolfe conditions.

— The angle 6" between the search directions d ¥ and the

steepest descent direction -Vf (x¥) must be bounded
away from 90°

—Vf(x*)d*
Vel

cosf* =

1BWSA-Tutorial-UNO-15
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Fundamentals:

Measures of performance of an algorithm

e Global convergence: an algorithm is said to be
“globally convergent” if

}imHVf(x")
that is, if we can assure that the method converges to

a stationary point.

— Introducing second order information, we can strengthen the
result to include convergence to a local minimum.

=0

e Local convergence: how fast the sequence {x*}
approaches to the optimal solution x*.

14
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Fundamentals:

Conditions for “global” convergence

e Zoutendijk’s theorem:

Consider any iteration of the form x*1:= xk + o d* where d* is a
descent direction and o satisfies the Wolfe conditions.
Suppose that f is bounded below in It " and that f is
continuously differentiable in an open set N containing the level
set

L={x: (o)< F(x") }

where x' is the starting point of the iteration. Assume also that the
gradient is Lipschitz continuous in N, that is, there exists a
constant L > 0 such that:

[Vf(x)-Vf(®)|< L|]x-*

, forallx,xe N

n 2
z cos” 9% HVf(xk )H < oo (Zoutendijk condition)
k=0

1BWSA-Tutorial-UNO-16
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Fundamentals:

Interpretation of the Zoutendijk condition
e The Zoutendijk condition implies:

cosze"HVf(x")H2 -0 (1)

¢ |f the method for choosing the search direction
d* ensures that the angle 0 is bounded away
from 90°, then there is a positive constant §

such that:
cos@* >8>0 Vk

then, it follows from (1) that:

gggﬂvy(xk)“=() 4

Unconstrained Nonlinear Optimization

1BWSA-Tutorial-UNO-17
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Fundamentals:

Quadratic order of convergence

¢ Quadratic convergence:

let {x*} be a sequence in " that converges to
x*. We say that the convergence is Q-quadratic

(or simply quadratic) if there is a constant M>0
such that :

k+1

i

W <M ,for all k sufficiently large

Unconstrained Nonlinear Optimization

1BWSA-Tutorial-UNO-19
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Fundamentals:

Linear and superlinear order of convergence

e Linear convergence:

let {xk} be a sequence in It " that converges to
x*. We say that the convergence is Q-linear (or

simply linear) if there is a constant re (0,1) (ratio
of convergence) such that

-

L—— =<, for all k sufficiently large

[ -1

e The convergence is said to be Q-superlinear if

k+1
-1

=0
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Fundamentals:

Order of convergence: example

« -1
X
xk=1+k*
1.24 (Superlinear)
1.229 1| 0,50000000 1,00000000 0,50000000
121 2| 025000000 0,25000000 0,25000000
3| 0,12500000 0,03703704 0,06250000
1.18
: 4| 0,06250000 0,00390625 0,00390625
1.164 5| 0,03125000 0,00032000 0,00001526 | |
1.141 |81 o.01562500 0,00002143 0,00000000 | B}
7 | 000781250 0,00000121 S
1.121
8 | 000390625 0,00000006 E
1.1 9| 000195313 0,00000000 8
1.05 10 | 0,00097656 §
5
1.064 £
0,00000001 S
1.04 4 2 2
[E8 o.00000000 3
1.024 £
* ©
X e
2 3 4 a o} 7 g 9 10 s
k Q
2
-
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Fundamentals

Order of convergence of the UNOP alg.

Order of convergence

Algorithm -
f'quadratic ‘ fgeneral
Linear
Steepest descent
2 (- depends on V7f(x*))
Quasi-Newton Superlinear
<n Quadratic

Conjugate Gradients iterations | (sub-sequence {x**1})

Newton 1 iteration Quadratic

I«

1BWSA-Tutorial-UNO-21
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Methods that use first derivatives

The Steepest Descent method (SD)
e Search direction: dspf = -V
¢ Global convergence:
— Descent direction: vy () d¢ = -|| vFh || <0
— Zoutendijk condition: angle 6 = 0°, cos(6* ) =1 Vk
e Local convergence:
— Linear convergence.
— The rate of convergence r depends on the
properties of f{x)
e Computational requirements:

— Low memory requirements : only needs to store
several vectors of dimension n

— Very easy to implement.

1BWSA-Tutorial-UNO-22

c
i)
s
N
E
2
o
&
3
£
=
S
z
5
4
£
s
-]
@
e
S
o
£
=

11

1BWSA Barcelona June 2002

Methods that use first derivatives

Rate of convergence of the SD

e Upper bound to the rate of convergence

“Suppose that f: %" — 9% is twice continuously
differentiable, and that the iterates generated by the
steepest descent method with exact line search
converges to a point x* where the Hessian matrix
Vf( x*) is positive definite. Then:

£ e < Bl - £ )] ﬁ=[i: ;i‘ J

where A,<... < A, are the eigenvalues of V’f{( x*) “
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Methods that use first derivatives

Rate of convergence of the SD: example

® fix) with “slow” rate of conv. ® f{x) with “fast” rate of conv.
F(x,x)=x"+x," +3x,x, Fxx)=x7 +%x23 +3xx, +
=3 —1f at=[-225 15] +Bx -2,
5 41 [R=08902 i , s 2, =1.6096
sz'(x*):[3 9} : {4, =10.1098 V'f(x*)=[5 2‘25] i 44, =2.6404
B =0.7025

14

4
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Methods that use first derivatives

Properties of the CG method (ll)

¢ | ocal convergence :

— The CG method with restart has n-step
quadratically convergence, that is:

2
| =of* <)

Methods that use first derivatives

The Conjugate Gradient method (CG)

» Search direction: d};, =-Vf(x*) + g*d"*"
dt

-V x¥)
dxl

Bhd ki

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

x k-l % . . %

« Choices of B* £ e Computational requirements : £

X & . 8

Lok VFEVFRRY 2 — Low memory consumption: only needs to 5

Fletcher-Reeves : fr = PENE 5 store several vectors of dim x. £

(best theoretical prop.) va(x )H 3 . . 2

V(T M) -1 H))' 3 — Almost as simple to implement as SD (the only H

hia . X X )—- X s s . . s

Polak-Ribiere : g, = —— £ difficulty is the computation of constant 3¥). 5

(best practical behaviour) va(x )H 3 g
1BWSA-Tutorial-UNO-25 1BWSA-Tutorial-UNO-27

Methods that use first derivatives

Example of the CG method

e Exemple : f(x,x)=x"+x"+3xx,
=3 -1 x*=[-225 15[

=52 3 o+
f(xp %) = X2 4 X3 + 3% X

Methods that use first derivatives
Properties of the CG method (l)
¢ Global convergence :

— Descent direction: ¢ is a descent
direction if the steplength o* satisfies the
strong Wolfe conditions :

S o)< f)+He V(M e (SW)
\Vf(x" +ou")d"\ Scz\Vf(x" )d"\ (Sw2
0<¢ <c, <3

2

15 § /~LOCADTMINIMA
oY

o o
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CG method

— Zoutendijk condition : can be proved if the (38 iterations)

method is periodically restarted setting:

di =-Vf(x') =dl, , 1=n2n3n,...

SD method
(55 iterations)
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Methods that use first derivatives

Quasi-Newton methods (QN)

o Rationale of the Newton method:

To find the next iterate x**/ as the minimizer of the
mK(p) of £ (x) around the current iterate x:

S p) = S VI p+ 2V SR p= ()
p" “— argmin{mk(p) }
Vi (p*) =V f(x*)p* +Vf (2" =0 p* ==V £ (") ' VF (x*)
xk+] :xk +pk
e Quasi-Newton method:

Applies a Newton strategy
by substituiting the Hessian matrix
V2f(x¥) by an approximation B¢
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Methods that use first derivatives

Quasi-Newton methods (QN)
. . —— «H s
e Quasi-Newton direction: diy =—[B } VF(x*)
e Choices of B¥: given a symetric pos. def. matrix B?,
and: sk=xk 1l xk o pk= VAxXKTT) - VAxK)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) :
T T
Bémss"sk Bl’;FGS + vt

xT kT _k

Kl _ pk
Byrs = Bpros — P
§" Bgpgss y s

Davidon-Fletcher-Powell (DFP) : H*=[B ]!

