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Abstract

In liberalized electricity markets, generation companies bid their hourly generation
in order to maximize their profit. The optimization of the generation bids over a
short-term weekly period must take into account the action of the competing gen-
eration companies and the market-price formation rules and must be coordinated
with long-term planning results. This paper presents a three stage optimization pro-
cess with a data analysis and parameter calculation, a linearized unit commitment,
and a nonlinear generation scheduling refinement. Although the procedure has been
developed from the experience with the Spanish power market, with minor adapta-
tions it is also applicable to any generation company participating in a competitive
market system.
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1 Introduction and Motivation

Generation companies in liberalized electricity markets do not have a load of
their own to satisfy, but they must bid their hourly generation to the market
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operator, who selects the lowest-price among bidding companies to match the
pool load. A specific generation company (SGC) expects to have most of its
bids accepted, i.e., to have them priced below the market price determined
hourly by matching the lowest price bids with the pool load.

The less efficient thermal units will not have their bids accepted at hours
with lower demand (and lower market price), and this poses the problem of
making feasible bids with these units, which satisfy the operating conditions
of minimum service and down times. Since feasibility is a condition for bid
acceptance, it is clear that a unit commitment should be within the procedure
employed to prepare the generation bids. Many of the methods described in
the literature for optimizing the generation bids of an SGC consider only the
units of the SGC and solve a unit commitment.

The procedure proposed in [17] first finds probability distribution functions
of market clearing prices for power and for reserve. From these, estimates of
pairs of energy and reserve prices, their probability, price variances, and tran-
sition probabilities between pairs at adjacent hours are calculated. Then a unit
commitment for the units of the SGC is formulated as a stochastic maximiza-
tion of profit minus a risk term, also subject to self-scheduling requirement
constraints. From this commitment, energies and reserve levels are associated
with each price pair to form the energy and reserve offer curves. In [21] a unit
commitment schedule is obtained by optimizing the self-commitment of each
unit separately using prices obtained by a stochastic model that takes into
account demand, unit reliabilities and temperature.

For an SGC owing a portfolio of units capable of altering market-clearing
prices, a procedure has been proposed [6] for which it is necessary to know the
price quota curve of the SGC for each hour. With this procedure, a maximum-
profit linear unit-commitment problem for the SGC units can be set up and
solved over a planning horizon. From its solution market prices for each hour
are estimated and generation bids can be established. Should the SGC be
a price taker (unable to alter the market price) for the proposal in [3] it is
necessary to know the market-price probability distribution function for each
hour. From this, a linear expression of the expected revenue and the expected
profit can be formulated, which is maximized in a unit commitment solution
for each separate unit of the price taker, and a bidding strategy is derived from
the results. An extension of this procedure to account for the loss-of-profit risk,
can be found in [4].

Another method considering the units of the SGC plus a unit commitment is
that in [2], which relies on the prediction of a residual demand function (also
called price-quota curve) for each hour, expressing the change in market price
due to the generation of the SGC. From these, a nonlinear and discontinuous
mixed-integer optimization problem is formulated to maximize the SGC profit.
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The solution technique is a coordinate descent algorithm having mixed-integer
linear optimizations as subproblems.

A different type of approach is that in [12], which formulates the profit maxi-
mization problem in order to find the best bidding strategy for a SGC in one
hourly interval (no unit commitment is made). It is a two-level optimization
procedure: on the first level the SGC determines its bid vector (for all gener-
ators from the utility), satisfying the constraints, and on the second level an
optimal power flow determines the value of the supply vector that minimizes
the total system cost. It is assumed that competitors’ strategies may be well
estimated through the study of past data. Load and its price depends on sev-
eral nodes and load is forecasted with a multi-normal distribution. The model
is improved by taking into account risk aversion using a utility function. Monte
Carlo simulations and Genetic Algorithms are used to solve the problem.

The scope of the problem addressed here is no longer that of the generation
units of a SGC but that of all units of all companies participating in the
same competitive market, enforcing the matching of the load of the whole
system. This idea was developed in [13], where a bidding strategy for multi-
round auctions based on a two-level optimization procedure was proposed. At
the top level a centralized economic dispatch is employed to determine the
market price, the production and demand levels of all generation companies
and consumers, and at the lower level a self-unit commitment is solved by
each generation company to determine a profitable bid. It is assumed that
each supplier has enough information about competitors so that it can run a
centralized economic dispatch in designing its bidding strategy.

