

Motivation : Nonlinear Optimization in Statistics (II)

- This tutorial will be restricted to **Nonlinear Optimization** techniques, useful for:
 - Maximization of a likelihood function.
 - Nonlinear regression.

– ...

- We will not cover other optimization techniques as:
 - Combinatorial optimization.
 - Global optimization.
 - Nondifferentiable optimization.
 - Heuristics.
- Let's go now to the contents of this tutorial...

1BWSA-Tutorial-NLO-3

• Current status Covariates in a simple linear model (Langohr, Gómez)

- Model : $Y = \alpha + \beta Z + \varepsilon$; $Y \in \mathbb{R}^n, Z \in \mathbb{R}, \varepsilon \in \mathbb{R}^n$ Decision variables $\varepsilon \sim N(0, \sigma^2 I_n) \Rightarrow Y \mid Z \sim N(\alpha + \beta Z, \sigma^2 I_n)$ $\grave{e} = \begin{bmatrix} \alpha & \beta & \sigma^T \in \mathbb{R}^3 \\ 0 & \sigma \geq 0 \end{bmatrix}$ Constraints

- Z is the **Current Status Covariate** with cumulative distribution W(z): the only observation is whether Z exceeds the observed value z_i or not; δ_i is the corresponding indicator variable: $\delta_i = 1_{1/2 < z/3}$
- Observations: $[y_i \ z_i \ \delta_i], i = 1, 2, ..., n$
- **Covariate**: Z is supposed to be discrete with possible (ordered) values $s_1, s_2, ..., s_m$ and corresponding probabilities $\omega_i = P(Z = s_i)$, j = 1,...,m:

probabilities $\omega_j = P(Z = s_j)$, j = 1, ..., m:

Decision variables $\mathbf{u} = [\boldsymbol{\omega}_1, ..., \boldsymbol{\omega}_m]^T$, $\boldsymbol{\omega}_j \ge 0$, $\sum_{i=1}^m \boldsymbol{\omega}_j = 1$

1BWSA-Tutorial-NLO-4

Maximization of the likelihood function

• Maximum likelihood function :

• The problem above corresponds to a *Linearly Constrained Nonlinear Optimization Problem* (LCNOP):

(LCNOP)
$$\max_{x} \{f(x) | x \in X\}$$
; $X = \{x \in \Re^n | Ax = b, l \le x \le u\}$

1BWSA-Tutorial-NLO-5

Nonlinear regression: SIDS

- Sudden Infant Death Syndrome:
 - The following nonlinear model was considered by Murphy and Campbell (1987) as a part of their study of the Sudden Infant Death Syndrome (SIDS).
 - Given a data series of the daily temperature t_{ij} in day j of year i (j=1,2,...,365 , i=1,2,...,5), the authors proposed the following harmonic model:

$$t_{ij}(\boldsymbol{a_i,b_i,c_i}) = \frac{\boldsymbol{a_i}\cos\left(\frac{2\pi}{365}\,\boldsymbol{j} - \boldsymbol{b_i}\right) + \boldsymbol{c_i}}{\boldsymbol{i} = 1,2,3,4,5}$$

$$\boldsymbol{j} = 1,2,\dots,365$$

1BWSA-Tutorial-NLO-6

Nonlinear regression: SIDS

Nonlinear optimization problem associated to the SIDS model:

Objective function
$$f(x)$$

$$\min_{\substack{a_i, b_i, c_i \\ i=1, 2, \dots, 5}} \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{365} \left[t_{ij}(a_i, b_i, c_i) - t_{ij} \right]^2$$

(Nonlinear Least-Squares Problem)

 The problem above corresponds to an Unconstrained Nonlinear Optimization Problem (UNOP):

(UNOP)
$$\min_{x \in \Re^n} f(x)$$

• If smoothness conditions are added to the model, the problem becomes a **Generally Constrained NOP**:

(GCNOP)
$$\min_{x} \left\{ f(x) \mid x \in X \right\}$$
; $X = \left\{ x \in \Re^{n} \mid h(x) = 0, g(x) \le 0 \right\}$

1BWSA-Tutorial-NLO-7

Summary

- Generalities
 - General form of the Nonlinear Optimization Problem (NOP)
 - Classification of the NOP
 - General strategy of the NO algorithms
 - Desirable properties of the NO algorithms
- Local and Global optimization
- Unconstrained Nonlinear Optimization
 - Fundamentals
 - Methods that use first derivatives.
 - Methods that use second derivatives
 - Nonderivatives methods.
- Nonlinear Least-Squares problems.
- Constrained Nonlinear Optimization.
 - Fundamentals
 - Linearly constrained NOP
 - Generally constrained NOP
- Solvers for Nonlinear Optimization
- Optimization libraries.
- Modeling languages

1BWSA-Tutorial-NLO-8

Nonlinear Optimization Problem (NOP)

• The general (standard) form of the NOP is :

	min	f(x)	Objective function
(NOP)	subject to:	h(x) = 0	Objective function Equality constraints Inequality constraints
		$g(x) \leq 0$	Inequality constraints

where $x \in \Re^n$ are the **decision variables**, or simply, **variables**, and

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $h: \mathbb{R}^n \to \mathbb{R}^m$ $g: \mathbb{R}^n \to \mathbb{R}^l$

- Usually, f, h and g are required to be differentiable and "smooth" (*Lipschitz continuous*, or so) to guarantee good properties of the algorithms.
- Of course, $\max f(x) \equiv \min -f(x)$

1BWSA-Tutorial-NLO-9

Classification of the NOP accordingly with the solution

• Consider the NOP expressed in the following way:

$$(\text{NOP}) \ \min_{x} \left\{ f(x) \ \middle| \ x \in X \right\} \ ; \ \ X = \left\{ x \in \Re^n \ \middle| \ \textbf{\textit{h(x)}} = \textbf{0}, \ \textbf{\textit{g(x)}} \leq \textbf{0} \right. \right\}$$

(X is known as the **feasible set**)

- NOP with optimal solution: The set $\{f(x)|x\in X\}$ is bounded below $\min \Big\{ f(x) = x_1^2 + x_2^2 \mid x \ge 0 \Big\}$
- $\bullet \quad \textbf{Infeasible problem}: \text{the feasible set } X \text{ is empty:} \\$

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) = \mathbf{x}_1^2 + \mathbf{x}_2^2 \mid \mathbf{x}_1 + \mathbf{x}_2 \le -1, \, \mathbf{x} \ge \mathbf{0} \right\}$$

- Unbounded problem: The set $\{f(x)|x\in X\}$ is unbounded below $\min \Big\{ f(x) = -x_1^2 x_2^2 \mid x \ge 0 \Big\}$
- Existence of at least one global minimum: guaranteed if f is continuous and X⊆ℜn compact (Weierstrass Theorem)

1BWSA-Tutorial-NLO-10

Classification of the NOP accordingly with the formulation

Unconstrained NOP:

(UNOP)
$$\min_{x \in \Re^n} f(x)$$

• NOP with Simple Bounds:

(SBNOP)
$$\min_{x} \{f(x) | l \le x \le u\}$$

• Linearly Constrained NOP:

(LCNOP)
$$\min_{x} \{ f(x) | x \in X \}$$
; $X = \{ x \in \Re^n | Ax = b, l \le x \le u \}$

• Generally Constrained NOP:

(GCNOP)
$$\min_{x} \left\{ f(x) \mid x \in X \right\}$$
; $X = \left\{ x \in \Re^{n} \mid h(x) = 0, g(x) \le 0 \right\}$

1BWSA-Tutorial-NLO-11

General strategy of the NO algorithms

Given the feasible bounded NOP:

(NOP)
$$\min_{x \in X} \{ f(x) \mid x \in X \} ; X = \{ x \in \Re^n \mid h(x) = 0, g(x) \le 0 \}$$

the general strategy followed by most of the NO alg. is:

- **1.** Find a first feasible solution $x \in X$ (current solution).
- **2.** If the current solution x satisfies the optimality conditions, then STOP: $x^* := x$
- **3.** If the current solution x does not satisfies the optimality conditions, find, using the local information available on x, a new feasible iterate $x \in X$ that improves the value of some merit function related with the objective function f(x), or the objective function itself. Go to 2 with the new current iterate.