T T
Kk kT ppk k k
_Hypy'y HDFP+S s

k+1 _ k
HDFP _HDFP P

T
.Vk H]’SFPyk y s
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Methods that use first derivatives

Quasi-Newton methods (QN)

e The formula is considered to be the
of all quasi-Newton updating formulae.
e Properties of matrix B : given B, nxn
symetric, positive definite matrix, then the BFGS
update provides Bt/ that :

— Is symetric

— Is positive definite if s¢" yk>0.
(guaranteed if o satisfies the Wolfe conditions)
— Satisfies the 2 Bitlgh=yk

(this is how we force BF™! = V2f (xk*7) )

Unconstrained Nonlinear Optimization
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Methods that use first derivatives

Global convergence of the BFGS method

¢ Global convergence :
— Descent direction: we check the descent condition:

1 ’
Vf (x*)dgpos = _Vf(xk)[BéFGST VF(x")
Bl pos. def. = [BgFGS ]—1 pos. def

}Vf(xk MeGs <0

— Zoutendijk condition : can be proved if the matrices
B¥ have an uniformly bounded condition number, that
is, if there is a constant M such that:

cond(B*) = ‘ B*

B"’IH <M, forallk
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Methods that use first derivatives Methods that use first derivatives
| Local convergence of the BFGS method g Example of the BFGS method
§ e Local convergence : under the following % e Exemple : f(x.x)=x +x +3xx, =3 —f
= assumptions: s (%)= B 43+ 3%, ,
s L T . S S x*=[-225 15]
] e The objective function f'is twice continuously 3 LOCAT WA .
a differentiable a "9k : N
< <
g e The level set Q={ xe " f(x) <f(x?) } is convex E ;
- e The objective function f has a unique minimizer x* | - S ) 5
in Q é 05 \\t\\\s\\i\ é
e The Hessian matrix V*f (x**!) is Lipschitz continuous | ) NN : BFGS g
i - ° N (11 iterations) [N
at x* and positive definite on Q. g 0 NS g
It can be shown that the iterates generated by H sk \ sDmethod H
the BFGS algorithm 2 \\ (55 iterations) [
to the minimizer x* i PN ) 5
H -3 2.5 2 -1.5 -1 -0.5 0 o
8 X, |<‘ 8
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Methods that use first derivatives

Local convergence of the BFGS method

Computational issues :

The efficient implementation of the BFGS method does
not store B* explicitily, but the Cholesky factorization:

Bk = LkaLk’
Memory consumption: n(n+1)/2 = O(n’) elements of
the Cholesky factors.

Computational cost per iteration : O(n?) operations
necessary to ...

... update the Cholesky factors .
... find the solution of the linear system Bt dt= -Vf{x').

The development of an efficient implementation of the
BFGS method is quite difficult.
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Methods that use first and second derivatives

The Newton method (N)

e Rationale of the Newton method:

To find the next iterate x**! as the minimizer
of the mK(p) of f{x) around the
current iterate x*:
f(x*+p)= f(x")+Vf(xk)p+%p’V2f(X")pEm"(p)
p" «— argmin{mk (p)}z —[sz(xk )}1 Vf(xk)

xk+1 — xk +pk

1BWSA-Tutorial-UNO-36
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Methods that use first and second derivatives

Losing of the global convergence

Methods that use first and second derivatives

The Newton method (N)

e Exemple : f(x.x)=x"+x +3xx, x*=[3 2f e Example : f(x,x)=x"+x," +3x,x,

m"(x,,xz)=x,2 +6x22 +3x,x, —12x, +21

-2.25
x*=
[ 1'5 ]
(minimizerof f)

P = e vt
[o6
“|-04

xk+1 =xk +pk =[_2'4:|

(minimizer of m*)

Over x = [-3 -17, the Hessian matrix is:
2 3
VZ 0 —
e ]

which is indefinite (A,=3, A,=-7). Therefore, the
descent property of the Newton direction cannot
be guaranteed.In fact, after 1 iteration, the method
finds an ascent direction:

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

k| VX VAxk) dyk
0 | Indefinite | -35.1428 <0 | Descent direction
1 | Indefinite | 0.37699 >0 | ASCENT direction

Unconstrained Nonlinear Optimization
Unconstrained Nonlinear Optimization
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Methods that use first and second derivatives
Local convergence of the Newton method
e Local convergence :

“Suppose that
<+ The solution »" satisfies the

Methods that use first and second derivatives

The Newton method (N)
e Search direction: d% =-V? f(x*)"'Vf(x*)"

¢ Global convergence :

— Descent direction: the descent nature of d%
the Hessian

+ The function
« The ina
neighbourhood of a solution x*
Consider the Newton iteration x**!= x*+d,k. Then:

« if the starting point x’ is sufficiently close to x*, the
sequence of iterates converges to x*;

« the order of convergence of { x*} is quadratic; and

« the sequence of gradient norms {||VAx*) ||}
converges quadratically to zero.”
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matrix is
If V2 f(x*) pos. def. then
VI (x*)d§ ==V )WV f(x") V()T <0

otherwise,
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Methods that use first and second derivatives

Quadratic order of convergence

e Example :

f(x,x,)= x]2 +x23 +3x,x,

The newton method converges from x° = [-3 27
to x*=[-2.25 1.5]7 in 4 iterations, reducing the
error ||x*-x*|| quadratically at each step :

k| kxS e x 2| || VAR ||
0 9.013 x10°! 3.0

1 1.803x107 < 8.125x10°! 4.8 x107!
2 1.060x102 < 3.250 x102 2.657x102
3 4126 x10°5 < 1.124x10™* 1.029x10
4 | 6296x101" < 1.702 x10° 1.571x10°
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Unconstrained Nonlinear Optimization

o
o
S
«
o
c
S
3
]
<
o
]
o
e
©
1]
<
.
1]
s

Methods that use first and second derivatives

Modified Newton methods (MN)

e Search direction:
-1

dlfAN = _Blf/lN Vf(xk)T

where B, =V (x¥)+ EF , with

— EF=0 if V2/(x*) is sufficiently positive definite;

—otherwise

is chosen to

e Methods to compute B, : based on the

modification of

—The spectral decomposition of VZxK)=QAQT.
—The Cholesky factorization of V2f(x¥)=LDL".
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¢ Global convergence :

Methods that use first and second derivatives

Global convergence of the MN method

— Descent direction: as
therefore, dX,,, is a descent
search direction.

— Zoutendijk condition : can be proved if the
matrices B, have an uniformly bounded
condition number, that is, if there is a
constant M such that :

cond(B¥y) = HB o

HBII\‘;N_IH <M, forallk

Unconstrained Nonlinear Optimization
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Methods that use first and second derivatives

Local convergence of the MN method

Local convergence :

— If the sequence of iterates {x*} converges to
a point x* where
(i.e. E¥=0 for k large
enough), then the MN method reduces to
the Newton methods, and the

- If (that is, there is
not guarantee that £¢=0) the
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Nonderivative methods

Motivation and classification

Methods that use first and second derivatives

Other aspects of the MN methods

Computational issues :

— The efficient implementation of the MN methods
computes and store the modified Cholesky factorization
of By

— Memory consumption: n(n+1)/2 = O(n?) elements of
the Cholesky factors.

— Computational cost per iteration : O(n?) operations
necessary to ...