The new procedure presented here is for a single-round auction system. It is
also based on a unit commitment solution followed by an economic dispatch,
but it takes into account all participants in the generation bidding process
both in the unit commitment stage and at the economic dispatch, obtaining
estimates of the hourly market clearing prices and generation levels for a
weekly period. Two types of prediction of the supply-bid function for every
hour are employed: the first linear and static, and the second nonlinear, with
the linear term being a linear function of unit generations. Long-term results
[16,18], obtained previously for the week to be planned, are enforced through
constraint in the short-term planning. An implicit assumption also is that a
SGC, besides its own generation portfolio, has sufficient knowledge about the
generation units of the rest of the market agents. Part of this information is
publicly available in the bulletins released by the System Operator. The rest
of it can be approximately inferred from other public sources or by comparison
with similar units. (This is so in the Spanish power pool.)

The procedure developed requires data-base queries and curve fittings for the
parameter calculation and then two successive optimization processes: a unit
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commitment, in which the zero-priced bids of the units are determined, and a
nonlinear continuous scheduling, in which the generations are refined. These
processes have been coded using the modeling language AMPL [8] and have
been solved with the mixed-integer programming package Cplex 9.0 [5] and
the nonlinear optimizer Minos [14].

The remainder of the paper is organized as follows. Section 2 describes the fea-
tures of generation units and the coordination with long-term results. Section
3 presents the models of supply-bid function employed. In Section 4 the three-
stage procedure proposed is described. Each stage is then fully detailed in a
separate section: Section 5 for the data analysis and parameter preparation,
Section 6 for the unit commitment stage, and Section 7 for the multi-interval
economic dispatch. Section 8 follows with computational results. Finally, Sec-
tion 9 presents some relevant conclusions.

2 Generation units and psudo-units in short-term planning

The generation units to be considered are:

• all thermal units of the SGC whose hourly production is to participate in
the auction process during the weekly period,

• the reservoir systems of hydro production of the SGC with full detail of
storage and discharge,

• the thermal units of the rest of generating companies that participate in the
market auction either as single or as amalgamated pseudo-units of similar
characteristics (e.g., all available nuclear units of the competitor companies
could be merged into a single nuclear pseudo-unit),

• the hydro-systems of the competitor generation companies considered as
one or more pseudo-thermal units.

There will be nu thermal units, or pseudo-units considered. The eolic gener-
ation for each hour of the short-term weekly period should be predicted and
deducted from the forecasted load.

2.1 Thermal units and pseudo-units

The relevant parameters of the jth thermal unit are:

⋆ maximum and minimum power capacity cj and cj

⋆ linear generation cost fj

and should the unit be susceptible of being started up and shut down:
⋆ minimum operation time and minimum idle time Nonj and Noffj
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⋆ start-up cost qj

Let us denote by M the set of units merged into a given pseudo-unit, and let m
be the index of one of the composing units. The parameters of the pseudo-unit
that have been employed are:

• maximum power capacity cM=
∑

m∈M cm

• minimum power capacity cM=min{cm , ∀m ∈ M}

• linear generation cost fM=
(∑

m∈M cm fm

)
/
∑

m∈M cm

and should the pseudo-unit be susceptible of being started up and shut
down:

• minimum operation time NonM=
(∑

m∈M cm Nonm

)
/
∑

m∈M cm

• minimum idle time NoffM=min{Noffm , ∀m ∈ M}

• start-up cost qM=
(∑

m∈M cm qm

)
/
∑

m∈M cm.

Variables and parameters corresponding to a certain hourly interval in the
short-term period will be denoted with a supra-index i indicating the interval
number. Let gi

j be the power generation of unit j over the ith interval, and
gi=

∑nu

j=1 gi
j the total thermal generation in interval i. Let ni be the total

number of intervals considered. We will normally consider a weekly period
subdivided into ni=168 hourly intervals, but shorter periods could also be
considered.

2.2 The hydro-generation

The average generated hydropower hi
k over the ith interval of duration T i (one

hour) in reservoir k will be:

hi
k =

ρkg

T i
di

ks̃
i
k

where ρk<1 is the efficiency of the turbine-alternator system, g is the accel-
eration of gravity, di

k is the volume of water discharged over the ith interval,
and s̃i

k the equivalent water head:

s̃i
k = sbk+

slk

2
(vi−1

k +vi
k)+

sqk

3
(vi

k−vi−1
k )2+sqkv

i−1
k vi

k+
sck

4
(vi−1

k

2
+vi

k

2
)(vi−1

k +vi
k)

(1)
where vi

k is the volume of water in reservoir k at the end of the ith interval.
sbk, slk, sqk, and sck are the basic, linear, quadratic and cubic coefficients
respectively of the head to volume function, which are data to the problem.

The water balance in reservoir k over the ith interval in a cascaded reservoir
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basin would be:

vi−1
k + wi

k +
∑

j∈Gk

(di
j + pi

j) = vi
k + di

k + pi
k (2)

where wi
k is the natural inflow, Gk the set of reservoirs directly upstream of

reservoir k, and pi
k the spillage. Inflows wi

k are forecasted.