1BWSA-Tutorial-NLO-12

Desirable properties of the NO algorithms

- Robustness: they should perform well...
 - \dots on a wide variety of problems in their class
 - \ldots for all reasonable choices of the initial variables
 - ...without the need of "tuning".
- **Efficiency**: low execution time and memory requirements
- Accuracy: they should be able to identify the solution with precision without being affected by errors in the data or arithmetic rounding errors.

1BWSA-Tutorial-NLO-14

Local and Global optimization

• The methods presented here only seek for **local optima**

 Convexity: any local optima is global if the NOP is convex, that is:

- If the feasible set *X* is convex.
- Example: minimization of a quadratic pos. def f(x) over a politop

1BWSA-Tutorial-NLO-15

Bibliography and interesting web sites

- Arthanary, T.S., Dodge Y. (1993) "Mathematical Programming in Statistics". John Wiley and Sons
- Luenberger, D.G. (1984) "Linear and Nonlinear Programming". 2nd Edition. Addison Wesley.
- Nocedal, J., Wrigth, S.J. (1999) "Numerical Optimization". Springer Series in Operations Research. Springer Verlag.
- Moré, J.J., Wrigth, S.J. (1993) "Optimization Software Guide".
 Frontiers in Applied Mathematics. SIAM.
- Murphy, M.F.G., Campbell, M.J. (1987) "Sudden infant death syndrome and environmental temperature: an analysis using vital statistics". J. of Epidemiology and Community Health, March 1987, Vol. 41, No. 1, pages. 63-71.
- NEOS Guide: www-fp.mcs.anl.gov/otc/Guide/index.html
- NAG Numerical Libraries: www.nag.co.uk/numeric/numerical libraries.asp
- PROC NLP (SAS Optimization Software)
 www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/Blurbs/procnlp.html

1BWSA-Tutorial-NLO-16

Fundamentals:

Practical stopping criterium

- The robust numerical implementation of the stopping criterium $\|\nabla f(x^k)\| \approx 0$ could be quite sophisticated. The algorithm will stop either ...
 - ... If the measure of the relative size of the gradient at x^k is small:

$$\max_{1 \le i \le n} \left| \frac{\max\{\left|x_{i}^{k}\right|, 1\}}{\max\{\left|f(x^{k})\right|, 1\}} \nabla f(x^{k})_{i} \right| \le \varepsilon^{\frac{1}{3}}$$

... or the measure of the relative change of the variables $x^{\pmb{k}}$ in the last step is small :

$$\max_{1 \le i \le n} \left| \frac{\left| x_i^{k+1} - x_i^k \right|}{\max \left\{ x_i^k, 1 \right\}} \right| \le \varepsilon^{\frac{2}{3}}$$

Where $\boldsymbol{\varepsilon}$ is the machine precision

1BWSA-Tutorial-UNO-5

• Methods that use firsts derivatives: - Steepest descent: $d^k = -\nabla f(x^k)$ - Conjugate Gradient: $d^k = -\nabla f(x^k) + \beta^k d^{k-1}$ - Quasi-Newton Methods: $d^k = -B^k \nabla f(x^k)$, B^k simetric, pos. def. • Methods that use second derivatives: - Newton Method: $d^k = -[\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$ • The properties of these methods will be studied later.

1BWSA-Tutorial-UNO-8

Fundamentals:

Fundamentals: Exact linesearch (quadratic functions) • Linesearch : $\alpha^* = \operatorname{argmin} \{ f(x + \alpha d) \mid \alpha \ge 0 \}$ • In our example: $\min_{x \in \mathbb{R}^n} f(x) = 0.875x_1^2 + 0.8x_2^2 - 350x_1 - 300x_2$ $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; d = -\nabla f(x)' = \begin{bmatrix} 350 \\ 300 \end{bmatrix} (\nabla f(x) d = -\|\nabla f(x)\| < 0)$ $f(x(\alpha)) = f(x + \alpha d) = f(x + \alpha d)$

Fundamentals: **Inexact linesearch (general functions) Problem:** when f(x) is not quadratic the optimal steplength α^* must be estimated numerically. Purpose of the inexact linesearch: to identify $\alpha^k = \operatorname{argmin} \{ f(x^k + \alpha^k d^k) \mid \alpha \ge 0 \}$ such that... ... provides significant reduction of f(x)... without spending too much time in the computation. Rationale of the inexact linesearch methods: Define a criterium for the sufficient decrease in f(x)Find somehow an interval [α_{\min} , α_{\max}] containing α^* . Set $\alpha := \alpha_{\max}$, the trial steplength. Repeat Until $f(x^{k+\alpha}d^{k})$ satisfies the sufficient decrease condition Find (bisection, interpolation) a trial steplength $\alpha \in [\alpha_{\min}, \alpha_{\max}]$ Update [α_{\min} , α_{\max}] **End Repeat** - Set $\alpha^k := \alpha$. 1BWSA-Tutorial-UNO-12

Fundamentals:

Measures of performance of an algorithm

 Global convergence: an algorithm is said to be "globally convergent" if

$$\lim_{k\to\infty} \left\| \nabla f(x^k) \right\| = 0$$

that is, if we can assure that the method converges to a **stationary point**.

- Introducing second order information, we can strengthen the result to include convergence to a local minimum.
- Local convergence: how fast the sequence {x^k} approaches to the optimal solution x*.

1BWSA-Tutorial-UNO-14

Fundamentals:

Global convergence

- To ensure "global" convergence, several assumptions must be imposed to the objective function, the search direction and the steplength. Roughly speaking:
- The objective f must be bounded below and continuously differentiable.
- The gradient ∇f must be smooth (**Lipschitz continuous**).
- The search direction *d* ^k must be a **descent direction**.
- The steplengths α^k must satisfy the **Wolfe conditions**.
- The angle θ^k between the search directions d^k and the steepest descent direction -∇f (x^k) must be bounded away from 90°

$$\cos \boldsymbol{\theta}^{k} = \frac{-\nabla f(x^{k})d^{k}}{\left\|\nabla f(x^{k})\right\| \left\|d^{k}\right\|}$$

1BWSA-Tutorial-UNO-15

Fundamentals:

Conditions for "global" convergence

• Zoutendijk's theorem:

Consider any iteration of the form $x^{k+1} := x^k + \alpha^k \ d^k$ where d^k is a descent direction and α^k satisfies the Wolfe conditions. Suppose that f is bounded below in \mathfrak{R}^n and that f is continuously differentiable in an open set N containing the level set

$$L = \left\{ x : f(x) \le f(x^0) \right\}$$

where x^0 is the starting point of the iteration. Assume also that the **gradient is Lipschitz continuous** in N, that is, there exists a constant L > 0 such that:

$$\|\nabla f(x) - \nabla f(\widetilde{x})\| \le L\|x - \widetilde{x}\|, \text{ for all } x, \widetilde{x} \in N$$

Ther

$$\sum_{k>0} \cos^2 \boldsymbol{\theta}^k \left\| \nabla f(x^k) \right\|^2 < \infty \ (\textbf{Zoutendijk condition})$$

1BWSA-Tutorial-UNO-16

Fundamentals:

Interpretation of the Zoutendijk condition

• The Zoutendijk condition implies:

$$\cos^2 \boldsymbol{\theta}^k \left\| \nabla f(x^k) \right\|^2 \to 0 \tag{1}$$

• If the method for choosing the search direction d^k ensures that the angle θ^k is bounded away from 90°, then there is a positive constant δ such that:

$$\cos \theta^k \ge \delta > 0 \quad \forall k$$

then, it follows from (1) that:

$$\lim_{k\to\infty} \left\| \nabla f(x^k) \right\| = 0$$

1BWSA-Tutorial-UNO-17

Fundamentals:

Linear and superlinear order of convergence

• Linear convergence:

let $\{x^k\}$ be a sequence in \Re^n that converges to x^* . We say that the convergence is **Q-linear** (or simply linear) if there is a constant $r \in (0,1)$ (ratio of convergence) such that

$$\frac{\left\|x^{k+1} - x^*\right\|}{\left\|x^k - x^*\right\|} \le r \text{, for all } k \text{ sufficiently large}$$

• The convergence is said to be **Q-superlinear** if

$$\lim_{k \to \infty} \frac{\left\| x^{k+1} - x^* \right\|}{\left\| x^k - x^* \right\|} = 0$$

1BWSA-Tutorial-UNO-18

Fundamentals:

Quadratic order of convergence

• Quadratic convergence:

let $\{x^k\}$ be a sequence in \Re^n that converges to x^* . We say that the convergence is **Q-quadratic** (or simply quadratic) if there is a constant M>0 such that :

$$\left\| x^{k+1} - x^* \right\|$$
 $\left\| x^k - x^* \right\|^2 \le M$, for all k sufficiently large

1BWSA-Tutorial-UNO-19

Algorithm		Order o	Order of convergence		
Algorithii	Algorithm	f quadratic	fgeneral		
Ste	eepest descent	(r depe	Linear $(r \text{ depends on } \nabla^2 f(x^*))$		
Qu	asi-Newton	S	Superlinear		
Со	njugate Gradients	ents $\leq n$ Quad iterations (sub-sequer			
Ne	wton	1 iteration	Quadratic		

002	Methods that use first derivatives The Steepest Descent method (SD)
1BWSA Barcelona June 2002	 Search direction: d_{SD}^k = -∇f(x^k)^r Global convergence: Descent direction: ∇f(x^k) d^k = - ∇f(x^k) < 0 Zoutendijk condition: angle θ^k = 0°, cos(θ^k) = 1 ∀k Local convergence: Linear convergence. The rate of convergence r depends on the properties of f(x)
	 Linear convergence. The rate of convergence r depends on the properties of f(x) Computational requirements: Low memory requirements: only needs to store several vectors of dimension n Very easy to implement.

Methods that use first derivatives Rate of convergence of the SD • Upper bound to the rate of convergence "Suppose that $f: \mathfrak{R}^n \to \mathfrak{R}$ is twice continuously differentiable, and that the iterates generated by the steepest descent method with exact line search converges to a point x^* where the Hessian matrix $\nabla^2 f(x^*)$ is positive definite. Then: $f(x^{k+1}) - f(x^*) \leq \beta \left[f(x^k) - f(x^*) \right] : \beta = \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} \right)^2$ where $\lambda_1 \leq ... \leq \lambda_n$ are the eigenvalues of $\nabla^2 f(x^*)$ "

1BWSA-Tutorial-UNO-25

Properties of the CG method (I) • Global convergence: - Descent direction: d^k_{GC} is a descent direction if the steplength α^k satisfies the strong Wolfe conditions: $f(x^k + \alpha d^k) \le f(x^k) + [c_1 \nabla f(x^k) d^k] \alpha \quad \text{(SW)}$ $|\nabla f(x^k + \alpha d^k) d^k| \le c_2 |\nabla f(x^k) d^k| \quad \text{(SW)}$ $0 < c_1 < c_2 < \frac{1}{2}$ - Zoutendijk condition: can be proved if the method is periodically restarted setting: $d^l_{\text{CG}} = -\nabla f(x^l)' = d^l_{\text{SD}}, l = n, 2n, 3n, \dots$

Methods that use first derivatives Properties of the CG method (II)

• Local convergence :

 The CG method with restart has *n*-step quadratically convergence, that is:

$$||x^{k+n}-x^*|| = O(||x^k-x^*||^2)$$

• Computational requirements :

- Low memory consumption: only needs to store several vectors of dim n.
- Almost as simple to implement as SD (the only difficulty is the computation of constant β^k).

1BWSA-Tutorial-UNO-27

Methods that use first derivatives

Quasi-Newton methods (QN)

Rationale of the Newton method:

To find the next iterate x^{k+1} as the minimizer of the quadratic model $m^k(p)$ of f(x) around the current iterate x^k :

$$f(x^{k} + p) \approx f(x^{k}) + \nabla f(x^{k}) p + \frac{1}{2} p' \nabla^{2} f(x^{k}) p \equiv m^{k}(p)$$
$$p^{k} \leftarrow \operatorname{argmin} \left\{ m^{k}(p) \right\}$$

$$\nabla m^{k}(p^{k}) = \nabla^{2} f(x^{k}) p^{k} + \nabla f(x^{k})' = 0 \rightarrow \frac{p^{k}}{p^{k}} = -\nabla^{2} f(x^{k})^{-1} \nabla f(x^{k})$$

$$x^{k+1} = x^{k} + p^{k}$$

Quasi-Newton method:

Applies a Newton strategy *avoiding the need of* second derivatives by substituiting the Hessian matrix $\nabla^2 f(x^k)$ by an approximation B^k

1BWSA-Tutorial-UNO-29

Methods that use first derivatives

Quasi-Newton methods (QN)

- Quasi-Newton direction: $d_{ON}^k = -[B^k]^{-1} \nabla f(x^k)'$
- Choices of B^k : given a symetric pos. def. matrix B^0 , and: $s^k = x^{k+l} x^k$; $v^k = \nabla f(x^{k+l})^* \nabla f(x^k)^*$

Broyden-Fletcher-Goldfarb-Shanno (BFGS):

$$B_{\text{BFGS}}^{k+1} = B_{\text{BFGS}}^{k} - \frac{B_{\text{BFGS}}^{k} s^{k} s^{k^{T}} B_{\text{BFGS}}^{k}}{s^{k^{T}} B_{\text{BFGS}}^{k} s^{k}} + \frac{y^{k} y^{k^{T}}}{y^{k^{T}} s^{k}}$$

Davidon-Fletcher-Powell (DFP): $H^k = [B^k]^{-l}$

$$H_{\text{DFP}}^{k+1} = H_{\text{DFP}}^{k} - \frac{H_{\text{DFP}}^{k} y^{k} y^{k^{T}} H_{\text{DFP}}^{k}}{y^{k^{T}} H_{\text{DFP}}^{k} y^{k}} + \frac{s^{k} s^{k^{T}}}{y^{k^{T}} s^{k}}$$

1BWSA-Tutorial-UNO-30

Methods that use first derivatives

Quasi-Newton methods (QN)

- The BFGS formula is considered to be the most effective of all quasi-Newton updating formulae.
- Properties of matrix B^{k+1}: given B^k, n×n symetric, positive definite matrix, then the BFGS update provides B^{k+1} that:
 - Is symetric
 - Is positive definite if $s^{k'}y^k > 0$. (guaranteed if α^k satisfies the Wolfe conditions)
 - Satisfies the **secant equation**: $B^{k+l}s^k = y^k$ (this is how we force $B^{k+l} \approx \nabla^2 f(x^{k+l})$.)

1BWSA-Tutorial-UNO-31

Methods that use first derivatives

Global convergence of the BFGS method

• Global convergence :

Descent direction: we check the descent condition:

$$\nabla f(x^k) d_{\text{BFGS}}^k = -\nabla f(x^k) \left[B_{\text{BFGS}}^k \right]^{-1} \nabla f(x^k)'$$

$$B_{\text{BFGS}}^k \text{ pos. def.} \Rightarrow \left[B_{\text{BFGS}}^k \right]^{-1} \text{ pos. def}$$

Zoutendijk condition: can be proved if the matrices
 B^k have an uniformly bounded condition number, that is, if there is a constant M such that:

$$\operatorname{cond}(\boldsymbol{B}^{k}) = \|\boldsymbol{B}^{k}\| \|\boldsymbol{B}^{k-1}\| \le M$$
, for all k

1BWSA-Tutorial-UNO-32

16

Methods that use first derivatives

Local convergence of the BFGS method

- Local convergence : under the following assumptions:
 - The objective function f is twice continuously differentiable
 - The level set $\Omega = \{ x \in \Re^n : f(x) \le f(x^0) \}$ is convex
 - The objective function f has a unique minimizer x*
 in Ω
 - The Hessian matrix $\nabla^2 f(x^{k+l})$ is Lipschitz continuous at x^* and positive definite on Ω .