... compute the modified Cholesky factors of V2f{x*) .
... find the solution of the linear system B, d*,,= -Vf(x*)
plus the effort of computing the second derivatives

— The efficient implementation of the MN method is quite
difficult.

e Motivation: in many problems, either the
derivatives are not available in explicit form or
they are given by very complicated
expressions, prone to produce coding errors.

e Example: a Log-Likelihood function like

L] m oy In 47 . —s.)—a—Bln(s, (¥, )-a-Bln(s;)
I2.0,8.0)=), {e,-é‘.,- ln[z%”exr{ Vot * 2ot G’) Bty _, 1
i=l

Jj=

" 10V, +2opei =5;)-@-Bln(s;)
+E& I Yy expl —e [4 w;
=
m INops i+ ops=;)-G—BIn(s;) m
+£,(1-&)1-&,)1 Zyﬁl—ex{—e ° } ; (l—ei)ln{znw,-
=] =
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Nonderivative methods

Classification

Methods that use first and second derivatives

Example of MN method (modified Chol. fac.)

— Finite differences : to use a first derivative method
(SD,CG,QN), computing the gradient as:

af (x*) _
Jx

with € a small positive scalar and ¢, the unit vector

® Example: F(x,x,)=x" +x," +3x,x, x°=[-3 ,11

234 g
F(Xp %) =55 + X3+ 3%, "%,

x=[-225 15]

é—(f'(x" vee) - f(x"))
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— Coordinate descent:
the obj. function is
minimized along one
coordinate direction at
each iteration.

MN method
(4 iterations)

SD method
(55 iterations)

4
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Nonderivative methods Methods for Unconstrained Nonlinear Optimization

g Classification g Computational comparison
~N ~N
] ]
El — Nelder & Mead simplex method : E Rosenbrock Execution
g — Not to be confused with the simplex method for linear g function | lter. | time S|V |l
g programming. g (n=4) (seconds)
a a Steepest
< < . d all ! o
g Start with an initial g Descent | *760| 120-3% | 103810771 922210
] simplex (convex hull of o 12 5
n+1 points). g Nelder & Mead | 222 3.84 4.586 x1012 | 8.828 x10 %
£ Conjugate £
; E 13 7 E
Select a new point thalt H Gradient 42 1.43 7.513 x10 7.820 x10 £
improves the worst point (‘)‘a 2
of the current simplex. 2 Quasi-Newton | 27 0.33 4.980 x10°"7 | 2.793 x107 $
: - 5
Update de current z il 14 0.22 3.344 X107 | 2506 x107'2 z
simplex. 2 Newton 2
g 3 Newton 14 0.16 3.344 x1026 | 2.506 x10-12 3
- 8] :
> b}
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Nonderivative methods

Nelder & Mead method

L] Exemple f(x,,x2)=x12+x23+3x1x2 x*:[72425 15],

cx2ex3agy o
) =x Fexdean x,

The extended Rosenbrock function

n/2

S(x)= ; [10(x2i _x;'fl)z + (1 ~ X2 )2]

The contours lines for n=2:
1.5

e Unique global

minimizer at
— x*=[11]7
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NM method
(11 iterations)

e |tis considered
a difficult
function to
minimize.

; B
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Nonlinear Least-squares problems

Nonlinear Least-Squares Problems

e We will study now the solution for the

Nonlinear Least-Squares Problem

. 1 1
(NLSP) min f(x):gjzz}rjz(x):EHr(x)Hi

where r(x) represents the residuals of the
model to be adjusted, and the decision
variables x are the coefficients of the model.
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Nonlinear Least-squares problems

Nonlinear Least-Squares Problems

e Forinstance, in the SIDS model:

365

mln 722 ty(a;,b;,c;)— t,k]z
12

ie tlkl

we have:

o . R 15
— Decision variables: x—[ai b; c,.]l.:lzmsegi

— Residuals: r (x) - tlk (al ’bl > 1) t

— Objective function: 365

fx)== 22 t(a,.byc)—t, |

llkl
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Nonlinear Least-squares problems

NLSP through the Newton method

Remember that the Newton search direction
was defined as :

=V F(xh) VF

therefore, in order to solve the NLSP with the
Newton method, we need the first and
second derivatives of the objective
function

f)== Er (x)

Jj=1

Unconstrained Nonlinear Optimization
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Nonlinear Least-squares problems

NLSP through the Newton method

The derivatives of f{x) can be expressed in
terms of the Jacobian of the residuals r:

J or;
()= Bx j=1.2,..am

i=1,2,...,n

The gradient is: Vf(x):irj(x)vr,(x):J(x)Tr(x)
j=1
and the Hessian : '

Vif(x)= inj(x)Vrf(x)T + iri(x)vzrj(x) =
j=1 j=1
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=J(x)"J(x)+ irj(x)vzrj(x)
j=1
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Nonlinear Least-squares problems

The Gauss-Newton (G-N) method (I)

o The Gauss-Newton method applies a
Newton method to the NLSP, substituting
the true Hessian

A

Vif(x)=J(x)" J(x)+ irj(x)vzrj (x)

j=1
by the approximation that neglects the
termA: V2 f(x)=J(x)" J(x)
lthat is the Gauss-Newton search direction is :
a5, =T 1] T R
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Nonlinear Least-squares problems

The G-N method (I1)

e Considerations: the
a when the term
J(x)TJ(x) dominates over Y r,(x)V’r,(x) in the
expression of the Hessiah. This happends:

— the residuals

- each r;is nearly a linear function, so
that
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Nonlinear Least-squares problems

The G-N method (ll1)

e Advantages:

e Thereis the second
derivatives

e The G-N method can be shown to be

under certain
conditions over the rank of J(x*).

e The speed of convergence depends on how
much the leading term J(x)"J(x) dominates.
When ZVj(x*)Vzrj(x*)=0 the convergence is

j=1

quadratic.
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Nonlinear Least-squares problems

Example: the SIDS problem
¢ Real data (high dispersion):

30

25

. 3
. 0 S,
A -
S § i i '?‘
o P i S 4 o

Temperature

>D 200 400 600 800 1000 1200 1400 1600 1800 2000
Time
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Nonlinear Least-squares problems

Example: the SIDS problem, small residuals
e The residuals are small:
I 7(x*) 1], =3.108, || r(x*) ||, = 0.190
e The approximation sz(xk) = J(xk)TJ(xk) is very good near
the solution:
| V2Ax2)- JO)TI0) || = 849.169

Nonlinear Least-squares problems

Example: the SIDS problem, large residuals
e The residuals at the optimal solution are large:
|| r(x*) ||, =117.105, || r(x*) ||..= 8.280
nevertheless, the approximation V2f(xk) =~ J(xk)TJ(xk) is
very good near the solution:
| Vx0)- JO)TI0) || = 1665.46

1BWSA Barcelona June 2002
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| V- ¥ TIx*) || = 4.129x10°5 § | V20 %)= Joe#)THx*) || = 5.813x107 5
g T
N K
E - £
SIDS, large | Exec. time g SIDS, small | Exec. time " £
3 - » 2 ' x VAx* 5
residuals (seconds) Sy | ITVA) | S residuals (seconds) Jory VA | 2
2 Q
Steep. Descent 42.90 6856.886 | 2.899x10-3 § Steep. Descent 18.34 4.832 3.209x106 %
Quasi-Newton 20.15 6856.886 | 1.192x10+ § Quasi-Newton 15.49 4.832 7.137x107 E
Gauss-Newton 16.63 6856.886 | 2.564x10S E Gauss-Newton 16.81 4.832 4.912x107 E
2 173
Modified Newton 3.07 6856.886 | 9.524x10% | [EEY § Modified Newton 3.25 4.832 5.689x10° g
- S
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Nonlinear Least-squares problems

Solution for the SIDS problem

)

Nonlinear Least-squares problems

Example: the SIDS problem, small residuals

e Simulated data with low dispersion:
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Temperature ¢ (a,b,c; d)

Nonlinear Least-squares problems

Adjusted model for temperature

0

200

400 600

800 1000 1200 1400 1600 1800 2000
Time d

e The adjusted

model for the
temperature
presents
discontinuities in
the connecting
points between
different years.

