
19/10/2010

1

Using Multi-Start Randomized Heuristics
to solve Non-Smooth and Non-Convex

Optimization Problems

IEMAE

A. Juan, D. Ionescu, J. Faulin, A. Ferrer

ajuanp@gmail.com | http://ajuanp.wordpress.com

Computer Science Department

Open University of Catalonia, SPAIN

19/10/2010

2

0. Introduction (1/2)

� Combinatorial optimization problems have
posed numerous challenges throughout
the past decades. They have a well-
structured definition consisting of an
objective function that needs to be
minimized or maximized and a series of
constraints.

� The main reason for which they have
been so actively investigated is the
tremendous amount of real-life
applications that can be successfully
modeled in this way (e.g.:
routing/scheduling issues).

� In some cases, the solution space can be
easily explored due to certain properties
of the functions involved, such as
convexity. However, in other (most?)
circumstances, the solution space is
highly irregular and finding the optimum is
quite difficult.

Combinatorial
Optimization

Problems

Real-life objective functions and
constraints are complex!

19/10/2010

3

0. Introduction (2/2)

� Simplicity, efficiency, robustness and
flexibility are the attributes that can make
one approach better or more suitable than
another.

� We propose an alternative non-uniform (or
biased) randomization approach that can
be easily applied to a variety of non-
smooth and/or non-convex optimization
problems.

Hybrid Algorithms, Simulation-
Optimization & Matheheuristics.

Real-life is usually stochastic (stochastic
demands, stochastic times, etc.)

Utility Function & Pareto Frontier

Parameter-free
algorithms

� Basically, our method pertains to the class
of nondeterministic or stochastic methods
and relies on random sampling. Therefore,
on different runs of the algorithm we get
different good solutions.

� Having a pool of solutions to choose from
can be especially useful in real-life
problems when the best known solution
may be unfeasible or inappropriate due to
external constraints or strange consumer
preferences (utility function).

19/10/2010

4

1. Convex Optimization Problems (COPs)

� COPs are problems where all of the
constraints are convex functions, and the
objective is a convex function if minimizing, or
a concave function if maximizing.

� Linear functions are convex, so LP problems
are COPs.

� In a COP, the feasible region –the

intersection of convex constraint functions–
is also a convex region.

� With a convex objective and a convex
feasible region, there can be only one optimal
solution, which is globally optimal. Several
methods –e.g. Interior Point methods– will
either find the globally optimal solution, or
prove that there is no feasible solution to the
problem.

� COPs can be solved efficiently up to very
large size.

A convex function

LPs are COPs

A convex region

Source: www.solver.com

19/10/2010

5

2. Non-convex Optimization Problems (NCOPs)

� NCOPs are problems where either
the objective or any of the
constraints are non-convex.

� NCOPs may have multiple feasible
regions and multiple locally optimal
points within each region.

� It can take exponential time in the
number of variables and constraints
to determine that a non-convex
problem is infeasible, that the
objective function is unbounded, or
that an optimal solution is the
"global optimum" across all feasible
regions. Non-convex

regions

Source: www.solver.com

A non-convex function with multiple local minima

19/10/2010

6

3. Non-Smooth Optimization Problems (NSPs)
� Typically, NSPs are also NCOPs. Hence:

� They might have multiple feasible regions and
multiple locally optimal points within each
region –because some of the functions are
non-smooth or even discontinuous, and

� Derivative/gradient information generally
cannot be used to determine the direction in
which the function is increasing (or
decreasing).

� In a NSP, the situation at one possible
solution gives very little information about
where to look for a better solution.

� In most NSPs it is impractical to enumerate
all of the possible solutions and pick the best
one. Hence, most methods rely on some sort
of random sampling of possible solutions.

� Such methods are nondeterministic or
stochastic –they may yield different solutions
on different runs, depending on which points
are randomly sampled.

Examples of non-smooth functions

Source: www.mathworks.com

19/10/2010

7

3. Examples of Nonsmooth Functions

� Sensor Network Localization

The Problem The objective function

� Optimal Circuit Routing

� Winner Determination Problem (combinatorial auctions)

19/10/2010

8

4. Solving NSPs with GAs and EAs
� Genetic and Evolutionary Algorithms offer one

way to find "good" solutions to non-smooth
optimization problems:

� In a genetic algorithm the problem is encoded in a
series of bit strings that are manipulated by the
algorithm.

� In an "evolutionary algorithm," the decision variables
and problem functions are used directly.

