
A SPECIALIZED INTERIOR-POINT ALGORITHM FOR
MULTICOMMODITY NETWORK FLOWS∗

JORDI CASTRO†

SIAM J. OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 10, No. 3, pp. 852–877

Abstract. Despite the efficiency shown by interior-point methods in large-scale linear pro-
gramming, they usually perform poorly when applied to multicommodity flow problems. The new
specialized interior-point algorithm presented here overcomes this drawback. This specialization uses
both a preconditioned conjugate gradient solver and a sparse Cholesky factorization to solve a linear
system of equations at each iteration of the algorithm. The ad hoc preconditioner developed by
exploiting the structure of the problem is instrumental in ensuring the efficiency of the method. An
implementation of the algorithm is compared to state-of-the-art packages for multicommodity flows.
The computational experiments were carried out using an extensive set of test problems, with sizes of
up to 700,000 variables and 150,000 constraints. The results show the effectiveness of the algorithm.

Key words. interior-point methods, linear programming, multicommodity flows, network pro-
gramming

AMS subject classifications. 90C05, 90C06, 90C35

PII. S1052623498341879

1. Introduction. Multicommodity problems usually have many variables and
constraints, which makes it difficult for them to be solved by general procedures. This
has led to the formulation of specialized methods. However, some of the largest and
most difficult multicommodity problems are still challenging even for these special-
izations. The algorithm presented in this paper has three main features. First, it has
proven to be computationally efficient and robust in the solution of a wide range of
problems, not just for some specific kind of multicommodity instances. Second, it
is a specialized primal-dual interior-point algorithm, so it globally converges to the
optimum in polynomial time, unlike other methods that provide an ε-approximate
solution (e.g., [17]). And finally, it has been able to efficiently solve large instances
of Patient Distribution System (PDS) problems [7]. This class of problems is com-
monly used as a de facto standard for testing the performance of multicommodity
codes. With our algorithm we solved the PDS90 and PDS100 instances in a relatively
reasonable amount of time. (In [17] an approximate solution is provided at most for
PDS80.)

Most of the specialized methods attempt to exploit in some way the block struc-
ture of the multicommodity problem. Among the earlier approaches, we find primal
partitioning and the price and resource directive decompositions (see [2, Chap. 17]
and [21] for details). Of these three methods, the first two were regarded as the most
successful in [3]. Despite this, no implementation of primal partitioning has been able
to solve large problems significantly faster than the state-of-the-art simplex codes.
For instance, the recent primal partitioning package PPRN [6] was, on average, no
more than an order of magnitude faster than the primal simplex code of MINOS 5.3.
In some cases, accurate implementations of the dual simplex—preceded by a warm

∗Received by the editors July 13, 1998; accepted for publication (in revised form) October 6,
1999; published electronically May 2, 2000. This work was partially supported by Iberdrola S.A.
grant 95-005 and by CICYT project TAP96-1044-J02-93.

http://www.siam.org/journals/siopt/10-3/34187.html
†Statistics and Operations Research Department, Universitat Politècnica de Catalunya, Campus

Sud, Pau Gargallo 5, 08028 Barcelona, Spain (jcastro@eio.upc.es).

852

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 853

start based on solving minimum-cost network problems for each commodity—can
even outperform primal partitioning multicommodity specializations (see [13] for a
comparison of PPRN and the network+dual solver of CPLEX 3.0). In this paper, we
show that our algorithm, in general, outperforms both PPRN and CPLEX 4.0 and,
in some cases, by more than an order of magnitude.

The other method regarded as successful in [3], the price directive or Dantzig–
Wolfe decomposition, belongs to the class of cost decomposition approaches for multi-
commodity flows (see [13], [15], and [33] for recent variants based on bundle methods,
analytic centers, and smooth penalty functions, respectively). A recent computational
study [13] showed that these are promising approaches for solving a wide variety of
problems. However, for some classes of instances—typically difficult problems with
large networks and not many commodities such as the PDS ones—our interior-point
approach seems to give considerably better performance. Furthermore, Frangioni [12]
noted that the particular cost decomposition method of [13] might sometimes require
the algorithmic parameters to be tuned if performances are to be the best possible,
whereas our algorithm works well with default values.

Interior-point methods have also been applied in the past. For the single-
commodity case, efficient specializations were developed by Resende and others [26,
28, 29, 30]. These specializations relied on the use of preconditioned conjugate gradi-
ent (PCG) solvers. The preconditioners developed, though efficient, were appropriate
only for single-commodity problems. The first reported attempt at solving multi-
commodity problems by an interior-point method was probably that described in [1].
However, the general implementation of Karmarkar’s projective algorithm used there
was outperformed by a simplex specialized algorithm in the solution of small-size mul-
ticommodity instances. Alternative and more efficient approaches were developed in
the following years. In fact, the best complexity bound known for multicommodity
problems is provided by the two interior-point algorithms described in [19] and [20],
though none of these papers provided computational results. In [18], Kamath et al.
applied a variant of Karmarkar’s projective algorithm using a PCG solver. However,
their preconditioner did not take advantage of the multicommodity structure. An
attempt to exploit this structure was made in [9] by Choi and Goldfarb. Though
the decomposition scheme they presented is similar to the one in this paper, the
solution procedure differs substantially. Choi and Goldfarb suggest solving a fairly
dense matrix positive definite linear system that appears during the decomposition
stage by means of parallel and vector processing, whereas we apply a PCG method,
which enables large problems to be solved efficiently using a midsize workstation. A
different interior-point approach was developed in [31], using a barrier function to
decompose the problem. This strategy provided approximate solutions for some of
the large PDS problems (up to PDS70). However, as will be shown, our method
gives more accurate solutions. Finally, Portugal et al. introduced in [27] a specialized
interior-point algorithm based solely on a PCG, unlike our method, which combines
PCG with direct factorizations. The proposed preconditioner was an extension of that
developed in [26] by the same authors for single-commodity flows. No computational
results were reported in [27] for the solution of multicommodity problems using this
preconditioner.

This paper is organized as follows. Section 2 presents the formulation of the
problem to be solved. Section 3 outlines the primal-dual algorithm, and in section 4
we develop the specialization for multicommodity problems. Section 5 describes some
implementation details of this specialization. Finally, section 6 gives computational
results that show the efficiency of the algorithm.

854 JORDI CASTRO

2. Problem formulation. Let G = (N ,A) be a directed graph, where N is a
set of m + 1 nodes and A is a set of n arcs, and let K be a set of k commodities
to be routed through the network represented by G. We shall also consider that the
arcs of the network have a capacity for all the commodities, which will be known as
the mutual capacity. So, the multicommodity network flow (MCNF) problem can be
formulated as follows:

min
x(1),...,x(k)

k∑

i=1

c(i)T

x(i)(1)

subject to ANx(i) = b(i), i = 1, . . . , k,(2)
k∑

i=1

x(i) ≤ bmc,(3)

0 ≤ x(i) ≤ x(i), i = 1, . . . , k.(4)

Vectors x(i) ∈ Rn and c(i) ∈ Rn are the flow and cost arrays for each commodity i,
i = 1, . . . , k. AN ∈ Rm×n is the node-arc incidence matrix, where each column is
related to an arc a ∈ A, and has only nonzero coefficients in those rows associated
with the origin and destination nodes of a (with coefficients 1 and −1, respectively).
We shall assume that AN is a full row-rank matrix. This can always be guaranteed
by removing any of the (redundant) node balance constraints. b(i) ∈ Rm is the vector
of supplies and demands for commodity i at the nodes of the network. Equation
(3) represents the mutual capacity constraints, where bmc ∈ Rn. Constraints (4) are
simple bounds on the flows, x(i) ∈ Rn, i = 1, . . . , k, being the upper bounds. These
upper bounds represent individual capacities of the arcs for each commodity.

Introducing the slacks smc for the mutual capacity constraints, (3) can be rewrit-
ten as

k∑

i=1

x(i) + smc = bmc.(5)

We can consider that the slacks smc are upper bounded by bmc, since all the vectors
x(i) in (5) have nonzero components. This gives

0 ≤ smc ≤ bmc.(6)

The MCNF problem can then be recast as

min (1) subject to (2), (4), (5), and (6).(7)

3. Outline of the primal-dual interior-point algorithm. Let us consider
the linear programming problem

min cT x

subject to Ax = b,

x ≥ x ≥ 0,

(8)

where x ∈ Rñ, x ∈ Rñ are the upper bounds, c ∈ Rñ, b ∈ Rm̃, and A ∈ Rm̃×ñ is a full
row-rank matrix. The dual of (8) is

max bT y − xT w

subject to AT y + z − w = c,

z ≥ 0, w ≥ 0,

(9)

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 855

where y ∈ Rm̃ are the dual variables and z ∈ Rñ and w ∈ Rñ are the dual slacks.
Note that the MCNF problem, as defined in (7), fits the formulation of (8), where
ñ = (k + 1)n and m̃ = km + n.