This problem
can be avoided
by

14
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Fundamentals:

Formulation of the NOP

e The general (standard) form of the NOP is :

msiRr} fx) Objective function
(NOP) qsubjectto: h(x) =0 Equality constraints
2(x)<0 Inequality constraints

1BWSA Barcelona June 2002

1BWSA Barcelona June 2002

Algorithms for Constrained

where x are the decision variables, or simply,

Nonlinear Optimization variables, and
iR SR AR SR g R oK

e (NOP) will also be expressed as:
h(x)=0, g(x)SO}

Kl
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(NOP) min{f(x) | xe x}; X:{xe R"
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Geometry of the optimality conditions (ll)

280

2004

e Two inequality

constraints
defining X

One stationary
point, x2 (x! is no
longer stationary)

Relation between
Vfix¥) and Vg,(x*)
at x*, stationary

Fundamentals:

Another interpretation of the KKT conditions

1BWSA Barcelona June 2002

e Consider one
equality
constraint and a
feasible point x

Let x(7) be
differentiable
curve over the
feasible surface
Satx.

The derivative of

x(¢) at =0 is:

point:

c <
L 2
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d
-507 k p x(0)=— x(¢)
v £ (x)<0 VF(x")+n;Vg;(x*)=0 o Then: Lr(x(t) =Vf(x)x(0). The KKT conditions a |,
\\ f(x): dt
A e 20 i that, if x is a minimizer, this derivati t
00 20 3 =0 100180 200 3en j - Impose that, IT x IS a minimizer, IS derivative mus
ul for all g; active at x* be nonnegative for all possible diff. curves x(f). |<‘
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Fundamentals:
Optimality conditions : the KKT conditions
Usual stopping criterium
e First-Order Necessary Conditions
“Suppose that x* is a local minimizer of NOP
and that x* is reqular, then there are Lagrange
multipliers vectors Ae 9%t ™ and ue 9! such that :

Fundamentals:

Optimality conditions

e Regularity condition:

any feasible point xe X is said to be regular if
the gradient vectors:
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Vh(x) , i=L2,...m [xgive constraints

i) V() + A% Vh(x®) + p*T Vg(x*)=0
Ve,(x) , jes={jlg;(x)=0}

i) p*' g(x*)=0

i) p*=0 are linearly independent.

e This are the famous Karush-Kuhn-Tucker
conditions (KKT for short).

Constrained Nonlinear Optimization
Constrained Nonlinear Optimization

B
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Linearly Constrained NOP
Motivation

e Remember the likelihood maximization problem
introduced previously:

n_m

1 _l(yra*ﬂs,»):
max L,(3,0,B,0)= ——le? i
e @.a.8.0)=][ X7 o2m j

a.p.o i=l =l

(LCNOP) subject to: Za)le
i=1

®,20,j=1,...m
620

This is an exemple of Linearly Constrained NOP
Problem (LCNORP).

o We will use the Reduced Gradient method to illustrate
the rationale of the algorithms for (LCNOP).
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Linearly constrained NOP
Feasible direction

e Feasible direction : de 9" is a feasible direction at x* for
the problem
(LCNOP) min{f(x)xe X} ; X ={xent"
If:

Ax:b,leSu}

Jae R Vac[0,a]:x* +od* e X

(LCNOP) min{f(x): x, +2x, <2, x>0}

Over x': Over x? :
d' FEASIBLE Yde R
d®: FEASIBLE FEASIBLE

> X, d® INFEASIBLE

1BWSA-Tutorial-CNO-11
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Linearly Constrained NOP

The Reduced Gradient (RG) method
® The Reduced Gradient method solves the (LCNOP) problem:
(LCNOP) min{f(x)‘xe X} ; X= {xe R"|Ax=b,I<x<u }

using the following strategy:

1. Find a first feasible solution x*e X (current solution).

2. If the current solution satisfies the KKT conditions, x* , STOP

3. Otherwise, find a new feasible solution that improves the current
objective function value, and take this new point as the current
solution:

3.1. Find a feasible descent search direction d¥
3.2. Perform a linesearch from x* along d* : o
3.3. Update the current solution: x**/:= xk + ok d¥. Goto 2

Rl
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Linearly constrained NOP

Feasible descent direction of the RG

e Nondegeneracy assumption: at each iterate
xk, the RG method assumes that there exists a
partition of the variables and columns of the
coefficient matrix 4:

o Y| ye R™ (dependent variables)
z| zeR"™ (independent variables)

Ax=[a, Az][ﬂ:Ayy+Azz:b

such that:
i. A,eR™™ isnon-singular
i. I, <y<u,

1BWSA-Tutorial-CNO-12
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Linearly constrained NOP

Feasible descent direction of the RG

e Reduced gradient: given the partition
x*=[y z]7, the reduced gradient is the
vector re R defined as:

P =V (0,0 -V, f(n.2)4,' A,

e Search direction: it is obtained after the
reduced gradient as:

k
dy
d*

ko
dRG_

-1
—A, A, (-r)

-r

1BWSA-Tutorial-CNO-13

Linearly constrained NOP

Feasible descent direction of the RG
e Properties of dt:
— dfyi is a descent direction:

— -1 —
Vit =V, 13,2 | sz@¢>]{#]:

1BWSA Barcelona June 2002

=V, f DA A (1) 4V f(p2)(r) =
=V s -V, (04 A f-r) = —rTr =

r

=—HrH<0 if r=0
— d¥yg is feasible for Ax=b: 0

o i
A(x* vadhg)=brald, | AZ][A}'AC("):l—bJra|:—AyAy'AZ+AZ (—r)=b
-r
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Linearly constrained NOP

Geometrical interpretation of d

Vh,(x)

e Consider one linear
constraint a,x=0
defining the feasible
plane I1, and the
feasible point x*, where
z =[x, x,]T and y=x;

The step d¥ moves
away from IT...

.. and the step d,
corrects the step so
that d *g; lies in IT

e And finally, a
linesearch is
performed to find xk+!

1BWSA-Tutorial-CNO-14

Linearly Constrained NOP
Feasible descent direction of the RG

e Properties of d*; (cont.):

— d*yc may be infeasible for some bound:
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this problem can be avoided by a slightly
modification in the definition of the search

direction.

Constrained Nonlinear Optimization

I«
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Generally Constrained NOP:
Motivation : nonlinear regression with constraints

e Remember the SIDS problem

365

5
a:g,ifilSégjz_f[tij(”i’bi’ci)_tﬂlz

i=1,2,...,

where the model to be adjusted was:

r
t;(a;,b;,c;)=a; cos[] —-b; ]+c,.

365
i=12345
j=12,...365
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Generally Constrained NOP:
Motivation : nonlinear regression with constraints

e The solution of this problem through unconstrained
nonlinear optimization techniques presented
between the harmonic models for each
year:

Temperature ¢ (a,b,c; d )

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time d

Constrained Nonlinear Optimization

1BWSA-Tutorial-CNO-18
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Generally Constrained NOP:
Motivation : nonlinear regression with constraints

e This problem can be overcame by introducing
a set of nonlinear constraints that forces the
continuity of the adjusted models:

hi(x)=t;365(a;,b;,¢;)— 1, (a0, b,,0,¢,) =0 , i=1234

that is:

2r 2r
h;(x)=a; COS[%365 -b; )+ ¢ —a;, cos(% -b,, J— ¢, =0
i=1234
which are nonlinear w.r.t. the decision variables
b,

i

Kl
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Generally Constrained NOP:
Generalized Reduced Gradient

e Problem : the
iterate x**/g found
by the RG method
does not lie on the
feasible surface S

-10

e The Generalized
Reduced Gradient
method (GRG) tries
to keep feasibility at
each iterated point.