The total hydrogeneration is

hi =
nk∑

k=1

hi
k =

g
T i

nk∑

k=1

ρk

{
sbk + slk

2
(vi−1

k + vi
k) +

sqk

3
(vi

k − vi−1
k )2

+sqkv
i−1
k vi

k + sck

4
(vi−1

k

2
+ vi

k

2
)(vi−1

k + vi
k)
}
di

k

(3)

which is nonlinear.

The temporary evolution of water in reservoirs, over ni successive intervals,
can be modeled through a replicated hydro network [20]. The initial volume in
reservoir k during the ith interval is the final volume of this reservoir in interval
i−1. Discharges di

k and spillages pi
k are also flows on arcs of the replicated

network, and its node balances are expressed in equations such as (2). Initial
and final water volumes in reservoirs in the first and last intervals respectively:
v0

k and vni

k , are to be considered data for the problem. (Initial volumes are
usually the current ones, and final volumes are the target values obtainable
from a long-term generation planning.)

2.3 Linearization of hydro-generation

Equation (3) is a fourth-order polynomial of hydro-variables, and may make
the generation optimization problem hard to solve. A simplification of the
problem could be to linearize these equations in the following way: the term
in braces of (3), which is the kth reservoir head over the ith interval, will be
considered to be a constant ŝi

k, as if the volumes v̂i
k it had been calculated

with were known,

ŝi
k = sbk+

slk

2
(v̂i−1

k +v̂i
k)+

sqk

3
(v̂i

k−v̂i−1
k )2+sqkv̂

i−1
k v̂i

k+
sck

4
(v̂i−1

k
2+v̂i

k
2)(v̂i−1

k +v̂i
k)

and the succession of volumes employed v̂i
k, i=1, . . . , ni could be a former

solution, or a uniform variation from the initial v0
k to the final volume vni

k .
Thus, equations (3) become:





hi
k =

ρkgŝi
k

T i di
k ∀ k , ∀ i

hi =
∑nk

k=1 hi
k = g

T i

∑nk

k=1 ρkŝ
i
kd

i
k ∀ i

(4)
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Equations (4), linear in the discharges di
k, together with the balance equations

(2) are the linearized hydro-generation model.

2.4 Coordination with the long-term planning results

This coordination between the long and the short term decision levels is im-
portant in order to guarantee that certain aspects of the operation that arise
in the long-term level are explicitly taken into account in the short term, so
that in no case the short-term planning overrides the long-term results.

Several works have addressed this problem. In [9] there is a discussion con-
cerning the use of primal and dual coordination between annual resource al-
locations and short-term operation. Reneses et al. [19] extend the range of
possibilities with the marginal resource-valuation functions and compare this
three approaches on a case study.

The primal-information approach imposes the production level of each re-
source obtained in the long-term model to the short-term model as constraints.
The dual-information approach makes use of the dual prices of the constraints
that limit the resources. The dual prices give marginal valuations for the re-
sources. They are incorporated into the short-term objective function, penal-
izing or encouraging the use of the resource. The marginal resource-valuation

functions is a continuous valuation of a resource for a range of operating points
that the company could face. The main advantages of the primal approach are
that is easy to implement and that ensures the feasibility of the long-term plan-
ning. However, it does not allow deviations from the forecasted parameters.
The dual approach is more flexible than the primal one, as the dual prices do
not limit the generation but rather give guidelines on the type of resources to
use. The main disadvantage of the dual coordination is the lack of robustness:
small changes on the long-term parameters may lead to important changes on
the dual prices.

Our choice is to use a primal-information type approach with a tolerance.
The units and pseudo-units used in the short-term planning must also appear
in the long-term method employed. The short-term planning period (usually
one week) has been systematically included in the long-term planning as the
first long-term interval. Then the results for the first long-term interval are
passed to the short-term as constraints for the whole generation of each unit
in the short-term period. Let us assume that Ej is the energy generated by the
jth unit over the first long-term period, as obtained by a long-term planning
procedure. It is then necessary to impose that, in the short term:

(1 − δ)Ej ≤
ni∑

i=1

T igi
j ≤ (1 + δ)Ej j = 1, . . . , nu (5)
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where δ is a small positive tolerance that must be employed because, in long-
term studies, energies obtained take into account outage probabilities, which
are not considered in the short term.

Regarding hydrogeneration, although in the long term a model can be em-
ployed where a whole hydrogeneration basin is considered as a thermal unit
plus a total generation constraint, a more detailed long-term hydrogeneration
model where each single reservoir is accounted for is also possible [10]. The
stored volumes of water of each reservoir at the end of the first long-term
interval are passed as final values for the short-term problem. The initial (cur-
rent) stored volumes in each reservoir are the same for long- and short-term
planning.