Replacing the inequalities in (8) by a logarithmic barrier in the objective function,
with parameter µ, and considering the slacks f = x− x, it can be seen that the KKT
first order optimality conditions of (8) and (9) are equivalent to the following system
of nonlinear equations (see [32] for a comprehensive description):

bxz ≡ µeñ −XZeñ = 0,

bfw ≡ µeñ − FWeñ = 0,

bb ≡ b−Ax = 0,(10)

bc ≡ c− (AT y + z − w) = 0,

(x, z, w) ≥ 0, x ≥ x,

where eñ is the ñ-dimensional vector of 1’s; X, Z, F , and W are diagonal matrices
defined as M ∈ Rñ×ñ = diag(m1, . . . , mñ); and the vectors b∗ define the left-hand-side
terms of (10). Note that we did not include the slacks equation x + f = x in (10).
Instead we replaced the slacks f by x − x, reducing by ñ the number of equations
and variables. This forces the primal variables x of the iterates obtained during the
solution of (10) to always be interior in relation to their upper bounds.

The solutions of system (10)—considering inequalities as strict inequalities—for
different µ values gives rise to an arc of strictly feasible points known as the central
path. As µ tends to 0, the solutions of (10) converge to those of the original primal
and dual problems. A path-following algorithm attempts to follow the central path,
computing (10)—in long-step methods—through a damped Newton’s method together
with the reduction of the barrier parameter µ at each iteration of the algorithm. The
path-following algorithm considered for the specialization uses the reduction formula
µ = 0.1(xT z+fT w)/2ñ. It can be seen [32] that obtaining Newton’s direction amounts
to finding dy and then computing dx, dw, dz, in

(AΘAT)dy = bb + AΘr,

dx = Θ(AT dy − r),
(11)

dw = F−1(bfw + Wdx),

dz = bc + dw −AT dy,

where

r = F−1bfw + bc −X−1bxz, r ∈ Rñ,(12)

Θ = FX(ZF + XW)−1, Θ ∈ Rñ×ñ.(13)

Note that Θ is a positive definite diagonal matrix, since it is nothing but a product
of positive definite diagonal matrices. Since A is a full row-rank matrix, AΘAT is
also positive definite. It is quite clear that the main computational burden of the
algorithm is the repeated solution of the linear system

(AΘAT)dy = b̄,(14)

where b̄ denotes bb + AΘr in (11). The performance of any primal-dual multicom-
modity specialization relies on the efficient solution of (14).

856 JORDI CASTRO

(a) (b)

Fig. 1. (a) Sparsity pattern of a multicommodity constraint matrix A. (b) Sparsity pattern of
the factorization of PAΘAT P T .

4. Primal-dual specialization for the MCNF problem.

4.1. Motivation. General interior-point codes for linear programming attempt
to solve (14) through sparse Cholesky factorizations. To reduce the fill-in, they fac-
torize PAΘAT PT , instead of AΘAT , where P is a permutation matrix obtained by
some heuristic. However, when applied to multicommodity problems, even the best
P matrices, such as those provided by good heuristics like the minimum-local-fill-in
or minimum-degree orderings, cannot prevent a fairly large dense submatrix from ap-
pearing in LLT = PAΘAT PT . For instance, Figure 1(a) shows the sparsity pattern
of the constraint matrix A for a multicommodity problem with 4 commodities, 64
nodes, and 524 arcs (it corresponds to problem M1 in Table 3 of section 6). Using
the state-of-the-art interior-point code BPMPD [23], the sparsity pattern obtained for
L + LT is depicted in Figure 1(b). The dense submatrix created makes the factoriza-
tion of PAΘAT PT computationally expensive and, for large problems, its storage in
the memory completely prohibitive. Then it is clear that, to be competitive, interior-
point methods must exploit the structure of the multicommodity problem to efficiently
solve (14).

4.2. Exploiting the multicommodity structure. The constraint matrix A
of the MCNF problem defined in (7) has the following structure:

A =

AN 0 . . . 0 0

0 AN . . . 0 0
...

...
. . .

...
...

0 0 . . . AN 0

1ln 1ln . . . 1ln 1ln

,(15)

where 1ln denotes the n×n identity matrix and 0 is the zero matrix. Moreover, matrix
Θ, as defined in (13), can be partitioned as

Θ =

Θ(1)

. . .

Θ(k)

Θmc

,(16)

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 857

where Θ(i) ∈ Rn×n, i = 1, . . . , k, and Θmc ∈ Rn×n are associated with the flows x(i)

of commodity i and the mutual capacity slacks smc, respectively. Using (15) and (16),
it is straightforward to see that AΘAT in (14) has the following structure:

AΘAT =

ANΘ(1)AT
N . . . 0 ANΘ(1)

...
. . .

...
...

0 . . . ANΘ(k)AT
N ANΘ(k)

Θ(1)AT
N . . . Θ(k)AT

N Θmc +
∑k

i=1 Θ(i)

=
B C

CT D
,(17)

where B ∈ Rkm×km is the block diagonal matrix

B = diag(ANΘ(i)AT
N , i = 1, . . . , k),(18)

each block being a square matrix of dimension m, C ∈ Rkm×n is defined as

C =
[
Θ(1)AT

N . . . Θ(k)AT
N

]T
,(19)

and D ∈ Rn×n corresponds to the lower diagonal submatrix of AΘAT :

D = Θmc +
k∑

i=1

Θ(i).(20)

Since Θ is diagonal and positive definite, it holds that D is a positive definite diagonal
matrix as well.

The above decomposition of AΘAT can be applied to the solution of (14), parti-
tioning appropriately the dual variables direction dy and the right-hand-side vector b̄:

B C

CT D

dy1

dy2

=
b̄1

b̄2

,(21)

where dy1, b̄1 ∈ Rkm and dy2, b̄2 ∈ Rn. The solution of (21) can be directly obtained
by block multiplication, yielding

(D − CT B−1C)dy2 = (b̄2 − CT B−1b̄1),(22)

Bdy1 = (b̄1 − Cdy2).(23)

Matrix D−CT B−1C is known as the Schur complement, and it will be denoted by S:

S = D − CT B−1C.(24)

To efficiently solve (22) and (23)—and obtain the solution to (14)—we only need
to deal with systems involving matrices B and S. Systems with matrix B can be
considered not too difficult. In fact, exploiting the block structure of B shown in
(18), these systems can be decomposed into k smaller ones of dimension m with
matrices ANΘ(i)AT

N , i = 1, . . . , k. Each of these matrices can be easily obtained. If
we denote by Iv the set of arcs incident to node v and by a ≡ (v, w) the arc of A
that has v and w as origin and destination nodes and consider the structure of the

858 JORDI CASTRO

node-arc incidence matrix AN , it is straightforward to see that ANΘ(i)AT
N can be

easily computed as follows:

(ANΘ(i)AT
N)vw
v=1,...,m
w=1,...,m

=





∑

∀a

−Θ(i)
a if a ≡ (v, w) ∈ A, (w, v) 6∈ A,

∑

∀a,b

(−Θ(i)
a −Θ(i)

b

)
if a ≡ (v, w) ∈ A, b ≡ (w, v) ∈ A,

∑

∀a∈Iv

Θ(i)
a if (v = w),

0 otherwise,

(25)

where Θ(i)
a is the diagonal term of Θ(i) associated to arc a. Moreover, since Θ(i)

is symmetric and positive definite and AN is a full row-rank network matrix, we
have that matrices ANΘ(i)AT

N are symmetric and positive definite as well. There-
fore, their Cholesky factorizations exist. In practice, to reduce the fill-in, instead of
ANΘ(i)AT

N , we shall factorize PNANΘ(i)AT
NPT

N , where PN is a permutation matrix
of the nodes of the network. Note that PN will have to be computed only once,
since the nonzero pattern of ANΘ(i)AT

N is the same for all the commodities. In gen-
eral, due to the high sparsity of the network matrix AN , we can expect that these
k Cholesky factorizations—and, hence, the factorization of B—will not be too com-
putationally expensive. Additionally, in a parallel computing environment, these k
factorizations—and their respective backward and forward substitutions—can be car-
ried out independently for each commodity.