� GAs and EAs maintain a population of candidate
solutions, rather than a single best solution so far.
From existing candidate solutions, they generate
new solutions through either random mutation of
single points or crossover or recombination of two
or more existing points. The population is then
subject to selection that tends to eliminate the
worst candidate solutions and keep the best
ones. This process is repeated, generating better
and better solutions.

� There is no way for these methods to determine
that a given solution is truly optimal.

Evolutionary processes

19/10/2010

9

5. Solving NSPs with Tabu Search
� Tabu Search algorithms offer another

approach to find "good" solutions to
non-smooth optimization problems.

� TS algorithms also maintain a
population of candidate solutions,
rather than a single best solution so far,
and they generate new solutions from
old ones. However, they rely less on
random selection and more on
deterministic methods.

� Tabu search uses memory of past
search results to guide the direction
and intensity of future searches.

� These methods generate successively
better solutions, but as with genetic and
evolutionary algorithms, there is no way
for these methods to determine that a
given solution is truly optimal.

� Other approaches exist: GRASP, ACO,
SA, etc.

In TS only non-tabu movements are allowed

Avoiding local
minima
through

perturbation
movements

19/10/2010

10

6. Randomizing Classical Heuristics (1/2)

� There are excellent and well-tested
classical constructive heuristics for
almost every relevant combinatorial
optimization problem (e.g.: vehicle
routing problem, scheduling
problems, allocation problems, etc.).

� Being constructive methods, these
heuristics tend to perform well even
in the case of non-smooth functions
and non-convex functions and
regions.

� During the constructive stage, these
heuristics select the next movement,
from a list of available movements,
according to a greedy criterion, e.g.:
“select the node which the highest
savings” (CWS for the VRP) or
“select the job with the highest
processing time” (NEH for the FSP),
etc.

NEH heuristic for
the FSP

Clarke & Wright savings
heuristic for the VRP

19/10/2010

11

50403020100

0.20

0.15

0.10

0.05

0.00

X

P
ro
b
a
b
ili
ty

0.1

0.2

p

Distribution Plot
Geometric

X = total number of trials.

6. Randomizing Classical Heuristics (2/2)
� We propose to introduce a biased

random behavior (BRB) in these
selection process so that movements
with better values have higher
probabilities of being selected, but other
movements could also be selected
instead at each step.

� This way, deterministic classical
heuristics (e.g.: Clarke and Wright, NEH,
etc.) are transformed into probabilistic
ones without losing the “common sense”
rules that make them efficient.

� Thus, we transform a “gun heuristic”
into a “machine-gun heuristic”: each
time the randomized heuristic is run, a
different “good” solution will be
obtained (kind of a “Biased GRASP”).

� The geometric and the discrete version
of the triangular can be used to infer
this BRB.

Geometric
distributions

50403020100

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

X

D
e
n
s
it
y

25

50

Upper

Distribution Plot
Triangular, Lower=1, Mode=1

Triangular
distributions

19/10/2010

12

7. Example 1: The CVRP (1/8)
� The Vehicle Routing Problem (CVRP) is a

well-known NP-hard problem:

� A set of customers’ demands must be supplied
by a fleet of vehicles.

� Resources are available from a depot.

� Moving a vehicle from one node i to another j
has associated costs c(i, j)

� Several constraints must be considered:
maximum load capacity per vehicle, service
times, etc.

Depot
(resources)

Customers
(demand)

edge in a route

� Goal: to obtain an optimal solution, i.e. a set
of routes satisfying all constraints with
minimum costs

� Different approaches for CVRP: optimization
methods (small-size), heuristics (CWS) and
meta-heuristics (GAs, TS, SA, GRASP, …)

19/10/2010

13

� Yes, but…: In real-life scenarios is not possible to model all costs, constraints and
desirable solution properties in advance (Kant et al 2008)

� Goal 2 (our approach): to develop a method that also provides many ‘good’
alternative solutions, so that the decision-maker can select the one that best fits
her utility function.

7. Example 1: The CVRP (2/8)

19/10/2010

14

� Our approach will be based on the Clarke and Wright’s
savings (CWS) algorithm (Clarke & Wright 1964).

� CWS algorithm:

1. For each pair of nodes i and j, calculate the savings, s(i, j),
associated to the edge connecting them, where: s(i, j) =

c(0, i) + c(0, j) – c(i, j)

2. Construct a list of edges, sorting the edges according to their
associated savings

3. Construct an initial feasible solution by routing a vehicle to each
client node

4. Select the first edge in the savings list and, if no constraint is
violated, merge the routes that it connects

5. Repeat step 4 until the savings list is empty

� This parallel version of the CWS heuristic usually provides
‘acceptable solutions’ (average gap between 5% and 10%),
especially for small and medium-size problems

Start

savings(i, j)

Savings list

Initial solution

Select first edge

& Merge

List empty?