1”10

* The GRG method finds the new feasible point x¥*1;p¢, solving
numerically (Newton-Raphson), at each iteration, the nonlinear
system of equations A(x)=0, starting at x**1oq .

Kl
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Generally Constrained NOP:

Augmented Lagrangian Methods (l)

Generally Constrained NOP:

Augmented Lagrangian Methods (lll)

e Note that, for a sufficiently large c*, the penalty
term will dominate in the minimization of (US)*,
and then L ,(x &, 1 %) = flx S+ h(xk).

e Consider, for simplicity, the (GCNOP) with only equality
constraints : (GCNOP) min{f(x) | h(x)=0}
* The Augmented Lagrangian function is defined as : ¢ In this case, the first order optimality conditions
of the (US)* at x* will be:

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

c 2
L,(x,A;¢)= f(x)+A h(x) +5Hh(x)H
This Augmented Lagrangian is formed with : VL, (x*, 2%;¢*) = VF(x*) + lkTVh(xk)
— the Lagrangian function L(x, 1) = fix)+ATh(x) , plus
— the quadratic term (c /2)||h(x)||? that penalizes the
infeasibilities of the solution x

( (e¢/2)]|h(x)])? =0 if x is a feasible solution )

which are nothing but the KKT conditions for
the original problem.
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Generally Constrained NOP:

Augmented Lagrangian Methods (1)

Generally Constrained NOP:

Augmented Lagrangian Methods (lll)

e Framework of the Augmented Lagrangian

e The key idea of the Augmented Lagrangian
algorithm

method is to solve the original problem by
solving the sequence of Unconstrained
Subproblems: Given ¢’ and starting points x’ and A?, k:=0
Do Until (x*, A%) satisfies the KKT conditions.

Compute the new iterate as x**/:=argmin L ( x , A, c¥)
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(US)* minL,(x,A*;c*)
. . . ) Update the Lagrange multipliers to obtain A*+/
, with an increasing sequence {c*}, in such a
way that the sequence {x*, A*} converges to
{x* A*} a solution that satisfies the KKT
conditions of the original problem.

Choose new penalty parameter ck*/ > ¢k
k:=k+1
End Do

Constrained Nonlinear Optimization
Constrained Nonlinear Optimization

Kl
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Generally Constrained NOP:

Projected Lagrangian Methods (l)

e Consider, again, the (GCNOP) with only equality
constraints : (GCNOP) min{f(x) ‘ h(x)=0}

e Projected Lagrangian methods solve the original

problem by solving the sequence of Linearly
Constrained Subproblems:
min L,(x,A%;c*
(LCS)* ¢ x { )
subj.to: VA(x*)(x—x*)+h(x*)=0

where the linear constraints comes from the Taylor’s
series expansion of 4(x) around a given point x*.

1BWSA-Tutorial-CNO-25
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Generally Constrained NOP:

Projected Lagrangian Methods (ll)

e The most effective expression of the objective function
of subproblems (LCS)k is the Modified Augmented
Lagrangian:

Ly (x 2t x* o) = f(x)+/1kThk(x)+§Hhk(x)H2

that resembles the )
excepts that the expression of the nonlinear
constraints has been , defined

as:
B (x) = h(x)— [VA(x*)(x—x*) + h(x")]
Linear approximation of &(x) around x*

o (%, A = (x*, A*) ) the method
presents if ¢=0.

1BWSA-Tutorial-CNO-26
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Generally Constrained NOP:

Projected Lagrangian Methods (lll)
¢ Projected Lagrangian algorithm

Given ¢? and starting points x” and A?, k:=0
Do Until (x*, A*) satisfies the KKT conditions.
Solve (LCS)*to obtain x*+/
Take A*™/ as the Lag. mult. at the opt. sol. of (LCS)*
If (x%, A¥) = (x*, A*) then set ¥/ = 0
Else choose ¢k > ck
k:=k+1
End Do
Kl
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Generally Constrained NOP:
Sequential Quadratic Programming (l)

e Consider, the problem : (GCNOP) min{f(x) ‘ h(x)= 0}
e Sequential Quadratic Programming solves the

original problem by solving the sequence of Quadratic
Linearly Constrained Subproblems:

min %(x—x")TWk(x—xk)+Vf(xk)(x—x")
subj.to: VA(x*)(x—x*)+h(x*)=0

(QLCS)*

where the matrix W* e %" denotes the Hessian of
the Lagrangian function at (x*, A¥) :

wh=v2 L(x*,2%) :sz(xk)+i/1']‘.V2h(x")
j=1

1BWSA-Tutorial-CNO-28
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Generally Constrained NOP:
Sequential Quadratic Programming (ll)

e Framework of the Sequential Quadratic
Programming

Given starting points x” and A%, k:=0

Do Until (x*, A%) satisfies the KKT conditions.
Solve (QLCS)* to obtain x**/.
Take A%t as the Lag. mult. at the opt. sol. of (QLCS)*
k:=k+1

End Do

1BWSA Barcelona June 2002

c
2
T
N
£
-
o
&
3
£
H
S
z
°
@
£
4
B
2
S
O

1BWSA-Tutorial-CNO-29

Generally Constrained NOP:

SQP and Projected Lagrangian

e The strategy of the SQP is similar to the one used in
the Projected Lagrangian methods:

— Advantages of SQP: it is easier to optimize the quadratic
subproblem (QLCS) than the general (LCS)¥, due to the
existence of specialised quadratic programming techniques.
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— Disadvantages of SQP: the computation of the quadratic
objective function needs the second derivatives (or its
numerical approximation) of the objective function f{x) and
constraints A(x).

e Both methods can be proved to converge quadratically

near the solution.
I«
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Optimization libraries:

Description

Optimization libraries provides subroutines that can be
called from the user’s own code (mainly in FORTRAN, C
or MATLAB).

In order to solve a problem with an optimization library, the
user must provide:

1BWSA Barcelona June 2002
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Solvers for Nonlinear

e The data structure with the relevant information about the problem
Optimization ( matrix 4 in the (LCNOP), lower and upper bounds, etc.)
e Subroutines that, given a vector x*, returns all the information
needed by the algorithm. This information could be:
At least f(x*) and the constraints value i(x¥) and g(x*).
Usually the gradients Vfix¥) and Jacobians Vi(x¥) and Vg(x*).

Rarely, the Hessians V?f(x¥), V2h(x¥) and V2g(x*).
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Optimization libraries:

Solvers for nonlinear optimization Optimization libraries

.. . . . e Some of most outstanding optimization libraries are:
o Optimization libraries.
— Solving the SIDS problem with the NAG

Library

<+ Without smoothness constraints.
<+ With smoothness constraints.

e Modeling languages.
— Maximization of the constrained likelihood
function with AMPL

— For Unconstrained Optimization:
< The optimization subroutines in the NAG and HARWELL libraries.

— For Constrained Optimization:
+ GRG, CONOP: Generalized Reduced Gradient.
+ LANCELOT : Augmented Lagrangians.
<+ MINOS : Projected Lagrangians.
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+ SNOPT: Sequential Quadratic Programming.

e But, if you really are interested in knowing all the
available optimization software, visit the NEOS Guide at
www-fp.mcs.anl.gov/otc/Guide/ (a really impressive site
in optimization!!)

I«
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Optimization libraries:

Solving the SIDS problem with the NAG libraries

e Subroutines for the unconstrained SIDS problem :
— E04JAF : Quasi-Newton, using function values only.

— E04GCF: Gauss-Newton, using function values and
first derivatives.

e Subroutines for the constrained SIDS problem:

— E04UCE: Sequential Quadratic Programming, using
function values and first derivatives.

e We will see how to solve the SIDS problem calling
these subroutines from MATLAB.