System (22) still remains to be solved. We could consider computing and fac-
torizing S. However, this would mean solving n systems of equations with matrix
B, n being the number of arcs of the network. In addition, S could become fairly
dense. In fact, as the proposition below shows, if we perform symbolic computations,
matrix S turns out to be completely dense, increasing the solution cost of (22) with
a direct method. With no loss of generality and to simplify the notation we will con-
sider a problem with only one commodity and where PN = 1l (no node permutation
is required to reduce the fill-in for ANΘ(i)AT

N).
Proposition 1. Let L(1)L(1)T

= ANΘ(1)AT
N be the Cholesky factorization of

B = ANΘ(1)AT
N . If we apply this factorization to remove the subdiagonal elements of

B and submatrix C in (17) by symbolic Gaussian elimination

L(1)−1
0

−CT B−1 1l

B C

CT D

=
L(1)T

L(1)−1
C

0 D − CT B−1C

,

submatrix D − CT B−1C—the Schur complement—becomes completely dense.
Proof. Let Nv be the set of nodes adjacent to node v ∈ N , i.e.,

Nv = {w ∈ N such that (v, w) ∈ A or (w, v) ∈ A};

this set will be associated to matrix B = ANΘ(1)AT
N . Let Iv be the set of arcs incident

to node v, i.e.,

Iv = {a ∈ A such that a ≡ (w, v) ∈ A or a ≡ (v, w) ∈ A};

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 859

this set will be associated to matrix C = ANΘ(1). And let Ca be the set of nodes
connected to arc a ∈ A (initially Ca = {v, w}, where a ≡ (v, w)); this set will be
associated to matrix CT = Θ(1)AT

N . Moreover we will denote as M j)/Mj) the ma-
trix/set M/M after j elimination stages—the original sets and matrices correspond
to M0)/M0)—and by vi and aj the node and arc associated to row i and column j
of AN , respectively.

Let us assume we are starting the Gaussian elimination and we have to remove
the subdiagonal terms of the first column of (17). This will be done through the first
row of B0) (which corresponds to the first node v1 of AN). From (25) it can be seen
that we shall have to remove the elements of the rows of B0) related to the nodes in
N 0)

v1 . Two new nonzero elements will then appear, one in the upper and the other in
the lower diagonal parts of B1), for each pair of nodes (vi, vj) in N 0)

v1 not yet connected
by any arc. The adjacent node sets are suitably updated as

for all vi ∈ N 0)
v1

N 1)
vi

= N 0)
vi

⋃
N 0)

v1
− {v1}.

(A comprehensive explanation of this result can be found in [14, Chap. 5].) New
nonzero elements will appear in matrix C1) as well. Initially, the only nonzero elements
in row i of C0) are found in the columns of the arcs I0)

vi . After the first elimination
stage we find that

for all vi ∈ N 0)
v1

I1)
vi

= I0)
vi

⋃
I0)

v1
.

Similarly, when eliminating the first column of CT0), new nonzero elements will appear
in CT1). Unlike C1), these new entries are related to arcs, thus having

for all aj ∈ I0)
v1

C1)
aj

= C0)
aj

⋃
N 0)

v1
.

Repeating the above procedure, it is not difficult to see that, after m − 1 elimi-
nation stages, all the nodes collapsed into the last one vm (see [14, Chap. 5] again for
a detailed description), yielding

Nm−1)
vm

=
m⋃

i=1

Nvi = V.

It also holds, for the last row in matrix Cm−1), that

Im−1)
vm

=
m⋃

i=1

Ivi = A

and, analogously for the last column in matrix CTm−1), that

for all aj ∈ A vm ∈ Cm−1)
aj

.

Therefore, the last row in Cm−1) and the last column in CTm−1) become dense. It is
now clear that, if we attempt to eliminate the last column of CTm−1) from the last
row in the Cm−1) matrix, D − CT B−1C becomes dense.

In practice, however, if we perform numerical instead of symbolic computations, S
will not be completely dense due to cancellations. As shown by the next proposition,

860 JORDI CASTRO

the numerical sparsity pattern of S depends on the structure of the network and, in
the simplest case, can even be diagonal.

Proposition 2. If the network is a spanning tree (thus, it is connected and
m = n + 1), the Schur complement is diagonal.

Proof. In this case, matrix AN is square and nonsingular. Using (18), (19), (20),
and the nonsingularity of AN , the Schur complement can be written as

S = D − CT B−1 = Θmc +
k∑

i=1

Θ(i) −
k∑

i=1

Θ(i)AT
N (ANΘ(i)AT

N)−1ANΘ(i)

= Θmc +
k∑

i=1

Θ(i) −
k∑

i=1

Θ(i) = Θmc.

The density of S increases with the complexity of the network. If each pair of
nodes of the network is connected by at least one arc, S can be shown to be numerically
completely dense for most Θ matrices. Leaving aside these extreme cases, for general
networks the Schur complement will be numerically fairly dense. This fact, together
with the cost associated with building matrix S, makes the solution of (22) with
a direct method prohibitive. A similar system had to be solved in the approach
suggested in [9]. However, no procedure was given there to circumvent this difficulty,
and the solution of (22) was addressed through parallel and vector processing. Rather
than use a direct method, the specialization we propose attempts to solve (22) through
a PCG.

4.3. Solution via a preconditioned conjugate gradient method. Before
applying a PCG method to (22) we must guarantee that S is symmetric and positive
definite at each iteration of the algorithm.

Lemma 1. Let T ∈ Rt×t be a square matrix partitioned as follows:

T =
B C

CT D
.

Then, if T is symmetric and positive definite and B is positive definite, it holds that
the Schur complement S = D − CT B−1C is symmetric and positive definite.

Proposition 3. The Schur complement matrix S = D − CT B−1C defined in
(22) is symmetric and positive definite at each iteration of the primal-dual algorithm.

Proof. The primal and dual variables—x, and z and w—are interior at each
iteration of the primal-dual algorithm. So we have that Θ, as defined in (13), is
a positive definite diagonal matrix. Moreover, since the network matrix AN was
assumed to be a full row-rank matrix, the constraint matrix of the MCNF problem
defined in (15) is a full row-rank matrix as well. Therefore, matrices AT ΘA and B
defined in (17) and (18) are both symmetric and positive definite. Applying Lemma 1,
with T = AT ΘA, we get that S is symmetric and positive definite.

The preconditioner that we propose in this paper, denoted by M , consists of using
an approximation of the inverse of S. The development of this preconditioner relies
on the following theorem.

Theorem 1 (P-regular splitting theorem). If R is symmetric positive definite
and R = P −Q is a P -regular splitting—i.e., P is nonsingular and P + Q is positive
definite—then ρ(P−1Q) < 1 (where ρ(T) denotes the spectral radius of T).

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 861

Proof. See [25, pp. 254–255].
Proposition 4. The inverse of S = D − CT B−1C can be computed as

S−1 =

(∞∑

i=0

(P−1Q)i

)
P−1,(26)

where

P = D, Q = CT B−1C.(27)

Proof. Premultiplying S by S−1 as defined in (26) we get

S−1S =

((∞∑

i=0

(P−1Q)i

)
P−1

)
(P −Q)

=
∞∑

i=0

(P−1Q)i −
∞∑

i=1

(P−1Q)i.(28)

Since P = D is a diagonal positive definite matrix, it is nonsingular. P + Q =
D + CT B−1C is positive definite as well because both D and B are positive definite.
Thus, P−Q is a regular splitting of S. Moreover, S is symmetric and positive definite,
as stated by Proposition 3. By Theorem 1, we have that ρ(P−1Q) < 1, and then the
geometric power series of (28) converge, obtaining the desired result:

S−1S = (P−1Q)0 +
∞∑

i=1

(P−1Q)i −
∞∑

i=1

(P−1Q)i = 1l.

The preconditioner is then obtained by truncating the infinite geometric power
series (26) at some term φ ≥ 0, which will be referred to as the order of the precon-
ditioner:

M−1 = (1l + (P−1Q) + (P−1Q)2 + · · ·+ (P−1Q)φ)P−1,(29)

where P and Q are defined in (27). Note that M is an adequate preconditioner for
the PCG, since it is symmetric and positive definite. (This can be easily proved by
showing that, from the symmetry and positive definiteness of both P and Q, M−1 is
symmetric and positive definite as well.) The main drawback of the preconditioner is
that matrices P and Q both become ill-conditioned as the iterates approach a solution,
which can lead to values ρ(P−1Q) very close to 1; consequently, (29) would be a poor
approximation of S−1. Despite this, the preconditioner has shown to be an efficient
solution strategy, being able to significantly reduce the number of iterations required
by nonpreconditioned conjugate gradient (CG) methods. For instance, Figure 2 shows
the evolution of ρ(P−1Q) for M1 and PDS1, the smallest problems in Tables 3 and 4
in section 6. Both problems required 30 interior-point iterations. It can be seen that,
though it tends to decrease for the central iterations, ρ(P−1Q) is close to 1 throughout
the execution of the algorithm (especially for problem PDS1). As shown below (next
two paragraphs, and Figures 4 and 5), even in these situations the goodness of the
preconditioner increases with φ, and we obtain a better performance than with a
nonpreconditioned CG method.