End

7. Example 1: The CVRP (3/8)

19/10/2010

15

() εαα +−⋅== −1
1)(

k
kXP

sk ,...,2,1=∀

() ()∑∑
=

−
+∞

+=

− −⋅−=−⋅=
s

k

k

sk

k

1

1

1

1
111 ααααε

� CWS � the first edge (the one with the most savings) is the one selected.

� SR-GCWS introduces randomness in this process by using a quasi-geometric
statistical distribution � edges with more savings will be more likely to be
selected at each step, but all edges in the list are potentially eligible.

� Notice: Each time SR-GCWS is run, a random feasible solution is obtained. By
construction, chances are that this solution outperforms the CWS one �

hundreds of ‘good’ solutions can be obtained after some seconds/minutes.

Good results with
0.10 < α < 0.20

7. Example 1: The CVRP (4/8)

19/10/2010

16

1. Adding ‘memory’ to our algorithm with a hash table:

� A hash table is used to save, for each generated route, the best-known
sequence of nodes (this will be used to improve new solutions)

� ‘Fast’ method that provides small improvements on the average

Improvement #1:
Hash Table

Improvement #2: Splitting

2. Splitting (divide-and-conquer) method:

� Given a global solution, the instance is sub-divided in smaller instances and
then the algorithm is applied on each of these smaller instances

� ‘Slow’ method that can provide significant improvements

7. Example 1: The CVRP (5/8)

19/10/2010

17

� OO approach (Java, Eclipse)
� Special attention:

i. RNG (L’Ecuyer 2001) � SSJ
library (L’Ecuyer 2002),
GenF2W32 period 2800-1

ii. Design of classes (Horstmann
2006)

iii. Code accuracy and
effectiveness

� Implementation of the CWS
heuristic (parallel version) based
on:
http://web.mit.edu/urban_or_b
ook/www/book/chapter6/6.4.12.
htm

Both the CWS and the SR-GCWS-CS
implementations have been verified by
using standard benchmarks and
independent calculations

7. Example 1: The CVRP (6/8)

19/10/2010

18

� To verify the goodness of our
approach and its efficiency, a
total of 50 classical VRP
benchmark instances were
randomly selected from
http://www.branchandcut.org
(which also contains best-
known solutions so far)

E-n51-k5.vrp
Depot at the
center

A-n80-k10.vrp
Depot at one
corner

B-n57-k9.vrp
Cluster
topology

Different Scenarios:
• From 45 to 200 nodes
• Different topologies (depot, clusters, etc.)

� Results:

a) 31-out-of-50 instances offer a
negative gap –i.e., they
outperform the BKS

b) The remaining 19 instances
offer a null gap

c) Average gap = -0.21%

d) In most cases � few seconds

7. Example 1: The CVRP (7/8)

19/10/2010

19

Intel® Core™2 Duo CPU at 2.4

GHz and 2 GB RAM

A positive gap implies that the CWS solution costs are higher
than the ones associated with the best-known-so-far solution.

Our approach improves 31-out-of-50 benchmark
solutions, with a global average gap of -0.21%
for the 50 benchmark instances

A negative gap
implies that our
solution costs
are lower than
the ones
associated with
the best-known-
so-far solution.

7. Example 1: The CVRP (8/8)

Juan, A.; Faulin, J.; Ruiz, R.; Barrios, B.; Caballe, S. (2010): “The SR-GCWS hybrid
algorithm for solving the capacitated vehicle routing problem”. Applied Soft Computing,
Vol. 10, No. 1, pp. 215-224

Juan, A.; Faulin, J.; Jorba, J.; Riera, D.; Masip; D.; Barrios, B. (2010): “On the Use of
Monte Carlo Simulation, Cache and Splitting Techniques to Improve the Clarke and
Wright Savings Heuristics”. Journal of the Operational Research Society.
doi:10.1057/jors.2010.29

19/10/2010

20

8. Example 2: The FSP (1/4)

� The FSP problem:

� A set J of n independent jobs needs to be
scheduled on a set M of m independent
machines

� Job j requires pij units of time to be completed
on machine i

� Several constraints must be considered: the
execution of a job cannot be interrupted, each
machine can execute at most one job at a
time, the order in which jobs are executed is
the same

� Goal: find optimal permutation of jobs given a
certain criterion (makespan for PFSP)

� Different approaches for FSP: optimization
methods (small-size), heuristics (NEH) and
meta-heuristics (GAs, TS, SA, GRASP, …)

Notice that stochastic times could
also be considered! (e.g. Siemens)

19/10/2010

21

� NEH � jobs are ordered in decreasing order according to their total completion
time on all the machines

� SS-GNEH introduces randomness in this process by using a triangular statistical
distribution � jobs that take longer to complete will be more likely to be selected
first, but all jobs in the list are potentially eligible.