It can be shown that the iterates generated by the BFGS algorithm converges superlinearly to the minimizer x^*

1BWSA-Tutorial-UNO-33

Methods that use first derivatives

Local convergence of the BFGS method

• Computational issues :

 The efficient implementation of the BFGS method does not store B^k explicitily, but the Cholesky factorization:

$$B^k = L^k D^k L^{k'}$$

- **Memory consumption**: $n(n+1)/2 = O(n^2)$ elements of the Cholesky factors.
- Computational cost per iteration : $O(n^2)$ operations necessary to ...
 - ... update the Cholesky factors .
 - ... find the solution of the linear system $B^k d^k = -\nabla f(x^k)$.
- The development of an efficient implementation of the BFGS method is quite difficult.

1BWSA-Tutorial-UNO-34

Methods that use first and second derivatives

The Newton method (N)

• Rationale of the Newton method:

To find the next iterate x^{k+1} as the minimizer of the quadratic model $m^k(p)$ of f(x) around the current iterate x^k :

$$f(x^k + p) \approx f(x^k) + \nabla f(x^k) p + \frac{1}{2} p' \nabla^2 f(x^k) p \equiv m^k(p)$$

$$p^k \leftarrow \operatorname{argmin} \{m^k(p)\} = -[\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$$

$$x^{k+1} = x^k + p^k$$

1BWSA-Tutorial-UNO-36

18

Methods that use first and second derivatives The Newton method (N)

- Search direction: $d_N^k = -\nabla^2 f(x^k)^{-1} \nabla f(x^k)^T$
- Global convergence :
 - **Descent direction**: the descent nature of d_N^k can only be guaranteed if the Hessian matrix $\nabla^2 f(x^k)$ is positive definite:

If
$$\nabla^2 f(x^k)$$
 pos. def. then
$$\nabla f(x^k) d_N^k = -\nabla f(x^k) \nabla^2 f(x^k)^{-1} \nabla f(x^k)^T < 0$$

otherwise, the global convergence of the Newton method cannot be guaranteed.

1BWSA-Tutorial-UNO-38

Methods that use first and second derivatives Losing of the global convergence

• **Example**: $f(x_1, x_2) = x_1^2 + x_2^3 + 3x_1x_2$

Over $x^0 = [-3 - 1]$, the Hessian matrix is:

$$\nabla^2 f(\mathbf{x}^0) = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$

which is indefinite (λ_1 =3, λ_2 =-7). Therefore, the descent property of the Newton direction cannot be guaranteed. In fact, after 1 iteration, the method finds an ascent direction:

k	$\nabla^2 f(x^k)$	$\nabla f(x^k) d_N^k$	
0	Indefinite	-35.1428 < 0	Descent direction
1	Indefinite	0.37699 > 0	ASCENT direction

1BWSA-Tutorial-UNO-39

Methods that use first and second derivatives

Local convergence of the Newton method

• Local convergence :

"Suppose that

- The solution x* satisfies the sufficient optimality condition.
- ❖ The function f is twice differentiable.
- * The Hessian $\nabla^2 f(x)$ is Lipschitz continuous in a neighbourhood of a solution x^*

Consider the Newton iteration $x^{k+1} = x^k + d_N^k$. Then:

- if the starting point x⁰ is sufficiently close to x*, the sequence of iterates converges to x*;
- the order of convergence of $\{x^k\}$ is quadratic; and
- the sequence of gradient norms {||∇f(x^k) ||} converges quadratically to zero."

1BWSA-Tutorial-UNO-40

20

Methods that use first and second derivatives

Quadratic order of convergence

• **Example**: $f(x_1, x_2) = x_1^2 + x_2^3 + 3x_1x_2$

The newton method converges from $x^0 = [-3\ 2]^T$ to $x^*=[-2.25\ 1.5]^T$ in 4 iterations, **reducing the error** $||x^k-x^*||$ **quadratically** at each step:

k	$ x^k-x^* $	≤	$ x^{k-1}-x^* ^2$	$\ \nabla f(x^k)\ $
0	9.013 ×10 ⁻¹			3.0
1	1.803 ×10 ⁻¹	≤	8.125 ×10 ⁻¹	4.8 ×10 ⁻¹
2	1.060 ×10 ⁻²	≤	3.250 ×10 ⁻²	2.657×10 ⁻²
3	4.126 ×10 ⁻⁵	≤	1.124 ×10 ⁻⁴	1.029×10 ⁻⁴
4	6.296 ×10 ⁻¹⁰	≤	1.702 ×10 ⁻⁹	1.571×10 ⁻⁹

1BWSA-Tutorial-UNO-41

Methods that use first and second derivatives

Modified Newton methods (MN)

Search direction:

$$d_{\mathrm{MN}}^{k} = -B_{\mathrm{MN}}^{k^{-1}} \nabla f(x^{k})^{T}$$

where $B_{MN}^k = \nabla^2 f(x^k) + E^k$, with

- $E^k = 0$ if $\nabla^2 f(x^k)$ is sufficiently positive definite;
- otherwise E^k is chosen to ensure that B^k_{MN} is sufficiently positive definite.
- **Methods to compute** B^k_{MN} : based on the modification of
 - The spectral decomposition of $\nabla^2 f(x^k) = Q\Lambda Q^T$.
 - The Cholesky factorization of $\nabla^2 f(x^k) = LDL^T$.

1BWSA-Tutorial-UNO-42

Methods that use first and second derivatives

Global convergence of the MN method

• Global convergence :

- **Descent direction**: as B_{MN}^{k} is always positive definite, therefore, d_{MN}^{k} is a descent search direction.
- **Zoutendijk condition**: can be proved if the matrices B^k_{MN} have an uniformly bounded condition number, that is, if there is a constant M such that:

$$\operatorname{cond}(\boldsymbol{B}_{\scriptscriptstyle{MN}}^{k}) = \left\|\boldsymbol{B}_{\scriptscriptstyle{MN}}^{k}\right\| \left\|\boldsymbol{B}_{\scriptscriptstyle{MN}}^{k-1}\right\| \leq \boldsymbol{M}, \text{ for all } \boldsymbol{k}$$

1BWSA-Tutorial-UNO-43

Methods that use first and second derivatives

Local convergence of the MN method

• Local convergence :

- If the sequence of iterates $\{x^k\}$ converges to a point x^* where $\nabla^2 f(x^*)$ is sufficiently positive definite (i.e. $E^k = 0$ for k large enough), then the MN method reduces to the Newton methods, and the convergence is quadratic.
- If $\nabla^2 f(x^*)$ is close to singular (that is, there is not guarantee that $E^k=0$) the convergence rate may only be linear.

1BWSA-Tutorial-UNO-44

22

Methods that use first and second derivatives Other aspects of the MN methods

- Computational issues :
 - The efficient implementation of the MN methods computes and store the modified Cholesky factorization of B^k_{MN} .
 - **Memory consumption**: $n(n+1)/2 = O(n^2)$ elements of the Cholesky factors.
 - Computational cost per iteration : O(n³) operations necessary to ...
 - ... compute the modified Cholesky factors of $\nabla^2 f(x^*)$.
 - ... find the solution of the linear system $B^k_{MN} d^k_{MN} = -\nabla f(x^k)$ plus the effort of computing the second derivatives
 - The efficient implementation of the MN method is quite difficult.