Clearly, the higher φ is, the better the preconditioning and the fewer iterations
of the PCG will be required. However, at each iteration of the PCG, we have to solve

862 JORDI CASTRO

M
PDS1

1

ρ (
P

 Q

)
-1

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30
Iteration number

Fig. 2. Evolution of ρ(P−1Q) for the M1 and PDS1 problems.

Procedure MZ=r (P,Q, r, z, φ)

v := P−1r

z0 := v

for j=1 to φ do

zj := P−1Qzj−1 + v

end do
z := zφ

Fig. 3. Procedure for computing z = M−1r.

the system Mz = r, with r being any vector. This system can be easily computed
through the procedure presented in Figure 3, which involves solving φ systems with
matrix B, and thus a total of kφ systems with matrices AT

NΘ(i)AN , i = 1, . . . , k.
Then φ must be chosen to balance two objectives: to reduce both the number of
PCG iterations and the number of systems to be solved. In practice, performances
are best for φ = 0 and, in some cases, for φ = 1. For instance, Figure 4 shows the
evolution of the CPU time and overall number of PCG iterations required to solve
problem M1 in Table 3 of section 6 for different φ values. Clearly, there are fewer
PCG iterations when φ increases, but the performance tends to be poorer. This is the
usual behavior observed in most problems tested. The algorithm uses φ = 0 as the
default value, though this parameter can be modified by the user. All the numerical
results in section 6 were obtained with this default value. Note that when φ = 0 the
preconditioner is nothing but M = P = D, the diagonal matrix defined in (20). In
this case the computation of Mz = r is reduced to n products.

Despite its simplicity, the diagonal preconditioner obtained for φ = 0 has proven
to be very efficient compared to a nonpreconditioned CG method. For instance,
Figure 5 shows the number of overall CG iterations required to solve the first 10 PDS
problems in Table 4 in section 6, by both the PCG with φ = 0 and a standard CG
method. The number of interior-point iterations was almost the same in both types of
executions. However, it is clear from the figure than the CG required many more CG
iterations to achieve the same accuracy in the solution of (22). For the 10 problems,
the code with the PCG was, on average, 3.7 times faster than that with the CG and
performed 7.5 times fewer CG iterations.

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 863

15

20

25

0 1 3

Number of PCG iterations
CPU seconds

2

800

1200

1000

CPU seconds

φ

PCG iterations

Fig. 4. CPU time and overall number of PCG iterations for different φ values.

PCG

CG

0

2000

4000

6000

8000

10000

12000

PDS3 PDS6

C
G

 it
er

at
io

ns

PDS2 PDS4 PDS5 PDS7 PDS8 PDS9 PDS10PDS1

Fig. 5. Overall number of CG iterations for the PCG with φ = 0 and a CG method.

Three remarks must be made about this solution strategy.
(i) Though designed for multicommodity instances, it can be applied to other

block-structured problems where a similar decomposition to that of (21) is possible.
We mention three of them. First, a direct extension of the MCNF problem consisting
of replacing the mutual capacity constraints by the more general ones

k∑

i=1

W (i)x(i) ≤ bmc,

where W (i) is a diagonal matrix of positive weights. Second, the nonoriented mul-
ticommodity problem—arcs have no orientation—which commonly appears, for in-
stance, in telecommunication networks [8]. And finally, multicommodity problems
with convex separable quadratic objective functions (e.g.,

∑k
i=1

∑
a∈A c

(i)
a (x(i)

a)2, c
(i)
a ≥

0), which only imply a slight modification of the Θ diagonal matrix. Note that
simplex-based specializations for multicommodity flows cannot deal with this last
class of problems.

(ii) At each iteration of the PCG, φ+1 systems of equations with matrix B must
be solved for computing Mz = r and q = Sp(z), p(z) being a vector that depends on z.
Since the k blocks of B have already been factorized, only the forward and backward
substitutions must be performed. The solutions to these k systems, however, can

864 JORDI CASTRO

0.1

1

10

0 100 200 300 400 500 600

Number of variables (*1000)

CPU time ratio
CG iterations ratio
IP iterations ratio

Fig. 6. Predictor-corrector vs. pure path-following, for the PDS problems.

CPU time ratio
CG iterations ratio
IP iterations ratio

0.1

1

10

0 50 100 150 200 250 300
Number of variables (*1000)

Fig. 7. Predictor-corrector vs. pure path-following, for the Mnetgen problems.

be efficiently parallelized since each of them requires the same computational effort
(load balancing). We can expect that a coarse-grain parallel implementation of the
algorithm would significantly reduce the solution time (at most by a factor of k).

(iii) The solution to (22) using a PCG algorithm forces us to use a pure primal-
dual path-following algorithm instead of other more successful approaches, such as
Mehrotra’s predictor-corrector method. The predictor-corrector method requires two
solutions to (21) with different right-hand sides. In our specialization, the benefit ob-
tained by computing this better direction is not worthwhile, since it means applying
the PCG method twice. Figures 6 and 7 compare a version of the algorithm using
Mehrotra’s predictor-corrector with a pure path-following algorithm for the PDS and
Mnetgen problems in Tables 3 and 4 in section 6. The predictor-corrector strategy was
implemented as described in [22] and [32]. The direction computed by the predictor
step was used as the starting point for the PCG of the corrector step in an attempt
to reduce the number of CG iterations. Figures 6 and 7 show the ratio of the number
of interior-point iterations, CG iterations, and execution time between the predictor-

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 865

corrector and pure path-following algorithms. The dashed horizontal line separates
the executions according to whether the ratio was favorable to the predictor-corrector
(region below the line) or the pure path-following algorithm (region above the line).
Clearly, the predictor-corrector heuristic reduced the number of iterations (on av-
erage, it performed 1.45 and 1.55 times fewer iterations for the PDS and Mnetgen
problems, respectively). However, the overall number of CG iterations significantly
increased (with average ratios of 3.5 and 2.6 for each class of problems). The execution
time ratio, highly correlated with the CG iteration ratio, was favorable to the pure
path-following algorithm for most of the problems. Of the larger instances executed,
the predictor-corrector strategy was only better for PDS90. The larger Mnetgen in-
stances were not executed with the predictor-corrector method due to their large
execution times (e.g., problem M18 was stopped after 21 hours of execution, whereas
the pure path-following algorithm required only 2.55 hours). On average, the pure
path-following algorithm was 2.3 times faster than the predictor-corrector strategy
for the PDS problems and 2.2 times faster for the Mnetgen ones.

5. Implementation details. We have developed an implementation of the al-
gorithm presented in section 4 that will be referred to as IPM. This code is mainly
written in C, with only the Cholesky factorization routines coded in Fortran. It can be
freely obtained for academic purposes from http://www-eio.upc.es/˜jcastro, at soft-
ware entry. Below, we discuss some of the implementation aspects of IPM that have
proved to be instrumental in the performance of the algorithm.

5.1. Cholesky factorizations. The factorizations of matrices AT
NΘ(i)AN , i =

1, . . . , k, and, mainly, their backward and forward substitutions at each iteration of the
PCG solver are the most computationally expensive steps of the algorithm. Note that
the symbolic factorization must be performed only once, since matrices AT

NΘ(i)AN

have the same nonzero pattern for all the commodities. IPM uses the sparse Cholesky
package by E. Ng and B. Peyton [24]. For large networks these routines provided
significantly better solution times than alternative ones like the Sparspak package
[14]—although both share the same minimum-degree-ordering heuristic for computing
the permutation of the nodes of the network. Note that, unlike general interior-
point methods, the main computational burden is not the Cholesky factorizations
but the repeated forward and backward substitutions. Indeed, in practice, and due
to the (large) number of PCG iterations, these substitutions represent about 60% of
the execution time, whereas the factorizations amount to no more than 20%. (For
instance, in problems M5, M11, PDS10, and PDS30 of Tables 3 and 4 of section 6,
these figures were 45.3/0.4, 47.4/4.5, 48.8/2.8, and 65.7/18.7, respectively.) Since
the Ng–Peyton package concentrates its effort on the factorization stage, it may be
possible to improve the performance of the algorithm by either using or developing a
Cholesky solver focused on the solution phase.