1«
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Optimization libraries:

Subroutine E04JAF (QN method)
e User’s subroutines: computation of f{x*) file funct1.m

% Objective function for the SIDS problem
function [fc] = functl(n,xc)
global obs;
fc=0;
ww=(2*pi) /365;
for i=0:4
aux = 3%i;
a = xc(l+aux);
b

@

xc (2+aux) ;
xc (3+aux) ;
aux2 = 365*%i;
for j=1:365
calc=a*cos (ww*j-b) +c;
fc=fc+ (calc-obs (j+aux2)) "2;
end

end
fe=fc/2;

1BWSA-Tutorial-Solvers-7
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Optimization libraries:

Subroutine E04JAF (QN method)
e Main program: file SIDS_e04jaf.m

% Solving the SIDS problem with the NAG Foundation Library
%

Routine EO04jaf : Quasi-Newton method using function values only

'Example program for the NAG Foundation Library Routine e04jaf’'
SIDS t; % Here the observed data t {ij} is loaded
x=zeros (15,1) ; % Initial point

time=cputime; % To know the total execution time.
[xQN, £] = e04jaf(x); % This is the call to the subroutine
Optimal Objective Function=f % We print £ (x*)...

At_the Point X=xQN % ... the optimal solution x*...

time = cputime-time % ... and the execution time

1BWSA-Tutorial-Solvers-6
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Optimization libraries:

Subroutine E04JAF (QN method)
e Output:

» sids_e04jafe At_the Point X =
-6.9691
ans = 0.4920
9.7255
Example program for the NAG -6.0992
Foundation Library Routine 6.7046
e04jaf 11.4230
-6.4842
0.3844
Optimal_Objective Function = 11.2986
-6.7013
6.8569e+003 -5.8949
12.0551
-6.9693
6.8088
12.0827

time =
18.8900

1BWSA-Tutorial-Solvers-8
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Optimization libraries:

Subroutine E04JAF (QN method)

Optimization libraries:

Subroutine E04GCF (GN method)

e Graphical representation : e User’s subroutines: file Isfun2.m

o™ N
(=3 (=
=] (=]
~N ~N
o o
c c
= =
= =
© ©
c a0 T T T T T T T T T c ) . .
o o K function [fvecc,fjacc] = lsfunl(m,n,xc,ljc)
© Il % Residuals and its derivatives for the global obs;
E E SIDS problem. k
& ] - ww= (2.%pi) /365.; ri(x )
< Pq % Input : for
[ (2] = 3%i;
; r
= = IS o s e e, o G
- D = o : number of coefficients. aux + 2; ax.
g ata % xc (n) : coefficients. aux + 3; ik
E S % 1jc : num. Of rows of the Jac.. a = xc(i a); H
5 S S
2 E] % b = xc(ib); ]
é MOdeI N % Output: e =xc(i c); N
= £ i E
= % aux2 = 365*i; =
8- % fvecc (m) : vector of residuals. 8-
= % fjacc (ljc,n) : Jacobian of the vector =
I of residual. 3
£ % fvecc ( k) £
< Tiacc( K, 1_a) = cos(ww*j-b)7 5
z e The output is similar to e £ A5 o oo Z
5 , , , . . . . \ \ el . . SR s 6D - el
0 200 400 600 GO0 1000 1200 1400 1600 1800 2000 4 the previous routine. en %
e f oo | e ;
o o
0 n
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Optimization libraries:

Subroutine E04GCF (GN method)
e Main program: file SIDS_e04gcf.m

Optimization libraries:

Constrained SIDS with subroutine E0O4UCF
e Main program: file SIDS_e0O4ucf.m

% Solving the SIDS problem with the NAG Foundation Library % Solving the constrained SIDS problem with the NAG Foundation Library

% Routine EO4gcf : Gauss-Newton method using function values % Routine EO4ucf : SQP method using function values and first derivatives.

% and first derivatives.
‘Example program for the NAG Foundation Library Routine e04ucf'

o N
o o
S S
« «
o I
c c
S S
S S
] ©
< <
o o
] ]
o o
e e
] ©
1] [11]
< <
. 2
1] 1]
= -

sids_t; % Loading the observed data
. o q q .
Example program for NAG Foundation Library routine e04gcf ne1s; * Number of vaciables.
nclin=0; % Number of linear constraints.
SIDS_t; % Here the observed data t_{ij} is loaded nenln=4; % Number of nonlinear constraints.
x = zeros(15,1); % Initial point a=ones (nclin,1); % Coefficient matrix A (dummy).
: =- *1. ; ints.
m=length (obs) ; O e @F ESrEETOEieE bl=-ones(19,1) *1.0E+25; % Default lower bounds for variables and constraints
. . o . . bu= ones(19,1)*1.0E+25; % Default upper bounds for variables and constraints.
time = cputime; % To know the total execution time.

bl(16:19) = zeros(4,1); % Lower bound for each constraint.

[XGN, fsumsq,ifail] = e04gcf(m,x); % Call to the routine .
bu(16:19) = zeros(4,1); % Upper bound for each constraint.

The Sum of Squares=fsumsq % We print £(x*)... x=zeros (15,1) ; % Initial point.
%

At_the_ Point X=xGN ... the optimal solution x*... confun="'SIDS_e04ucf confune'; % User's subroutine for the constraints and Jacobian.

0°

time = cputime-time ... and the execution time obj fun='SIDS_e04ucf_objfune'; % User's subroutine for the o.f. and gradienmt.

Solvers for Nonlinear Optimization
Solvers for Nonlinear Optimization
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Optimization libraries:

Constrained SIDS with subroutine E0O4UCF
¢ Main program: file SIDS_e04ucf.m (cont.)

% Optimization parameters:
string = ' Infinite Bound Size = 1.0e25 ';
e04uef (string) ;
string = ' Print Level = 1 ';
e04uef (string) ;
string = ' Verify Level = -1 ';
e04uef (string) ;
% Call to the optimizer:
[iter,c,objf,objgrd,x,cjac,istate,clamda,r,ifail]l = ...

e04ucf (bl,bu,confun,objfun,x,ncnln,a);

1BWSA-Tutorial-Solvers-13

c
S
s
N
E
2
o
5
3
£
H
o
z
2
0
[4
o
2
o
(]

1BWSA Barcelona June 2002

Optimization libraries:

Constrained SIDS with subroutine EO4UCF

e User’s subroutines: computation of f{x) and Vf{x*) :
file SIDS_e04ucf_objfune.m

function [mode,objf,objgrd] = objfun(mode,n,x,objf,objgrd,nstate)

global obs;
ww= (2*pi) /365;
s

%
if mode==0 | mode==2 % Evaluation of £ (x"k)
F=0;
for i=0:4
aux = 3%*i;
= x(1l+aux);
= x(2+aux);
= x(3+aux);
aux2 = 365*i;
for j=1:365
res = a*cos(ww*j-b)+c - obs(j+aux2);
F=F+res”"2;
end
end
objf=F/2;
end

1BWSA-Tutorial-Solvers-15
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Optimization libraries:

Constrained SIDS with subroutine EO4UCF

e User’s subroutines: computation of f{x*) and Vf{x*) :
file SIDS_e04ucf_objfune.m

% Function "objfun" for the constrained SIDS problem
%

% Input:

% mode : information required

%n : number of variables

% x (n) : current iterate x"k

% nstate : information about the current iterate
%

% Output

%

% objf : objective function at x’k.