1BWSA-Tutorial-UNO-45

Nonderivative methods

Motivation and classification

- Motivation: in many problems, either the derivatives are not available in explicit form or they are given by very complicated expressions, prone to produce coding errors.
- Example: a Log-Likelihood function like

$$\begin{split} I(\tilde{\mathbf{u}}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\sigma}) &= \sum_{i=1}^{n} \left[\boldsymbol{\varepsilon}_{i} \boldsymbol{\xi}_{ji} \ln \left(\sum_{j=1}^{m} \frac{\boldsymbol{\gamma}_{ij}}{\sigma} \exp \left[\frac{\ln(y_{abxj} + z_{abxi} - s_{j}) - \boldsymbol{\alpha} - \boldsymbol{\beta} \ln(s_{j})}{\sigma} - e^{\frac{\ln(y_{abxj} + z_{abxi} - s_{j}) - \boldsymbol{\alpha} - \boldsymbol{\beta} \ln(s_{j})}{\sigma}} \right] \boldsymbol{\omega}_{j} \right] \\ &+ \boldsymbol{\varepsilon}_{i} \boldsymbol{\xi}_{2i} \ln \left(\sum_{j=1}^{m} \boldsymbol{\gamma}_{ij} \exp \left[-e^{\frac{\ln(y_{abxj} + z_{abxi} - s_{j}) - \boldsymbol{\alpha} - \boldsymbol{\beta} \ln(s_{j})}{\sigma}} \right] \boldsymbol{\omega}_{j} \right) \\ &+ \boldsymbol{\varepsilon}_{i} (1 - \boldsymbol{\xi}_{1i}) (1 - \boldsymbol{\xi}_{2j}) \ln \left(\sum_{j=1}^{m} \boldsymbol{\gamma}_{ij} \left(1 - \exp \left[-e^{\frac{\ln(y_{abxj} + z_{abxi} - s_{j}) - \boldsymbol{\alpha} - \boldsymbol{\beta} \ln(s_{j})}{\sigma}} \right] \right) \boldsymbol{\omega}_{j} \right) + (1 - \boldsymbol{\varepsilon}_{i}) \ln \left(\sum_{j=1}^{m} \boldsymbol{\gamma}_{ij} \boldsymbol{\omega}_{j} \right) \right] \boldsymbol{\omega}_{j} \end{split}$$

Nonderivative methods

Classification

 Finite differences: to use a first derivative method (SD,CG,QN), computing the gradient as:

$$\frac{\partial f(x^{k})}{\partial x_{i}} \approx \frac{1}{\varepsilon} \Big(f(x^{k} + \varepsilon e_{i}) - f(x^{k}) \Big)$$

with ε a small positive scalar and e_i the unit vector

 Coordinate descent: the obj. function is minimized along one coordinate direction at each iteration.

1BWSA-Tutorial-UNO-48

			omparis	
Rosenbrock function (n=4)	Iter.	Execution time (seconds)	f(x*)	∇ f(x*)
Steepest Descent	4760	120.34	1.038×10 ⁻¹¹	9.222×10 ⁻⁶
Nelder & Mead	222	3.84	4.586 ×10 ⁻¹²	8.828 ×10 ⁻⁵
Conjugate Gradient	42	1.43	7.513×10 ⁻¹³	7.820 ×10 ⁻⁷
Quasi-Newton	27	0.33	4.980 ×10 ⁻¹⁷	2.793×10 ⁻⁷
Modified Newton	14	0.22	3.344×10 ⁻²⁶	2.506 ×10 ⁻¹²
Newton	14	0.16	3.344 ×10 ⁻²⁶	2.506 ×10 ⁻¹²

Nonlinear Least-squares problems

Nonlinear Least-Squares Problems

We will study now the solution for the Nonlinear Least-Squares Problem

(NLSP)
$$\min_{x \in \Re^n} f(x) = \frac{1}{2} \sum_{j=1}^m r_j^2(x) = \frac{1}{2} ||r(x)||_2^2$$

where $r_i(x)$ represents the residuals of the model to be adjusted, and the decision variables x are the coefficients of the model.

1BWSA-Tutorial-UNO-53

Nonlinear Least-squares problems

Nonlinear Least-Squares Problems

For instance, in the SIDS model:

$$\min_{\substack{a_i,b_i,c_i\\i=1,2,...,5}} \frac{1}{2} \sum_{i=1}^5 \sum_{k=1}^{365} \left[t_{ik}(a_i,b_i,c_i) - t_{ik} \right]^2$$

we have:

- Decision variables: $\mathbf{x} = \begin{bmatrix} \mathbf{a}_i & \mathbf{b}_i & \mathbf{c}_i \end{bmatrix}_{i=1,2,\dots,5} \in \mathfrak{R}^{15}$

– Residuals:

Objective function:

$$r_{j}(x) = t_{ik}(a_{i}, b_{i}, c_{i}) - t_{ik}$$
extriction:
$$f(x) = \frac{1}{2} \sum_{i=1}^{5} \sum_{k=1}^{365} [t_{ik}(a_{i}, b_{i}, c_{i}) - t_{ik}]^{2}$$

Nonlinear Least-squares problems

NLSP through the Newton method

Remember that the **Newton search direction** was defined as:

$$d_{N}^{k} = -\nabla^{2} f(x^{k})^{-1} \nabla f(x^{k})^{T}$$

therefore, in order to solve the NLSP with the Newton method, we need the first and second derivatives of the objective function

$$f(x) = \frac{1}{2} \sum_{j=1}^{m} r_j^2(x)$$

1BWSA-Tutorial-UNO-55

Nonlinear Least-squares problems

NLSP through the Newton method

The derivatives of f(x) can be expressed in terms of the Jacobian of the residuals r:

$$J(x) = \left[\frac{\partial r_j}{\partial x_i}\right]_{\substack{j=1,2,\ldots,m\\i=1,2,\ldots,n}}$$

The gradient is: $\nabla f(x) = \sum_{j=1}^{m} r_j(x) \nabla r_j(x) = J(x)^T r(x)$ and the Hessian:

$$\nabla^2 f(x) = \sum_{j=1}^m \nabla r_j(x) \nabla r_j(x)^T + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x) =$$

$$= J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x)$$

1BWSA-Tutorial-UNO-56

Nonlinear Least-squares problems

The Gauss-Newton (G-N) method (I)

 The Gauss-Newton method applies a Newton method to the NLSP, substituting the true Hessian

by the approximation that neglects the

term **A**: $\nabla^2 f(x) \approx J(x)^T J(x)$

.that is the Gauss-Newton search direction is :

$$d_{G-N}^K = -\left[J(x^k)^T J(x^k)\right]^{-1} J(x^k)^T r(x^k)$$

1BWSA-Tutorial-UNO-57

Nonlinear Least-squares problems

The G-N method (II)

- **Considerations**: the approximation $\nabla^2 f(x) \approx J(x)^{\mathrm{T}} J(x)$ is appropiate when the term $J(x)^{\mathrm{T}} J(x)$ dominates over $\sum_{j=1}^m r_j(x) \nabla^2 r_j(x)$ in the expression of the Hessian. This happends:
 - when the residuals r_i are small.
 - when each r_j is nearly a linear function, so that $\|\nabla^2 r_i(x)\|$ is small.

1BWSA-Tutorial-UNO-58

Nonlinear Least-squares problems

The G-N method (III)

• Advantages:

- There is no need to compute the second derivatives $\nabla^2 r_i(x)$.
- The G-N method can be shown to be globally convergent under certain conditions over the rank of $J(x^k)$.
- The speed of convergence depends on how much the leading term $J(x)^{T}J(x)$ dominates.

When $\sum_{j=1}^{m} r_j(x^*)\nabla^2 r_j(x^*) = 0$ the convergence is quadratic.