5.2. Accuracy of the PCG method. The tolerance of the stopping criteria of
the PCG is the most influential parameter in the overall performance of the algorithm.
It determines the accuracy required to solve system (22) and, hence, the number of
PCG iterations performed. We followed a similar approach to that used by Resende
and Veiga in [29] for single-commodity network problems. At iteration i of the interior-
point method, we consider that the jth PCG iterate dyj

2 solves (22) if

1− cos(Sdyj
2, b̄2 − CT B−1b̄1) < εi,(30)

εi being the PCG tolerance parameter. This tolerance is dynamically updated as

εi = 0.95εi−1,(31)

866 JORDI CASTRO

0.5

1

1.5

2

2.5

1.0e-2 1.0e-3 1.0e-4 1.0e-5 1.0e-6
ε0

Number of iterations
CPU time

Number of PCG iterations

re
la

tiv
e

va
lu

es
 to

 b
as

e
ca

se
 1

.0
e-

2

Fig. 8. CPU time, PCG iterations, and primal-dual iterations for different ε0 (problem M4).

ε0

0.5

1

1.5

2

2.5

1.0e-2 1.0e-3 1.0e-4 1.0e-5 1.0e-6

re
la

tiv
e

va
lu

es
 to

 c
as

e
1.

0e
-2

Number of iterations
CPU time

Number of PCG iterations

Fig. 9. CPU time, PCG iterations, and primal-dual iterations for different ε0 (problem PDS5).

which guarantees better dy2 directions as we get closer to the solution. By default
IPM uses an initial tolerance of ε0 = 10−2. Smaller ε0 values provide better movement
directions, which reduce the sequence of primal-dual points but considerably increase
the number of PCG iterations. On the other hand, if large ε0 are used, the primal-dual
algorithm can fail to converge. The default value of 10−2 was good enough to solve
most of the problems tested (only a few required ε0 = 10−3) and provided the best
execution times. For instance, Figures 8 and 9 show the CPU time and the number of
PCG and primal-dual iterations required to solve problems M4 and PDS5 of Tables 3
and 4 of section 6, respectively, for different ε0 values (all data are relative to the base
case ε0 = 10−2). Though both problems are very different (M4 has a much smaller
network but three times more commodities), the behavior of IPM was almost the
same: for small ε0 values the CPU time and PCG iterations increased significantly
whereas the primal-dual iterations hardly decreased.

In our computational experience, we have seen that the ε0 value slightly affects
the precision of the optimizer provided. In general, IPM stops with a point where the
dual infeasibilities, computed as

‖AT y + z − w − c‖2
1 + ‖c‖2 ,

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 867

are about 10−6, regardless of whether ε0 was chosen. In most tests performed, the
primal infeasibilities

‖Ax− b‖2
1 + ‖b‖2

were about 10−5 for ε0 = 10−2 and 10−6 for ε0 = 10−6. The gain of this digit in
the primal accuracy was at the expense of approximately doubling the solution time.
IPM stops when the relative duality gap of the current iterate

|cT x− (bT y − xT w)|
1 + |cT x|(32)

is less than an optimality tolerance, by default set to 10−6. Unlike general interior-
point solvers, and due to the use of a PCG, it is difficult to obtain more accurate
solutions. One possible way of overcoming this drawback would be to develop a
procedure for detecting the optimal face once we are close to the optimizer. Such
a strategy already exists for network linear programs [30], but, to the best of our
knowledge, there is not an equivalent result for multicommodity flows. In connection
to this, the inclusion of a crossover procedure is also part of further work to be done
on IPM.

5.3. Removing inactive mutual capacity constraints. The dimension of
the Schur complement S is the number of mutual capacity constraints n. Should
we have a procedure for detecting the inactive constraints, these could be removed,
thus reducing the computational effort required by (22). IPM implements two kinds
of strategy for the detection of inactive constraints. The first one is applied at the
beginning, as a preprocessing stage. The second follows the suggestions in [16] and
consists of detecting the inactive mutual capacity constraints during the execution of
the algorithm, using the complementarity condition yjsmcj = 0, where yj and smcj

denote the dual variable and primal slack of the jth mutual capacity constraint. At
iteration i of the primal-dual algorithm, we will remove the mutual capacity constraint
of arc aj if

yi
j ≈ 0 and si

mcj
À 0.

IPM implements these conditions as |yi
j | < 0.01 and si

mcj
> 0.1bmcj . This removal

is only active when the relative duality gap (32) is less than 1.0 (primal and dual
functions agree in one figure), in an attempt to guarantee that the current iterate
is sufficiently close to the optimizer. Note that, unlike general interior-point solvers,
removing mutual capacity constraints does not imply any additional symbolic refac-
torization.

5.4. Starting point. Following the suggestions in [5], an initial estimate of the
primal variables is computed by solving

min cT x +
ρ

2
(xT x + (x− x)T (x− x))

subject to Ax = b,

868 JORDI CASTRO

with |ρ| = 100, yielding

λ = (AAT)−1

(
b

2ρ
+ A

(
c− x

ρ

))
,

x =
1
2

(
x +

AT λ− c

ρ

)
.

Thereafter, the components xi out of bounds are replaced by min{xi/2, 100}.
Dual estimators are obtained from the dual feasibility and complementarity slack-

ness conditions

(AT y)i + zi − wi = ci,

xizi = µ0,(33)

(xi − xi)wi = µ0,

where µ0 is set to a large value (e.g., 100). Dual variables are initialized as y = 0.
Dual slacks are computed from (33), yielding

zi =
µ0

xi
+

ci

2
+

√
µ2

0

x2
i

+
c2
i

4
,

wi =
µ0zi

xizi − µ0
.

Note that for µ0 > 0 the above equations provide strictly positive values for w and z.

6. Computational results. To test the performance of the algorithm, IPM has
been compared with the NetOpt routine of CPLEX 4.0 [10] (which uses the solution
to k minimum-cost network problems, one for each commodity, as a warm start of
a dual simplex solver), and with PPRN [6], a primal partitioning code for linear
and nonlinear multicommodity flows. For all the three codes, we used the default
tolerances. All runs were carried out on a Sun/Ultra2 2200 workstation with 200
MHz clock, 256 Mbytes of main memory, ≈68 Mflops Linpack, 14.7 Specfp95, and 7.8
Specint95.

For the comparison, we considered three kinds of problem. The first one was ob-
tained from the meta-generator Dimacs2pprn (see [6]). This meta-generator requires a
previous minimum-cost network flow problem that is converted to a multicommodity
one. It can be obtained from ftp://ftp-eio.upc.es/pub/onl/codes/pprn/tests (an en-
hanced version is described in [13]). We used four minimum-cost network generators
from the DIMACS suite [11]: Rmfgen (D. Goldfarb and M. Grigoriadis), Grid-on-
Torus (A. V. Goldberg), Gridgraph (M. G. C. Resende), and Gridgen (Y. Lee and
J. Orlin). They are freely distributed and can be obtained via anonymous ftp from
dimacs.rutgers.edu at directory /pub/netflow. We generated two kinds of problem for
each generator: with few commodities (small problems) and with many commodities
(large problems). The small problems are represented by Si

k, where i = 1, . . . , 4 de-
notes the DIMACS generator used (1 = Rmfgen, 2 = Grid-on-Torus, 3 = Gridgraph,
4 = Gridgen) and k ∈ {1, 4, 8, 16, 50, 100, 150, 200} is the number of commodities con-
sidered. The large problems are called Li

k, where i and k have the same meaning as

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 869

Table 1
Dimensions and results obtained for the small Dimacs2pprn problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗IPM
1+f∗