� Notice: Each time SS-GNEH is run, a random feasible solution is obtained. By
construction, chances are that this solution outperforms the NEH one �

hundreds of ‘good’ solutions can be obtained after some seconds/minutes

8. Example 2: The FSP (2/4)

1817161514131211109876543210

600

500

400

300

200

100

0

C2

C
o
u
n
t

Chart of C2

Pseudo-random number generation
must be computationally efficient!

19/10/2010

22

8. Example 2: The FSP (3/4)
� The main steps for SS-GNEH:

1. Generate Randomized NEH solutions
until you find one (our base) that
outperforms the original NEH solution

2. Keep applying a local search to the base
solution from step 1 as long as you get
improvements

3. Update the best solution found so far if
necessary

4. Restart the process if time permits (30
ms x #jobs x # machines in our
implementation)

5. Run each instance with several different
seeds for the random generator

� The local search process:

� Pick at random and without repetition one job from the list

� Move the job at the end and apply Taillard acceleration to find the best position for it
with respect to makespan

� Repeat the 2 steps above n times, where n is the number of jobs

Multi-Agent Approach

19/10/2010

23

1. Test: 15 runs per instance with maxTime = 0.010s * nJobs * nMachines

2. Computer: Intel Xeon 2.0GHz 4GB RAM

3. Note: All algorithms have been implemented in Java (non-optimized code)

8. Example 2: The FSP (4/4)

Juan, A.; Ruiz, R.; Mateo,
M.; Lourenço, H.; Ionescu,
D. (2010): “A Simulation-
based Approach for
Solving the Flowshop
Problem”. In Proceedings
of the 2010 Winter
Simulation Conference.

19/10/2010

24

� Tesla GPUs (CUDA) �

about 12,000 threads (for
real-time solutions &
large-size CVRPs)

� VRPTW, VRPSD, …

� Stochastic routing and
scheduling problems

� Splitting with AI
techniques

� Hybridization with
Constraint Programming
techniques, Lagrange
Relaxation, etc.

� Parallel & Distributed
computing (multi-agent
approach)

� …

9. Future Work

19/10/2010

25

10. The Role of Distributed Computing

� Usually, small- and medium- enterprises (SMEs) in the logistics business lack
technical expertise and high-tech computational resources.

� In such scenarios, two alternative DPCS approaches are possible: a) to use third-
party resources on demand, i.e. a cloud system, or b) to employ idle computing
capabilities of SME’s desktop computers.

� Thus, it makes sense to
spare resources from
each computer and
aggregate those
resources into a
computational
environment where
hundreds or even
thousands of instances
of a simple algorithm like
the one presented here
can be run
simultaneously.

19/10/2010

26

11. Conclusions

� We have discussed the use of probabilistic or stochastic algorithms for
solving non-smooth combinatorial optimization problems.

� We propose the use of probability distributions, such as the Geometric
or the Triangular ones, to add a biased random behavior to classical
heuristics such as the Clarke and Wright Savings heuristic for the
Vehicle Routing Problem or the NEH heuristic for the Flow Shop
Scheduling Problem.

� By randomizing these heuristics, a large set of alternative good
solutions can be quickly obtained in a natural and easy way.

� In some sense, this approach could be considered as a “Biased
GRASP” (as far as we know, most existing GRASP only use uniform
distributions).

� Some specific examples of this technique (VRP and PFSP) have been
analyzed to illustrate the main ideas behind this approach.

� Future work relates to the use of parallel and distributed computing.

19/10/2010

27

Using Multi-Start Randomized Heuristics
to solve Non-Smooth and Non-Convex

Optimization Problems

IEMAE

A. Juan, D. Ionescu, J. Faulin, A. Ferrer

ajuanp@gmail.com | http://ajuanp.wordpress.com

Computer Science Department

Open University of Catalonia, SPAIN

Thank You!