1BWSA-Tutorial-UNO-59

Linearly Constrained NOP

Motivation

Remember the likelihood maximization problem introduced previously:

$$(\mathsf{LCNOP}) \begin{cases} \max_{\tilde{\mathbf{u}} \in \mathbb{N}^n \atop \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\sigma}} & L_n(\tilde{\mathbf{u}}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\sigma}) = \prod_{i=1}^n \sum_{j=1}^m \boldsymbol{\gamma}_{ij} \frac{1}{\boldsymbol{\sigma} \sqrt{2\pi}} \left(e^{\frac{1}{2} \frac{(y_i - \boldsymbol{\alpha} - \boldsymbol{\beta} s_j)^2}{2}} \right) \boldsymbol{\omega} \\ \text{subject to} : & \sum_{j=1}^m \boldsymbol{\omega}_j = 1 \\ \boldsymbol{\omega}_j \geq 0 \;,\; j = 1, \dots, m \\ \boldsymbol{\sigma} \geq 0 \end{cases}$$

This is an exemple of *Linearly Constrained NOP Problem (LCNOP)*.

• We will use the Reduced Gradient method to illustrate the rationale of the algorithms for (LCNOP).

1BWSA-Tutorial-CNO-9

Linearly Constrained NOP

The Reduced Gradient (RG) method

- The Reduced Gradient method solves the (LCNOP) problem: (LCNOP) $\min_{x} \{ f(x) | x \in X \}$; $X = \{ x \in \mathfrak{R}^n | Ax = b, l \le x \le u \}$ using the following strategy:
 - **1.** Find a first feasible solution $x^k \in X$ (current solution).
 - **2.** If the current solution satisfies the KKT conditions, x^k , STOP
 - **3.** Otherwise, find a new feasible solution that improves the current objective function value, and take this new point as the current solution:
 - 3.1. Find a feasible descent search direction d^k
 - **3.2.** Perform a linesearch from x^k along d^k : α^k
 - **3.3.** Update the current solution: $x^{k+1} := x^k + \alpha^k d^k$. Goto 2

1BWSA-Tutorial-CNO-10

Linearly constrained NOP

Feasible direction

• Feasible direction : $d^k \in \Re^n$ is a feasible direction at x^k for the problem

(LCNOP)
$$\min_{x} \{ f(x) | x \in X \}$$
; $X = \{ x \in \mathfrak{R}^{n} | Ax = b, l \le x \le u \}$

$$\exists \overline{\boldsymbol{\alpha}} \in \mathfrak{R}^+ \middle| \forall \boldsymbol{\alpha} \in [0, \overline{\boldsymbol{\alpha}}] : x^k + \boldsymbol{\alpha} d^k \in X$$

1BWSA-Tutorial-CNO-11

Linearly constrained NOP

Feasible descent direction of the RG

Nondegeneracy assumption: at each iterate x^k, the RG method assumes that there exists a partition of the variables and columns of the coefficient matrix A:

$$x^{k} = \begin{bmatrix} \underline{y} \\ z \end{bmatrix} \quad y \in \Re^{m} \quad \text{(dependent variables)}$$
$$z \in \Re^{n-m} \text{ (independent variables)}$$

$$Ax = \left[A_y \mid A_z\right] \left[\frac{y}{z}\right] = A_y y + A_z z = b$$

such that:

$$i$$
. $A_y \in \Re^{m \times m}$ is non-singular

$$ii.$$
 $l_y < y < u_y$

1BWSA-Tutorial-CNO-12

Linearly constrained NOP

Feasible descent direction of the RG

• **Reduced gradient:** given the partition $x^k = [y z]^T$, the reduced gradient is the vector $r \in \Re^{n-m}$ defined as:

$$\mathbf{r}^T = \nabla_z \mathbf{f}(y, z) - \nabla_y \mathbf{f}(y, z) \mathbf{A}_y^{-1} \mathbf{A}_z$$

• **Search direction:** it is obtained after the reduced gradient as:

$$d_{RG}^{k} = \left[\frac{d_{y}^{k}}{d_{z}^{k}}\right] = \left[\frac{-A_{y}^{-1}A_{z}(-r)}{-r}\right]$$

1BWSA-Tutorial-CNO-13

Linearly constrained NOP Geometrical interpretation of d^{k}_{RC} · Consider one linear constraint $a_1^T x = 0$ $x_3 \equiv y_1$ defining the feasible 20 1 $\nabla h_1(x)$ plane Π , and the feasible point x^k , where 10 $z = [x_1, x_2]^T$ and $y = x_3$ • The step d_{-}^{k} moves -10away from Π... ... and the step d_{y}^{k} corrects the step so that d^{k}_{RG} lies in Π And finally, a linesearch is performed to find x^{k+1} 1BWSA-Tutorial-CNO-14

Linearly constrained NOP

Feasible descent direction of the RG

- Properties of d^k_{RG} :
 - $-d^k_{\rm RG}$ is a descent direction:

$$\begin{aligned} & \nabla f(x^k) d_{RG}^k = \left[\nabla_y f(y, z) \mid \nabla_z f(y, z) \right] \left[\frac{-A_y^{-1} A_z(-r)}{-P} \right] = \\ & = -\nabla_y f(y, z) A_y^{-1} A_z(-r) + \nabla_z f(y, z) (-r) = \\ & = \underbrace{\left[\nabla_z f(y, z) - \nabla_y f(y, z) A_y^{-1} A_z \right]}_{r} - r) = -r^T r = \\ & = - ||r|| < 0 \quad \text{if} \quad r \neq 0 \end{aligned}$$

- d^k_{RC} is feasible for Ax=b:

$$\frac{A(x^{k} + \alpha d_{RG}^{k})}{A(x^{k} + \alpha d_{RG}^{k})} = b + \alpha \left[A_{y} \mid A_{z}\right] \left[\frac{-A_{y}^{-1}A_{z}(-r)}{-r}\right] = b + \alpha \left[A_{y}^{-1}A_{z} + A_{z}\right] (-r) = b$$

1BWSA-Tutorial-CNO-15

Linearly Constrained NOP

Feasible descent direction of the RG

- Properties of d^k_{RG} (cont.):
 - $-d^{k}_{RG}$ may be infeasible for some bound:

this problem can be avoided by a slightly modification in the definition of the search direction.

1BWSA-Tutorial-CNO-16

Motivation: nonlinear regression with constraints

• Remember the SIDS problem

$$\min_{\substack{a_i,b_i,c_i\\i=1,2,\ldots,5}} \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{365} [t_{ij}(a_i,b_i,c_i) - t_{ij}]^2$$

where the model to be adjusted was:

$$t_{ij}(a_i, b_i, c_i) = a_i \cos\left(\frac{2\pi}{365}j - b_i\right) + c_i$$
$$i = 1, 2, 3, 4, 5$$
$$j = 1, 2, \dots, 365$$

1BWSA-Tutorial-CNO-17

Generally Constrained NOP:

Motivation : nonlinear regression with constraints

 This problem can be overcame by introducing a set of nonlinear constraints that forces the continuity of the adjusted models:

$$h_i(x) = t_{i365}(a_i, b_i, c_i) - t_{i+1,1}(a_{i+1}, b_{i+1}, c_{i+1}) = 0$$
, $i = 1,2,3,4$

that is:

$$h_i(x) = a_i \cos\left(\frac{2\pi}{365}365 - \frac{b_i}{b_i}\right) + c_i - a_{i+1} \cos\left(\frac{2\pi}{365} - \frac{b_{i+1}}{b_{i+1}}\right) - c_{i+1} = 0$$

which are nonlinear w.r.t. the decision variables $\frac{b_i}{b_i}$

1BWSA-Tutorial-CNO-19

10

Augmented Lagrangian Methods (I)

- Consider, for simplicity, the (GCNOP) with only equality constraints : (GCNOP) $\min\{f(x) \mid h(x) = 0\}$
- The Augmented Lagrangian function is defined as :

$$L_A(x,\lambda;c) = f(x) + \lambda^T h(x) + \frac{c}{2} \|h(x)\|^2$$

This Augmented Lagrangian is formed with:

- the Lagrangian function $L(x, \lambda) = f(x) + \lambda^{T} h(x)$, plus
- the quadratic term $(c/2)||h(x)||^2$ that penalizes the infeasibilities of the solution x

($(c/2)||h(x)||^2=0$ if x is a feasible solution)

1BWSA-Tutorial-CNO-21

Generally Constrained NOP:

Augmented Lagrangian Methods (II)

 The key idea of the Augmented Lagrangian method is to solve the original problem by solving the sequence of Unconstrained Subproblems:

$$(\mathsf{US})^k \quad \min_{x} L_A(x, \lambda^k; c^k)$$

, with an increasing sequence $\{c^k\}$, in such a way that **the sequence** $\{x^k, \lambda^k\}$ **converges to** $\{x^*, \lambda^*\}$ a solution that satisfies the KKT conditions of the original problem.