S1
1 2472 9048 1 9048 2472 37. 1. 1. 375675.2 −4.5e−6

S1
4 2472 9048 4 45240 18936 273. 8. 9. 2027285.0 −5.2e−6

S1
8 2472 9048 8 81432 28824 1058. 28. 149. 4506263.3 −5.4e−6

S1
16 2472 9048 16 153816 48600 1377. 73. 1166. 9870432.8 −7.8e−6

S1
50 128 496 50 25296 6896 17. 21. 39. 11839382.2 3.9e−5

S1
100 128 496 100 50096 13296 76. 258. 465. 27150952.6 2.9e−5

S1
150 128 496 150 74896 19696 137. 681. 1245. 39835825.1 8.3e−6

S1
200 128 496 200 99696 26096 174. 1204. 2368. 54343948.3 −5.6e−6

S2
1 1500 9000 1 9000 1500 28. 1. 1. 36896.8 –1.5e–6

S2
4 1500 9000 4 45000 15000 623. 22. 85. 187962.0 –5.2e–6

S2
8 1500 9000 8 81000 21000 2499. 647. 814. 1197048.8 4.9e–6

s216 1500 9000 16 153000 33000 7550. 12872. 6721. 5876840.3 1.8e–5

S2
50 100 600 50 30600 5600 28. 14. 21. 5207622.7 2.2e–6

S2
100 100 600 100 60600 10600 78. 110. 222. 12922703.9 1.4e–5

S2
150 100 600 150 90600 15600 263. 652. 1137. 22663204.t –5.9e–6

S2
200 100 600 200 120600 20600 565. 2393. 3495. 36829147.5 1.3e–5

S3
1 2502 5000 1 5000 2502 2. 1. 1. 94212753.2 –2.5e–6

S3
4 2502 5000 4 25000 15008 184. 55. 118. 355884986.5 –3.8e–6

S3
8 2502 5000 8 45000 25016 247. 85. 215. 128743093.7 9.2e–5

S3
16 2502 5000 16 8500 45032 956. 1171. 2666. 253615755.9 8.3e–5

S3
50 227 450 50 22950 11800 60. 21. 56. 27853327.9 6.0e–5

S3
100 227 450 100 45450 23150 173. 290. 670. 65144564.1 6.8e–5

S3
150 227 450 150 67950 34500 104. 144. 745. 27066715.3 4.5e–6

S3
200 227 450 200 90450 45850 247. 550. 1922. 37964963.8 1.6e–5

S4
1 976 7808 1 7808 976 25. 1. 1. 5541980.3 –5.5e–7

S4
4 976 7808 4 39040 11712 747. (a) 41. 23223474.9 –2.6e–6

S4
8 976 7808 8 70272 15616 4079. (a) 497. 61792270.7 –4.9e–9

S4
16 976 7808 16 132736 23424 5509. (a) 6466. 165808232.3 9.1e–5

S4
50 101 606 50 30906 5656 14. 5. 4. 1409470.3 2.2e–5

S4
100 101 606 100 61206 10706 39. 16. 25. 2940217.3 –1.6e–6

S4
150 101 606 150 91506 15756 68. 38. 58. 4614971.4 3.2e–6

S4
200 101 606 200 121806 20806 121. 126. 189. 6440385.6 2.6e–6

(a) Problem reported as infeasible by the solver.

before. (In this case, however, the number of commodities is always greater than 200.)
Tables 1 and 2 show the dimensions of these problems. Column Pr. is the name of
the problem. Columns m, n, and k show the number of nodes, arcs, and commodities,
respectively. Columns ñ and m̃ give the number of variables and constraints of the
linear problem (where ñ = (k + 1)n and m̃ = km + n). Columns IPM, CPLEX, and
PPRN correspond to the CPU time, in seconds, required by each code to solve the
problem. Finally, column f∗ gives the optimal objective function value provided by
both CPLEX and PPRN, whereas column f∗−f∗IPM

1+f∗ shows the relative error of the
solution provided by IPM.

870 JORDI CASTRO

Table 2
Dimensions and results obtained for the large Dimacs2pprn problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗IPM
1+f∗

L1
200 128 496 200 99400 26096 50. 49. 254. 43496063.1 –2.5e–6

L1
400 128 496 400 198800 51696 140. 319. 2092. 89227358.5 –5.3e–7

L1
600 128 496 600 298200 77296 242. 1328. 6590. 135813634.7 –1.3e–6

L1
800 128 496 800 397600 102896 278. 3001. 13428. 184848693.7 –1.3e–6

L1
1000 128 496 1000 497000 128496 363. 6006. 25813. 235407084.7 –1.2e–6

L1
1200 128 496 1200 596400 154096 546. 11887. 43946. 287243145.4 2.7e–5

L1
1400 128 496 1400 695800 179696 756. 20080. 78800. 339708251.9 7.7e–6

L2
200 80 500 200 100200 16500 71. 92. 278. 1372096.3 3.1e–6

L2
400 80 500 400 200400 32500 522. 2358. 4647. 7004937.6 4.6e–6

L2
500 80 500 500 250500 40500 905. 5395. 10259. 11941741.3 8.1e–6

L2
600 80 500 600 300600 48500 885. 10778. 20478. 17857546.4 1.6e–5

L3
200 242 472 200 94600 48872 59. 71. 387. 8153455.3 9.5e–6

L3
400 242 472 400 189200 97272 202. 685. 3367. 16715597.6 6.2e–6

L3
500 242 472 500 236500 121472 319. 1968. 8025. 21219420.2 1.9e–6

L3
600 242 472 600 283800 145672 384. 3256. 14614. 25646734.6 1.5e–5

L4
200 151 1208 200 241800 31408 310. 104. 231. 1690360.3 –9.7e–7

L4
300 151 1208 300 362700 46508 537. 365. 893. 2614303.6 –4.3e–6

L4
400 151 1208 400 483600 61608 805. 673. 2195. 3389601.0 7.4e–7

The second kind of problems were obtained with A. Frangioni’s [13] C version
of Ali and Kennington’s Mnetgen generator [4]. It can be freely obtained from
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html. We generated 24
problems with different dimensions. They can all be considered difficult problems,
since they have a “dense” network (the ratio “number of arcs/number of nodes” is
8), 80% of the arcs have a mutual capacity, 30% of the arcs have a high cost, and
90% of the arcs have individual capacities for each commodity. The parameters used
for generating the instances can be found in [13]. The problems obtained with this
generator will be denoted as Mi, i = 1, . . . , 24. Table 3 shows the dimensions of these
tests, where the columns have the same meaning as in Tables 1 and 2.

The last type of problems corresponds to the PDS instances [7]. These problems
arise from a model for evacuating patients from a place of military conflict. Each
instance depends on a parameter t that denotes the planning horizon under study (in
number of days). The size of the network increases with t, whereas the number of
commodities is always 11. Problems obtained with this generator are denoted as PDSt,
where t is the number of days considered. Their dimensions are shown in Table 4. The
meaning of the columns is the same as in previous tables. The largest problems were
not solved with CPLEX due to the amount of time required. The PDS problems can
be retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

Tables 1–4 show that IPM and PPRN solved all the problems, whereas CPLEX
exited with an infeasibility message in three of the small Dimacs2pprn tests and was
not run for the largest PDS. IPM solved most of the problems using the default initial
PCG tolerance of ε0 = 10−2. Only in three cases (problems S3

16, L2
200, and L2

500)
did this value have to be reduced to 10−3 to guarantee the convergence. In general

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 871

Table 3
Dimensions and results obtained for the Mnetgen problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗IPM
1+f∗

M1 64 524 4 2100 780 1. 0. 0. 192400.1 –6.3e–7

M2 64 532 8 4264 1044 2. 1. 1. 394051.1 4.1e–6

M3 64 497 16 7968 1521 5. 2. 4. 1071474.9 1.0 e–5

M4 64 509 32 16320 2557 12. 13. 19. 2146944.1 1.0e–5

M5 64 511 64 32768 4607 91. 141. 136. 4623138.5 8.1e–6

M6 128 997 4 3992 1509 2. 0. 1. 919643.2 1.5e–6

M7 128 1089 8 8720 2113 8. 1. 4. 1924133.9 –6.7e–7

M8 128 1114 16 17840 3162 25. 13. 34. 4145079.4 6.0e–6

M9 128 1141 32 36544 5237 155. 214. 478. 9785961.1 6.3e–6

M10 128 1171 64 76115 9363 485. 1647. 3419. 19269824.2 –3.9e–6

M11 128 1204 128 154240 17588 549. 7880. 9334. 40143200.8 9.2e–6

M12 256 2023 4 8096 3047 12. 1. 7. 5026132.3 1.4e–5

M13 256 2165 8 17328 4213 40. 13. 69. 9919483.2 –2.1e–6

M14 256 2308 16 36944 6404 146. 158. 769. 20692883.7 6.9e–6

M15 256 2314 32 74080 10506 465. 1664. 7610. 45671076.1 –1.4e–6

M16 256 2320 64 148544 18704 1040. 9235. 27722. 92249381.1 –1.2e–6

M17 256 2358 128 301952 35126 3742. 45990. 84066. 190137259.9 –7.8e–6

M18 256 2204 256 564480 67740 9187. 181701. 169810. 397882591.3 –1.4e–6

M19 512 4077 4 16312 6125 99. 7. 85. 21324851.2 -7.3e–6

M20 512 4373 8 34992 8469 190. 101. 654. 46339269.9 1.6e–5

M21 512 4620 16 73936 12812 1582. 1457. 7279. 96992237.2 –4.5e–6

M22 512 4646 32 148704 21030 2644. 8302. 73439. 192941834.8 -7.0e–7

M23 512 4768 64 305216 37536 7411. 55028. 178188. 412943158.7 8.9e–8

M24 512 4786 128 612736 70322 21263. 289541. 947790. 828013599.8 –1.3e–6

IPM required no more than 100 iterations to achieve a point with a dual relative gap
less than 10−6—the default optimality tolerance. We can also see that the solution
provided by IPM can be considered good enough: the relative error in the objective
function (last column of Tables 1–4) fluctuates between 10−5 and 10−7 (the worst case
corresponds to problem PDS40, with a relative error of 1.5 · 10−4). These results are
more accurate (two more exact figures in the objective function) than those provided
in [17] and [31] for the largest PDS instances. For instance, Table 5 summarizes the
results presented by Grigoriadis and Khachiyan in [17] and by Schultz and Meyer
in [31] for the largest PDS problems they solved using their ε-approximation and
barrier decomposition methods, respectively. Columns f∗εA and f∗BD give the optimal
objective function provided by each method, whereas columns f∗−f∗εA