% objgrd (n) : gradient vector at x'k

%

function [mode,objf,objgrd]l = objfun(mode,n,x,objf,objgrd,nstate)

1BWSA-Tutorial-Solvers-14
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Optimization libraries:
Constrained SIDS with subroutine EO4UCF

e User’s subroutines: computation of f{x¥) and VAx*) : file
SIDS_e04ucf_objfune.m

if mode==1 | mode==2 % Evaluation of the gradient
G=zeros (1,15);
for i=0:4
auxl = 3*i;
=1 + auxl;
2 + auxl;
c = 3 + auxl;
= x(i_a);

-
[

-
o

x(i_b);
x(i_c);
ux2 = i*365;

res = a*cos(ww*j-b)+c - obs(j+aux2);
G(i_a)=G(i_a)+res*cos (ww*j-b) ;
G(i_b)=G(i_b)+res*sin(ww*j-b);
G(i_c)=G(i_c)+res;
end
G(i_b) = a*G(i_b);
end
end
objgrd = G;

1BWSA-Tutorial-Solvers-16
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Optimization libraries:
Constrained SIDS with subroutine EO4UCF

e User’s subroutines: computation of 4(x*) and VA(x*) : file
SIDS_e04ucf_confune.m

Optimization libraries:

Constrained SIDS with subroutine EO4UCF
e Output (1):

» sids_e04ucfE

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

%
% Function "objfun" for the constrained SIDS problem eer =
%
Example program for the NAG Foundation Library Routine e04ucf
% Input:
%
% mode : information required
% ncnln : number of rows of the Jacobian. Calls to EQ4UEF
% n : number of variables g Al s
% nrows : max(1,ncnln) ninite Bound Si 1 0e2s c
L . nfinite Bound Size = 1.0e 5
5 5 28
5 needc (ncnln)  : flag to indicate the constraints to be evaluated. e 2
% x (n) : current iterate x'k Verify Level = -1 8
% nstate : information about x“k. E E
% )3 *%% E04UCF B
% output ° **% Start of NAG Library implementation details *** °
5 H s
%
% 1 . val o — - 2 Implementation title: Microsoft Windows NT Powerstation 2
@ (i) P value © © constraints over x = Precision: FORTRAN Double Precision =
% cjac (nrowj,n) : Jacobian over x“k S S (B TR S
% < Mark: 17A <
function [mode,c,cjac] = confun(mode,ncnln,n,nrowj,needc,x,c,cjac,nstate) 2 L
% [ *** End of NAG Library implementation details *** 13
o o
2 2
o o
) n
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Optimization libraries:
Constrained SIDS with subroutine EO4UCF

e User’s subroutines: computation of 4(x*) and VA(x*) : file
SIDS_e04ucf_confune.m

Optimization libraries:

Constrained SIDS with subroutine EO4UCF
e Output (Il) :

Parameters
if nstates==1

cjac=zeros (nenln,n) ;
end

o N
o o
S S
« «
o I
c c
S S
S S
] ©
< <
o o
] ]
o o
e e
] ©
1] [11]
< <
. 2
1] 1]
- -

2r 2r f ] ;
ww = 2%pi/365; hi(x) =a, cos| —365— bi +c¢; —a;,,cos| —— bi+l —Cin Llneér cons:ramul:. - 0 Variables.............. 15
. 365 365 Nonlinear constraints. 4
3% (i-1);
e Infinite bound size.... 1.00D+25 COLD Start.............
2% %:3:3{: Bh Infinite step size. 1.00D+25 EPS (machine precision) 1.11D-16
bl = x(aux+5); i(x) Step limit 2.00D+00 HesSSian......oeevnennns NO
e (aux+6) ; - |
w365
’ c
% (aux0 - b0); axi K Linear feasibility..... 1.05D-08 Crash tolerance 1.000-02 §
Z sin(aux0 - b0); N Nonlinear feasibility.. 1.05D-08 Optimality tolerance 3.26D-12 5
e B Line search tolerance.. 9.00D-01 Function precision..... 4.38D-15 E
if needc(i)>0 E-] =
% Continuit £ y(j,t) at the "i"-th connect int
if modeaxd | modhasz © onmeet we S Derivative level. 3 Monitoring file........ -1 E
e = a0cos0 o - Catrecet v enrs p Verify level... -1 5
i de==1 | mode=-=: g g
07
s orsin) = Major iterations limit. 85 Major print level. 1 =
* 4 c T
g = K Minor iterations limit. 57 Minor print level. 0 K
s 8 Workspace provided is IWORK ( 53), WORK( 954) . S
e 13 To solve problem we need IWORK( 53), WORK( 954) . 4
n H o
2 2
[} [}
7] )
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Optimization libraries:

Constrained SIDS with subroutine EO4UCF
e Output (lll):

Optimization libraries:

Constrained SIDS with subroutine EO4UCF

e Graphical renresentation of the solution : data and model

1BWSA Barcelona June 2002
1BWSA Barcelona June 2002

Exit from NP problem after 33 major iterationms, 30 T T T T T T T T T
34 minor iterations. .
Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
v 1 FR -6.01843 None None
voo2 FR 6.86197 None None
v 3 FR 10.2776 None None
v o4 FR |[-6.45854 None None g
v 5 FR 6.68295 None None i 5
v 6 FR 11.2311 None None 2 T
v 7 FR [-6.46699 None None * H N
v 8 FR | 6.67074 None None X = £
v o9 FR 11.3104 None None E
v 10 FR [-7.00733 None None 5
v 11 FR 6.65565 None None @
v 12  FR | 11.8928 None None =
v 13 FR 7.33845 None None S
v 14 FR 9.92259 None None =
v 15  FR | 11.8731 None None 2
0 200 400 600 800 1000 1200 1400 1600 1800 2000 5
Time 2
o
n
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Optimization libraries:

Constrained SIDS with subroutine EO4UCF
e Output (IV):

Optimization libraries:

Constrained SIDS with subroutine EO4UCF

o Graphical representation of the solution : model

1BWSA Barcelona June 2002
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20
N Con State Value Lower Bound Upper Bound Lagr Mult Slack
18
N 1 EQ| -1.267431E-11 5 5 201.5 1.2674E-11
N 2  EQ| 2.171596E-11 o o 131.5 -2.1716E-11 16
N 3 EQ| 7.942980E-12 135.8 -7.9430E-12
N 4  EQ| -3.250733E-13 76.53 3.2507E-13 14
4
< 2 c
Exit E0O4UCF - Optimal solution found. o g 12 o
5 £ 3
e s o h(x*) 2* E £, :
» 2 2
o o
g ’ i« E
* = Now the modelis 5
S (x*) : : :
= z
L 4 L
g 0 200 400 600 800 1000 1200 1400 1600 1800 2000 g
2 Time I 2
o o
n n
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Modeling languages:
Introduction

e Modeling languages can be saw as a
friendly interface between the user and the
optimization libraries.

e The way this applications work is :

e The user defines the optimization problem to be
solved (objective function and constraints) in a
notation very similar to the natural mathematical
notation.

e Then, he selects the solver to be used (MINOS,
LANCELOT, CONOPT, etc).

e The application automatically translates the
model defined by the user to the specific input
data structure needed by the selected solver.

Modeling languages:

GAMS/AMPL

e Modeling languages : the two modeling
languages most widely used are:
e GAMS (www.gams.com) :
General Algebraic Modeling System
e AMPL (www.ampl.com) :
A Modeling Language for Mathematical Programming
e We will use AMPL to illustrate the use of this
sort of software, solving the constrained
likelihood maximization problem

1BWSA Barcelona June 2002
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Modeling languages:
Advantages/Disadvantages

Modeling languages:

A Log-Likelihood Function
(Langohr, Gomez, 1BWSA Poster Session, thursday)

e Advantages: the , because . i
— The , because the syntax of the I3.0.8.0)=), [s,.;,.h{z;fex{ = - G ]w,]
modeling language resembles the usual mathematical notation. =t i
— The to be used. That L

n In y)-a-Blnts;
+g&, ln[Zy” ex,{—e
=

+&(1-§; >(1—§1,)Ir{in[l—exr{—e e

means that, after defining just once the optimization problem, the
user are able to solve it with a great variety of solvers, forgetting
all the annoying issues related with the specific data structure of

o N
o o
S S
« «
o I
c c
S S
S S
] ©
< <
o o
] ]
o o
e e
] ©
1] [11]
< <
. 2
1] 1]
- -

] each solver. (LCNOP

e Disadvantages: the cx i ;o5 compared [ H,_er,]{im H 5
with the one obtained directly using the optimization g - K
. - £ 3
libraries. - R YR §
e Conclusion: this approach is : 2 8" s
—  For , where the execution time is not critical. E @20 , j=12...m E
€ E
— Todevelop to achieve a deeper 2 20 2
comprehension of the model, before its implementation in 5 s
FORTRAN o0 C. ¢ [
H With o, B, o, and @ decision variables, and ¢, £ and y known parameters |
0 0N
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Modeling languages:

User’s data files with AMPL

e |n order to solve the (LCNOP) Log-Likelihood problem with
AMPL, the user must first define:
— A Model file with:
<+ The declaration of the decision variables o,o.B,6 and its bounds.
<+ The mathematical expressions of the o.f. [(0,0.B,0)
+ The mathematical expression of the linear constraint.