1BWSA-Tutorial-CNO-22

Generally Constrained NOP:

Augmented Lagrangian Methods (III)

- Note that, for a sufficiently large c^k , the penalty term will dominate in the minimization of (US)^k, and then $L_4(x^k, \lambda^k) \approx f(x^k) + \lambda^{kT} h(x^k)$.
- In this case, the first order optimality conditions of the (US)^k at x^k will be:

$$\nabla L_A(x^k, \boldsymbol{\lambda}^k; c^k) \approx \nabla f(x^k) + \boldsymbol{\lambda}^{kT} \nabla h(x^k)$$

which are nothing but the KKT conditions for the original problem.

1BWSA-Tutorial-CNO-23

Generally Constrained NOP:

Augmented Lagrangian Methods (III)

• Framework of the Augmented Lagrangian algorithm

Given c^0 and starting points x^0 and λ^0 , k = 0

<u>Do Until</u> (x^k, λ^k) satisfies the KKT conditions.

Compute the new iterate as x^{k+1} :=argmin $L_A(x, \lambda^k, c^k)$ Update the Lagrange multipliers to obtain λ^{k+1}

Choose new penalty parameter $c^{k+1} \ge c^k$

k := k+1

End Do

WSA-Tutorial-CNO-24

Projected Lagrangian Methods (I)

- Consider, again, the (GCNOP) with only equality constraints : (GCNOP) $\min \{ f(x) \mid h(x) = 0 \}$
- Projected Lagrangian methods solve the original problem by solving the sequence of Linearly Constrained Subproblems:

(LCS)^k
$$\begin{cases} \min_{x} & L_{P}(x, \lambda^{k}; c^{k}) \\ \text{subj. to} : & \nabla h(x^{k})(x - x^{k}) + h(x^{k}) = 0 \end{cases}$$

where the linear constraints comes from the Taylor's series expansion of h(x) around a given point x^k .

1BWSA-Tutorial-CNO-25

Generally Constrained NOP:

Projected Lagrangian Methods (II)

 The most effective expression of the objective function of subproblems (LCS)* is the Modified Augmented Lagrangian:

$$L_P^k(x; \lambda^k, x^k, c) = f(x) + \lambda^{k^T} h^k(x) + \frac{c}{2} \|h^k(x)\|^2$$

that resembles the Augmented Lagrangian function, excepts that the expression of the nonlinear constraints h(x) has been substituted by $h^k(x)$, defined as:

$$h^{k}(x) = h(x) - \left[\nabla h(x^{k})(x - x^{k}) + h(x^{k}) \right]$$
Linear approximation of $h(x)$ around x^{k}

• Near the solution $((x^k, \lambda^k) \approx (x^*, \lambda^*))$ the method presents quadratic order of convergence if c=0.

1BWSA-Tutorial-CNO-26

Generally Constrained NOP:

Projected Lagrangian Methods (III)

• Projected Lagrangian algorithm

Given c^{θ} and starting points x^{θ} and λ^{θ} , k = 0

Do Until (x^k, λ^k) satisfies the KKT conditions.

Solve (LCS) k to obtain x^{k+1}

Take λ^{k+1} as the Lag. mult. at the opt. sol. of (LCS)^k

If
$$(x^k, \lambda^k) \approx (x^*, \lambda^*)$$
 then set $c^{k+1} = 0$

Else choose
$$c^{k+1} \ge c^k$$

$$k := k+1$$

End Do

1BWSA-Tutorial-CNO-27

Generally Constrained NOP:

Sequential Quadratic Programming (I)

- Consider, the problem : (GCNOP) $\min_{x} \{ f(x) \mid h(x) = 0 \}$
- Sequential Quadratic Programming solves the original problem by solving the sequence of Quadratic Linearly Constrained Subproblems:

$$(QLCS)^{k} \begin{cases} \min_{x} & \frac{1}{2} (x - x^{k})^{T} W^{k} (x - x^{k}) + \nabla f(x^{k}) (x - x^{k}) \\ \text{subj. to} : & \nabla h(x^{k}) (x - x^{k}) + h(x^{k}) = 0 \end{cases}$$

where the matrix $W^k \in \Re^{n \times n}$ denotes the **Hessian of** the Lagrangian function at (x^k, λ^k) :

$$W^{k} = \nabla_{xx}^{2} L(x^{k}, \lambda^{k}) = \nabla^{2} f(x^{k}) + \sum_{i=1}^{m} \lambda_{j}^{k} \nabla^{2} h(x^{k})$$

1BWSA-Tutorial-CNO-28

Sequential Quadratic Programming (II)

• Framework of the Sequential Quadratic Programming

Given starting points x^0 and λ^0 , k = 0

<u>Do Until</u> (x^k, λ^k) satisfies the KKT conditions.

Solve (QLCS) k to obtain x^{k+1} .

Take λ^{k+1} as the Lag. mult. at the opt. sol. of (QLCS) k:=k+1

End Do

1BWSA-Tutorial-CNO-29

Generally Constrained NOP:

SQP and **Projected Lagrangian**

- The strategy of the **SQP** is similar to the one used in the **Projected Lagrangian** methods:
 - Advantages of SQP: it is easier to optimize the quadratic subproblem (QLCS)^k than the general (LCS)^k, due to the existence of specialised quadratic programming techniques.
 - Disadvantages of SQP: the computation of the quadratic objective function needs the second derivatives (or its numerical approximation) of the objective function f(x) and constraints h(x).
- Both methods can be proved to converge quadratically near the solution.

1BWSA-Tutorial-CNO-30

Optimization libraries:

Description

- Optimization libraries provides subroutines that can be called from the user's own code (mainly in FORTRAN, C or MATLAB).
- In order to solve a problem with an optimization library, the user must provide:
 - The data structure with the relevant information about the problem (matrix A in the (LCNOP), lower and upper bounds, etc.)
 - Subroutines that, given a vector x^k, returns all the information needed by the algorithm. This information could be:
 - At least $f(x^k)$ and the constraints value $h(x^k)$ and $g(x^k)$.
 - ❖ Usually the gradients $\nabla f(x^k)$ and Jacobians $\nabla h(x^k)$ and $\nabla g(x^k)$.
 - Rarely, the Hessians $\nabla^2 f(x^k)$, $\nabla^2 h(x^k)$ and $\nabla^2 g(x^k)$.

1BWSA-Tutorial-Solvers-3

Optimization libraries:

Optimization libraries

- Some of most outstanding optimization libraries are:
 - For Unconstrained Optimization:
 - * The optimization subroutines in the NAG and HARWELL libraries.
 - For Constrained Optimization:
 - * GRG, CONOP: Generalized Reduced Gradient.
 - * LANCELOT : Augmented Lagrangians.
 - * MINOS : Projected Lagrangians.
 - * SNOPT: Sequential Quadratic Programming.
- But, if you really are interested in knowing all the available optimization software, visit the NEOS Guide at www-fp.mcs.anl.gov/otc/Guide/ (a really impressive site in optimization!!)

1BWSA-Tutorial-Solvers-4

Optimization libraries: Solving the SIDS problem with the NAG libraries

- Subroutines for the unconstrained SIDS problem :
 - E04JAF: Quasi-Newton, using function values only.
 - <u>E04GCF</u>: Gauss-Newton, using function values and first derivatives.
- Subroutines for the constrained SIDS problem:
 - <u>E04UCF</u>: Sequential Quadratic Programming, using function values and first derivatives.
- We will see how to solve the SIDS problem calling these subroutines from MATLAB.