1+f∗ and f∗−f∗BD
1+f∗

show the relative errors of the solutions obtained. Looking at Tables 4 and 5, we see
that IPM provided two and three more significant figures in all the problems. Indeed,
as stated by the authors in [17], ε-approximation methods are practical for computing
fast approximations to large instances, whereas the solutions provided by IPM can be
considered almost optimal.

Figures 10, 11, 12, and 13 show the ratio of the CPU time of CPLEX and PPRN
to IPM (i.e., “CPLEX CPU time/IPM CPU time” and “PPRN CPU time/IPM CPU
time”) for the problems in Tables 1–4. The executions are ordered by the number

872 JORDI CASTRO

Table 4
Dimensions and results obtained for the PDSt problems.

CPU time (seconds)

t(a) m n ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗IPM
1+f∗

1 126 372 4464 1758 1. 0. 0. 29083930523. 2.8e–6

2 252 746 8952 3518 4. 1. 2. 28857862010. –5.9e–6

3 390 1218 14616 5508 8. 2. 5. 28597374145. –4.9e–6

4 541 1790 21480 7741 16. 4. 10. 28341928581. –1.5e–6

5 686 2325 27900 9871 29. 8. 19. 28054052607. –6.6e–6

6 835 2827 33924 12012 47. 13. 35. 27761037600. 1.3e–5

7 971 3241 38892 13922 46. 20. 52. 27510377013. 2.1e–5

8 1104 3629 43548 15773 45. 31. 75. 27239627210. 2.1e–5

9 1253 4205 50460 17988 94. 51. 84. 26974586241. 1.5e–5

10 1399 4792 57504 20181 88. 56. 136. 26727094976. 8.4e–6

11 1541 5342 64101 22293 144. 98. 178. 26418289612. 1.3e–5

12 1692 5965 71580 24577 113. 143. 188. 26103493922. 7.4e–5

13 1837 6571 78852 26778 137. 160. 328. 25825886804. 4.6e–5

14 1981 7151 85812 28942 180. 270. 342. 25529159469. 3.4e–5

15 2125 7756 93072 31131 236. 425. 564. 25177923601. 3.3e–5

18 2558 9589 115068 37727 396. 864. 1227. 24332411902. 6.4e–6

20 2857 10858 130296 42285 386. 1830. 2138. 23821658640. 7.0e–5

21 2996 11401 136812 44357 529. 1912. 2322. 23576150674. 2.6e–5

24 3419 13065 156780 50674 963. 4393. 3411. 22856729593. 5.1e–7

27 3823 14611 175332 56664 1010. 7178. 4810. 22133391961. 1.9e–5

30 4223 16148 193776 62601 1325. 24905. 6827. 21385445736. –1.7e–6

33 4643 17840 214080 68913 1750. 35397. 9154. 20589962883. 1.4e–5

36 5081 19673 236076 75564 1346. 44144. 12704. 19857712721. 4.4e–5

40 5652 22059 264708 84231 1494. 95064. 16779. 18855198824. 1.5e–4

50 7031 27668 332016 105009 4166. 85840. 46664. 16603525724. 3.5e–5

60 8423 33388 400656 126041 6761. 387577. 75880. 14265904407. 2.4e–6

70 9750 38396 460752 145646 12210. 540606. 112310. 12241162812. 2.0e–5

80 10989 42472 509664 163351 13005. — 125770. 11469077462. 3.0e–5

90 12186 46161 553932 180207 21781. — 178248. 11087561635. 1.8e–5

100 13366 49742 596904 196768 17222. — 214961. 10928229968. 8.8e–5

(a) k = 11 for all t.

of variables of the problem. The dashed line of the figures separates the executions
according to whether IPM was outperformed or not. For the small Dimacs2pprn
problems (Figure 10) both CPLEX and PPRN provided better times than IPM, par-
ticularly in the smaller instances. In some cases they were 50 and 33 times faster
than IPM, respectively. However, for the large Dimacs2pprn cases (Figure 11), IPM
provided the best executions and was up to 26 and 100 times more efficient than
CPLEX and PPRN. However, the Dimacs2pprn problems are not very complicated,
in spite of the large number of variables. This explains the moderate CPU times
required by the three codes in their solution. On the other hand, the Mnetgen and
PDS instances (Figures 12 and 13) can be considered to be difficult. It is in these
situations that IPM clearly outperforms both CPLEX and PPRN. For the Mnetgen
problems it was, on average, 4 times faster than CPLEX (20 in the best case) and

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 873

Table 5
Results reported in [17] and [31] for some of the largest PDSt problems.

ε-approximation barrier decomposition

t f∗εA
f∗−f∗εA
1+f∗ f∗BD

f∗−f∗BD
1+f∗

50 1.66257·1010 -1.3e–3 1.6625·1010 -1.3e–3
60 1.42914·1010 -1.8e–3 1.4462·1010 -1.4e–2
70 1.22640·1010 -1.9e–3 1.2311·1010 -5.7e–3
80 1.15047·1010 -3.1e–3 — —

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

R
at

io
 ti

m
e

(l
og

 s
ca

le
)

Number of variables (*1000)

PPRN vs IPM
CPLEX vs IPM

Fig. 10. Ratio time of CPLEX and PPRN to IPM for the small Dimacs2pprn problems.

0.1

1

10

100

1000

0 100 200 300 400 500 600 700
Number of variables (*1000)

PPRN vs IPM

R
at

io
 ti

m
e

(l
og

 s
ca

le
)

CPLEX vs IPM

Fig. 11. Ratio time of CPLEX and PPRN to IPM for the large Dimacs2pprn problems.

10 times faster than PPRN (45 in the best run). These average figures were 11 for
CPLEX and 4 for PPRN when solving the PDS problems (the maximum ratios were
of 67 and 12, respectively). It should be pointed out that IPM performed best for the
large problems, as indicated by the positive slope of the points in Figures 12 and 13
(note that a log scale is used for the vertical axis). This is especially true for the big

874 JORDI CASTRO

0.1

1

10

100

1 10 100 1000

R
at

io
 ti

m
e

(l
og

 s
ca

le
)

Number of variables (*1000, logscale)

PPRN vs IPM
CPLEX vs IPM

Fig. 12. Ratio time of CPLEX and PPRN to IPM for the Mnetgen problems.

0.1

1

10

100

0 100 200 300 400 500 600

R
at

io
 ti

m
e

(l
og

 s
ca

le
)

Number of variables (*1000)

CPLEX vs IPM
PPRN vs IPM

Fig. 13. Ratio time of CPLEX and PPRN to IPM for the PDS problems.

Mnetgen problems, where IPM was consistently faster than both CPLEX and PPRN.
For the large PDS tests (e.g., t > 30) PPRN behaved very well and was only about
11 times slower than IPM, whereas CPLEX provided poorer performances.

Finally, we compared IPM with the CPLEX barrier solver, a state-of-the-art
implementation of a general interior-point algorithm. For the comparison, we solved
the small Dimacs2pprn problems Si

k of Table 1. The remaining problems were not
executed due to the excessive CPU time the CPLEX barrier solver would take. Table 6
shows the results. The last column gives the ratio time between the CPLEX barrier
solver and IPM. The runs not reported correspond to cases where either the system
memory was insufficient or the program was stopped because of an excessive execution
time. Figure 14 shows the ratio times for the number of variables of the problem. It
can be seen that only in some of the smaller problems did the general interior-point
code slightly outperform the specialized one. As the size of the problem increases,
IPM performs better and is up to 800 times faster in the best case (i.e., S4

100).