— A Data file with the definition of all the know parameters
of the model (m, n and ¢, & and ).

— A Run file which is a script file, a sort of main program,
with the list of commands to be executed to solve the
defined problem.

e And then, solve the problem with AMPL

1BWSA-Tutorial-Solvers-29
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Modeling languages:

The model file for the Log-Likelihood problem

o Definition of the model: file 1bwsa.mod

# Parameters of the model
set V; # set for variables
param Lb{V}; # bounds for variables
param Ub{V};

param M ; # number of possible covariate values

param N ; # number of observations

param pi := 3.14159265;

param gamma{l..N,1..M}; # matrix for censoring pattern of covariate

param y{1..N};

param epsi{l..N};
param xi_1{1..N};
param xi_2{1..N};

time from HIV+ to observed value for AIDS
observation indicator for y

exact observation indicator for y
right-censored observation indicator for y
time to HIV: left endpoint

time to HIV: right endpoint

param hivn{1..N};
param hivp{1l..N};
param s{1..M};

param logsum{l..N,1..M

values of time till HIV
# possible values for log(time from HIV till AIDS)

param RR_zeta; relative risk for current status covariate (csc)

W oa O o3 # o o o o o

param acc_fac_z; accelerating factor for csc

1BWSA-Tutorial-Solvers-30
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Modeling languages:

The model file for the Log-Likelihood problem

¢ Definition of the model: file 1bwsa.mod (cont.)

# Decision variables
var alpha;
var beta;
var sigma >= 0, :=1;
var omegaf{j in 1..M} >=0;
# Objective function
maximize logLikelihood:
sum{i in 1..N}
(epsil[il*xi_1[i]l*log(l/sigma*sum{j in 1..M}
gamma [i,j] *exp ((logsum[i,j]-alpha-beta*log(s[j]))/sigma-
exp ((logsum[i, j]l-alpha-beta*log(s[j]))/sigma)) *omega[jl)+
epsi[i]*xi 2[i]*log(sum{j in 1..M} gammali,jl*exp(-
exp ((logsum[i,j] -alpha-beta*log(s[jl))/sigma)) *omegaljl) +
epsi[i]*(1-xi 1[i])*(1-xi 2[i])*log(sum{j in 1..M}
gamma [i,j]* (1-exp (-exp ((logsum[i,j]-alpha-
beta*log(s[j]))/sigma))) *omega[jl)+
(1-epsi[i]) *log(sum{j in 1..M} gammali,j]*omegaljl));
# Linear constraint
subject to suml:
sum {i in 1..M} omegal[i] = 1; |4 |

1BWSA-Tutorial-Solvers-31

c
]
K
]
£
-
o
&
3
£
H
o
z
2
4
o
H
o
(]

N
o
S
«
I
c
S
3
©
<
o
]
o
e
©
[11]
<
2
1]
=

Modeling languages:

The data file for the Log-Likelihood problem

e Data: file 1bwsa.dat
set V:= 1,2,3;

param: Lb Ub :=

i -15 5
2 -15 15
3 0 15;

215+3 = 218 decision variables

param hivn hivp Y epsi xi 1 xi 2:=

1 1 45 36 1 1 0
2 1 83 36 1 0 1
3 1 112 1 1 1 0
4 1 84 9 1 1 0
5 1 37 76 1 0 1

359 107 215 9999 0 0 0

360 83 215 9999 0 0 0

361 8 215 9999 0 0 0;

14
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Modeling languages:

The script file for the Log-Likelihood problem

e Execution file : file 1Tbwsa.run

# First, the model and data are loaded :
model lbwsa.mod;
data lbwsa.dat;
# Now the fixed parameters of the model are computed :
for{j in 1..M}{
let omegalj]l := 1/M;
let s[jl := j;

3
for{i in 1..N}{
for{j in 1..M}{
if hivn[i]l <= s[j] and s[j] <= hivpl[il
then let gammali,jl H
else let gammal[i,j

}

for{i in 1..N}{
for{j in 1..M}{
if gamma[i,jl==1 and epsi[il==1
then let logsumli,j log(y[il+hivp[il -s[jl);
else let logsuml[i,j 0;
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Modeling languages:

The script file for the Log-Likelihood problem

e Execution file : file 1bwsa.run (cont.)

Here we choose the optimizer

option solver kestrel; # remote optimization at the NEOS Server...

option kestrel options 'solver=snopt'; #...with the SNOPT optimizer

option snopt_options "version";
What means

#

#

and now, we solve
solve; “remote optimization”?
...and print the solution :

let RR_zeta:= exp(-beta/sigma);

let acc_fac_z:= exp (beta);

printf "The estimated values of the model are (alpha, beta, sigma)
= (%6.4f, %6.4f, %6.4f).\n",alpha, beta, sigma;

printf "The relative risk amounts to %5.4f,", RR_zeta; printf " the
accelerating factor is %5.4f£.\n", acc_fac_z;

option omit_ zero rows 1;

display omega;

5
»
4
3

2
o

0
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Modeling languages:

Remote optimization through the NEOS Server

Local PC
Remote Server

1bwsa.run http:/\ mcs.anl.g

I 1bwsa.mod

1bwsa.dat
1bwsa.mod 1bwsa.mold
1bwsa.dat

1bwsa.dat | Kestrel.

exe I I

solution solution ] ] 7/

Kestrel stablishes a
connection through internet 14 |
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Modeling languages:

Resolution of the Log-Likelihood problem

e Results :

Executi

DOS> ampl lbwsa.run

Tracking information of the

Job has been submitted to Kestrel

Kestrel/NEOS Job number : 163559

Kestrel/NEOS Job password : irQEgUI1

Check the following URL for progress report :
http://www-neos.mcs.anl.gov/neos/neos-cgi/check-

status.cgi?job=163559&pass=irQEgUI1l

In case of problems, e-mail :
neos-comments@mcs.anl.gov

remote server

Information about the remote

Intermediate Solver Output:
Checking the AMPL files
Executing algorithm...
SNOPT 6.1-1(5) (Nov 2001): version
Finished call

optimization process
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Modeling languages:

Resolution of the Log-Likelihood problem
hd Resu"s . (Cont.) Information sent by the remote

SNOPT 6.1-1(5) (Nov 2001): optimization server
Optimal solution found.
1882 iterations, objective -444.6446856
Nonlin evals: obj = 201, grad = 200.
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Sol n printed by the
local 1bwsa.run file
The estimated values of the model are (alpha, beta, sigma) =
(4.8218, 0.1374, 0.4752).
The relative risk amounts to 0.7490, the accelerating factor
is 1.1472. —
omega [*] := §
1 0.0407 f.g
6 0.156988 E
10 0.0827764 g
24 0.167377 ?
i: g:g;ggisz Only the nonzero variables w; are shown E
59 0.0737118 <
60 0.0258302 z
83 0.0796388 s
95 0.0172243 14
119 0.073086 s
202 0.0800525 I< | b
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