1BWSA-Tutorial-Solvers-5

Optimization libraries: Subroutine E04JAF (QN method) • Main program: file SIDS e04jaf.m % Solving the SIDS problem with the NAG Foundation Library % Routine E04jaf : Quasi-Newton method using function values only 'Example program for the NAG Foundation Library Routine e04jaf' SIDS t; % Here the observed data t {ij} is loaded x=zeros(15,1); % Initial point % To know the total execution time. [xQN,f] = e04jaf(x); % This is the call to the subroutine Optimal Objective Function=f % We print f(x*)... At the Point X=xQN % ... the optimal solution x*... time = cputime-time % ... and the execution time 1BWSA-Tutorial-Solvers-6

Optimization libraries: Subroutine E04JAF (QN method) • User's subroutines: computation of $f(x^k)$ file funct1.m % Objective function for the SIDS problem function [fc] = funct1(n,xc) global obs: fc=0; ww=(2*pi)/365; for i=0:4 aux = 3*i; a = xc(1+aux);b = xc(2+aux);c = xc(3+aux);aux2 = 365*i;for j=1:365 calc=a*cos(ww*j-b)+c; fc=fc+(calc-obs(j+aux2))^2; fc=fc/2; 1BWSA-Tutorial-Solvers-7

Optimization libraries: Constrained SIDS with subroutine E04UCF • Main program: file SIDS e04ucf.m (cont.) % Optimization parameters: string = ' Infinite Bound Size = 1.0e25 '; e04uef(string); string = ' Print Level = 1 '; e04uef(string); string = ' Verify Level = -1 '; e04uef(string); % Call to the optimizer: [iter,c,objf,objgrd,x,cjac,istate,clamda,r,ifail] = ... e04ucf(bl,bu,confun,objfun,x,ncnln,a);

Optimization libraries: Constrained SIDS with subroutine E04UCF • **User's subroutines**: computation of $f(x^k)$ and $\nabla f(x^k)$: file SIDS_e04ucf_objfune.m function [mode,objf,objgrd] = objfun(mode,n,x,objf,objgrd,nstate) ww=(2*pi)/365; if mode==0 | mode==2 % Evaluation of f(x^k) for i=0:4 aux = 3*i; a = x(1+aux);b = x(2+aux);c = x(3+aux): aux2 = 365*i; for j=1:365 res = a*cos(ww*j-b)+c - obs(j+aux2);F=F+res^2; objf=F/2; 1BWSA-Tutorial-Solvers-15

```
Optimization libraries:
Constrained SIDS with subroutine E04UCF
• User's subroutines: computation of f(x^k) and \nabla f(x^k): file
   SIDS e04ucf objfune.m
         if mode==1 | mode==2 % Evaluation of the gradient
          G=zeros(1,15);
           for i=0:4
            aux1 = 3*i;
            i_a = 1 + aux1;
i b = 2 + aux1;
            ic = 3 + aux1;
            a = x(i a);
            b = x(i b);
            c = x(i_c);
            aux2 = i*365:
             for j=1:365
              res = a*cos(ww*j-b)+c - obs(j+aux2);
              G(i_a)=G(i_a)+res*cos(ww*j-b);
              G(i_b)=G(i_b)+res*sin(ww*j-b);
              G(i c) = G(i c) + res;
            G(i b) = a*G(i b);
         objgrd = G;
                                              1BWSA-Tutorial-Solvers-16
```


Modeling languages: Introduction

- Modeling languages can be saw as a friendly interface between the user and the optimization libraries.
- The way this applications work is:
 - The user defines the optimization problem to be solved (objective function and constraints) in a notation very similar to the natural mathematical notation.
 - Then, he selects the solver to be used (MINOS, LANCELOT, CONOPT, etc).
 - The application automatically translates the model defined by the user to the specific input data structure needed by the selected solver.

1BWSA-Tutorial-Solvers-25

Modeling languages: Advantages/Disadvantages

- Advantages: the developing time is shortened, because
 - The definition of the model is very easy, because the syntax of the modeling language resembles the usual mathematical notation.
 - The model definition is independent of the solver to be used. That
 means that, after defining just once the optimization problem, the
 user are able to solve it with a great variety of solvers, forgetting
 all the annoying issues related with the specific data structure of
 each solver.
- Disadvantages: the execution time increases compared with the one obtained directly using the optimization libraries.
- Conclusion: this approach is appropriate:
 - For small scale problems, where the execution time is not critical.
 - To develop prototype implementations to achieve a deeper comprehension of the model, before its implementation in FORTRAN o C.

1BWSA-Tutorial-Solvers-26

Modeling languages:

GAMS/AMPL

- Modeling languages: the two modeling languages most widely used are:
 - GAMS (www.gams.com):

 General Algebraic Modeling System
 - AMPL (www.ampl.com):
 A Modeling Language for Mathematical Programming
- We will use AMPL to illustrate the use of this sort of software, solving the constrained likelihood maximization problem

1BWSA-Tutorial-Solvers-27

Modeling languages: User's data files with AMPL

- In order to solve the (LCNOP) Log-Likelihood problem with AMPL, the user must first define:
 - A Model file with:
 - * The declaration of the decision variables $\omega, \alpha, \beta, \sigma$ and its bounds.
 - * The mathematical expressions of the o.f. $l(\omega,\alpha,\beta,\sigma)$
 - * The mathematical expression of the linear constraint.
 - A <u>Data file</u> with the definition of all the know parameters of the model (m, n and ε, ξ and γ).
 - A <u>Run file</u> which is a script file, a sort of main program, with the list of commands to be executed to solve the defined problem.
- And then, solve the problem with AMPL

1BWSA-Tutorial-Solvers-29

Modeling languages: The model file for the Log-Likelihood problem • Definition of the model: file 1bwsa.mod set V: # set for variables param Lb{V}; # bounds for variables param Ub{V}; param M ; # number of possible covariate values param N : # number of observations param pi := 3.14159265; param gamma{1..N,1..M}; # matrix for censoring pattern of covariate param y{1..N}; # time from HIV+ to observed value for AIDS param epsi{1..N}; # observation indicator for v param xi 1{1..N}; # exact observation indicator for y param xi 2{1..N}: # right-censored observation indicator for v param hivn{1..N}; # time to HIV: left endpoint param hivp{1..N}: # time to HIV: right endpoint param s{1..M}; # values of time till HIV param logsum{1..N.1..M}: # possible values for log(time from HIV till AIDS) param RR zeta; # relative risk for current status covariate (csc) param acc fac z: # accelerating factor for csc 1BWSA-Tutorial-Solvers-30

```
Modeling languages:
 The model file for the Log-Likelihood problem
• Definition of the model: file 1bwsa.mod (cont.)
var alpha;
   var beta;
   var sigma >= 0, :=1;
   var omega{j in 1..M} >=0;
 maximize logLikelihood:
    sum{i in 1..N}
     (epsi[i] *xi 1[i] *log(1/sigma*sum{j in 1..M}
      gamma[i,j]*exp((logsum[i,j]-alpha-beta*log(s[j]))/sigma-
   \exp((\log \sup[i,j]-alpha-beta*log(s[j]))/sigma))*omega[j])+
      epsi[i] *xi 2[i] *log(sum{j in 1..M} gamma[i,j] *exp(-
   exp((logsum[i,j]-alpha-beta*log(s[j]))/sigma))*omega[j])+
      epsi[i] * (1-xi 1[i]) * (1-xi 2[i]) * log(sum{j in 1..M}
     gamma[i, j] * (1-exp(-exp((logsum[i, j]-alpha-
   beta*log(s[j]))/sigma)))*omega[j])+
     (1-epsi[i]) *log(sum{j in 1..M} gamma[i,j] *omega[j]));
subject to sum1:
      sum {i in 1..M} omega[i] = 1;
                                      1BWSA-Tutorial-Solvers-31
```


15 | 16

17 | 18