7. Conclusions. From the computational experiments reported, it can be stated
that the specialized interior-point algorithm is an efficient and promising tool for the

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 875

Table 6
Performance comparison of IPM and CPLEX (barrier solver).

CPU time (seconds) Ratio
Prob. IPM CPLEX time

S1
1 36.6 35.6 0.97

S1
4 273.3 2865.7 10.49

S1
8 1057.8 29445.6 27.84

S1
16 1377.1 — —

S1
50 17.2 995.5 57.91

S1
100 76.3 3147.7 41.27

S1
150 136.8 6684.8 48.86

S1
200 173.9 13777.1 79.22

S2
1 28.1 28.7 1.02

S2
4 622.6 2467.0 3.96

S2
8 2498.7 23289.5 9.32

S2
16 7550.3 — —

S2
50 27.6 1195.0 43.22

S2
100 77.8 4263.7 54.78

S2
150 262.6 7584.8 28.89

S2
200 565.2 6095.8 10.79

CPU time (seconds) Ratio
Prob. IPM CPLEX time

S3
1 2.0 2.6 1.28

S3
4 183.6 64.7 0.35

S3
8 246.7 548.6 2.22

S3
16 956.1 16290.0 17.04

S3
50 59.8 213.0 3.56

S3
100 172.7 462.9 2.68

S3
150 103.6 623.0 6.01

S3
200 246.9 1254.3 5.08

S4
1 24.8 23.3 0.94

S4
4 747.3 1697.4 2.27

S4
8 4078.8 17400.7 4.27

S4
16 5508.8 — —

S4
50 14.1 5409.8 383.67

S4
100 39.0 32760.9 839.81

S4
150 68.3 — —

S4
200 120.7 — —

0.1

1

10

100

1000

0 20 40 60 80 100 120 140

R
at

io
 ti

m
e

(l
og

 s
ca

le
)

Number of variables (*1000)

CPLEX (barrier) vs IPM

Fig. 14. Ratio time of CPLEX (barrier solver) to IPM for the small Dimacs2pprn problems.

solution of large and difficult multicommodity problems. However, the algorithm can
still be improved with additional refinements. These include optimal face detection
and crossover procedures, improvement in the accuracy of the solution provided by the
PCG, and a more appropriate Cholesky factorization solver to reduce the time spent
by the forward and backward substitutions. A coarse-grain parallel implementation
of the algorithm should also be developed in the future.

Acknowledgments. The author is indebted to N. Nabona, A. Frangioni, and
one of the referees for helpful comments and suggestions. The author also thanks
Cs. Mészaros for providing a version of BPMPD that reports sparsity pattern infor-
mation, E. Ng for delivering the Ng–Peyton sparse Cholesky package, and, again,
A. Frangioni for the PDS and Mnetgen test instances.

876 JORDI CASTRO

REFERENCES

[1] I. Adler, M.G.C. Resende, and G. Veiga, An implementation of Karmarkar’s algorithm for
linear programming, Math. Programming, 44 (1989), pp. 297–335.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[3] A. Ali, R.V. Helgason, J.L. Kennington, and H. Lall, Computational comparison among
three multicommodity network flow algorithms, Oper. Res., 28 (1980), pp. 995–1000.

[4] A. Ali and J.L. Kennington, Mnetgen Program Documentation, Technical Report 77003,
Department of Industrial Engineering and Operations Research, Southern Methodist Uni-
versity, Dallas, TX, 1977.

[5] E.D. Andersen, J. Gondzio, C. Mészáros, and X. Xu, Implementation of interior point
methods for large scale linear programming, in Interior Point Methods in Mathematical
Programming, T. Terlaky, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands,
1996, pp. 189–252.

[6] J. Castro and N. Nabona, An implementation of linear and nonlinear multicommodity net-
work flows, European J. Oper. Res., 92 (1996), pp. 37–53.

[7] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann, An empirical
evaluation of the KORBX algorithms for military airlift applications, Oper. Res., 38 (1990),
pp. 240–248.

[8] P. Chardaire and A. Lisser, Simplex and interior point specialized algorithms for solving
non-oriented multicommodity flow problems, Oper. Res., accepted subject to revision.

[9] I.C. Choi and D. Goldfarb, Solving multicommodity network flow problems by an interior
point method, in Large-Scale Numerical Optimization, T.F. Coleman and Y. Li, eds., SIAM,
Philadelphia, PA, 1990, pp. 58–69.

[10] CPLEX Optimization Inc., Using the CPLEX Callable Library, Incline Village, NV, 1995.
[11] DIMACS, The First DIMACS International Algorithm Implementation Challenge: The

Benchmark Experiments, Technical Report, DIMACS, New Brunswick, NJ, 1991.
[12] A. Frangioni, personal communication, Department of Computer Science, Universitá di Pisa,

Pisa, Italy, 1998.
[13] A. Frangioni and G. Gallo, A bundle type dual-ascent approach to linear multicommodity

min cost flow problems, INFORMS J. Comput., 11 (1999), pp. 370–393.
[14] J.A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, NJ, 1981.
[15] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, Solving nonlinear multicommodity

flow problems by the analytic center cutting plane method, Math. Programming, 76 (1996),
pp. 131–154.

[16] J. Gondzio and M. Makowski, Solving a class of LP problems with a primal-dual logarithmic
barrier method, European J. Oper. Res., 80 (1995), pp. 184–192.

[17] M.D. Grigoriadis and L.G. Khachiyan, An exponential-function reduction method for block-
angular convex programs, Networks, 26 (1995), pp. 59–68.

[18] A.P. Kamath, N.K. Karmarkar, and K.G. Ramakrishnan, Computational and Complexity
Results for an Interior Point Algorithm on Multicommodity Flow Problems, Technical
Report TR-21/93, Dip. di Informatica, Univ. di Pisa, Italy, 1993, pp. 116–122.

[19] A.P. Kamath and O. Palmon, Improved Interior Point Algorithms for Exact and Approxi-
mate Solutions of Multicommodity Flow Problems, Technical Report, Dept. of Computer
Sciences, Stanford University, Stanford, CA, 1994.

[20] S. Kapoor and P.M. Vaidya, Speeding up Karmarkar’s algorithm for multicommodity flows,
Math. Programming, 73 (1996), pp. 111–127.

[21] J.L. Kennington and R.V. Helgason, Algorithms for Network Programming, Wiley, New
York, 1980.

[22] I.J. Lustig, R.E. Marsten, and D.F. Shanno, On implementing Mehrotra’s predictor-
corrector interior-point method for linear programming, SIAM J. Optim., 2 (1992), pp. 435–
449.

[23] Cs. Mészáros, The Efficient Implementation of Interior Point Methods for Linear Program-
ming and Their Applications, Ph.D. Thesis, Eötvös Loránd University of Sciences, Bu-
dapest, Hungary, 1996.

[24] E. Ng and B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor com-
puters, SIAM J. Sci. Comput., 14 (1993), pp. 1034–1056.

[25] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press,
New York, 1988.

[26] L. Portugal, M.G.C. Resende, G. Veiga, G., and J. Júdice, A truncated primal-infeasible

INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 877

dual-feasible network interior point method, Networks, 35 (2000), pp. 91–108.
[27] L. Portugal, M.G.C. Resende, G. Veiga, G., and J. Júdice, A truncated interior-point

method for the solution of minimum cost flow problems on an undirected multicommodity
flow network, in Proceedings of the First Portuguese National Telecommunications Con-
ference, Aveiro, Portugal, 1997, pp. 381–384 (in Portuguese).

[28] M.G.C. Resende and P. Pardalos, Interior point algorithms for network flow problems, in
Advances in Linear and Integer Programming, J.E. Beasley, ed., Oxford University Press,
New York, 1996, pp. 149–189.

[29] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling algorithm
for minimum-cost flow on bipartite uncapacitated networks, SIAM J. Optim., 3 (1993),
pp. 516–537.

[30] M.G.C. Resende, T. Tsuchiya, and G. Veiga, Identifying the optimal face of a network linear
program with a globally convergent interior point method, in Large Scale Optimization:
State of the Art, W. Hager, D. Hearn, and P. Pardalos, eds., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1994, pp. 362–387.

[31] G.L. Schultz and R.R. Meyer, An interior point method for block angular optimization,
SIAM J. Optim., 1 (1991), pp. 583–602.

[32] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.
[33] S. Zenios, A smooth penalty function algorithm for network-structured problems, European J.

Oper. Res., 83 (1995), pp. 220–236.