Prior to the short-term planning, it is thus necessary to solve a long-term
planning problem using the same generation units as in the short term, and
using the short-term weekly period as its first interval. Long-term planning for
a given utility maximizes profit (revenues at market price minus generation
costs) over a yearly, or longer, long-term period [16]. Changes in operation
conditions, such as the availability of certain units, or changes in fuel prices,
or in demand forecasts, call for a new long-term planning solution and the
subsequent short-term planning.

3 The supply-bid function

Generation bids corresponding to a certain past hour ordered by increasing
price have a characteristic shape. The function giving the generation price (in
c=/MWh) for each MWh bid will be referred to as the supply-bid function. Its
features do not change substantially in the different hours, the most important
being that:

• Generation companies bid a considerable part of the capacity of many of
their generators at zero price.

• The sum of the hourly zero-priced generation bids of all companies falls
below the hourly load but amounts to a large part of the load.

• The shape of the supply-bid function in the part corresponding to positive
prices has an irregular shape, which can be reasonably approximated by a
polynomial of degree four or higher.

The intersection of the supply-bid function of a given hour with the demand
function (in terms of price) or with the forecasted demand of this hour gives
the forecasted market price mi. Fig. 1 shows the supply-bid function for an
hourly interval in the Spanish pool. Although there is a supply-bid function for
demand for each interval, predicting it is of equivalent complexity to predicting
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Fig. 1. Supply-bid function of the i
th interval corresponding to 10 to 11 a.m. on a

Monday in March 2004 in the Spanish power pool (dashed curve) and linearized
supply-bid function (continuous broken line).

the matched load li in each interval. Using the predicted matched load li has
been preferred because it makes the model simpler.

An important variable, necessary to determine the supply-bid function, is the
amount of zero-priced energy zi in the interval. Obtaining a good estimate of
zi for each hourly interval i is one of our goals.

Generation bids and zero-priced energies can be expressed in MW, as the load
li is, because the duration of all intervals considered is one hour.

Fig. 1 also shows the linearized supply-bid function for the ith interval. It is
determined by the estimates ẑ i of the zero-priced energy in the interval, and
by the basic and linear coefficients yi and bi giving the approximate linearized
supply-bid function of the ith interval.

The linearized supply-bid function is then:





mi = 0 gi + hi < ẑ i

mi = yi + bi(gi + hi − ẑ i) gi + hi ≥ ẑ i
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The market-price estimate is then, for gi + hi = li,

m̂i = yi + bi(li − ẑ i) for li ≥ ẑ i and ẑ i =
nu∑

j=1

ẑj
i +

nk∑

k=1

ẑk
i . (6)

where ẑi
j for thermal units and ẑk

i for reservoirs are to be determined. This
supply-bid function will be employed in a unit commitment problem to be
solved.

3.1 The nonlinear approximation to the supply-bid function

The nonlinear supply-bid function is:




mi = 0 gi + hi < ẑ i

mi = b̃i(gi + hi − ẑ i) + γi
q(g

i + hi − ẑ i)2+

γi
c(g

i + hi − ẑ i)3 + γi
t(g

i + hi − ẑ i)4 gi + hi ≥ ẑ i

with

b̃i = βi
0 +

∑nu

j=1 βi
j(g

i
j − ẑi

j)

The market-price estimate, for gi + hi = li, is then




m̃i = b̃i(li − ẑ i) + γi
q(l

i − ẑ i)2 + γi
c(l

i − ẑ i)3 + γi
t(l

i − ẑ i)4

= b̃i(li − ẑ i) + Γ i =
{
βi

0 +
∑nu

j=1 βi
j(g

i
j − ẑi

j)
}
(li − ẑ i) + Γ i

(7)

where the gi
j are to be determined. This function, linear in gi

j, is used in
the refinement stage, where ẑ i and ẑi

j are data. The computation of the β
coefficients is explained in section 5.

Fig. 2 shows the polynomial fit and how it is changed when, through changes
in gi

j, b̃i is increased, or decreased, by 10%.

Several comments are in order:

• ẑ i in (7) is here a constant, obtained from the solution to a linearized unit
commitment problem using the linearized model;

• the coefficients γi
q, γi

c and γi
t having been previously calculated, and li (the

load) being a forecasted value, the only variable component of m̃i is b̃i;
• b̃i has a constant part βi

0 and a variable part b̃i that changes with gi
j through

the linear expression (7); hydrogeneration is considered not to influence the
slope b̃i;

• The nonlinear hydromodel (3) would be employed to compute hi
k.
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4 The three-stage procedure

The proposed short-term power planning procedure addresses the drawing
up of the bidding strategy for a weekly, or shorter than weekly, period of a
generation utility participating in a competitive market.

The successive stages in the solution procedure are:

⋆ the data analysis and preparation using records of energy bids and loads of
preceeding weeks and in similar weekly periods of former years including:
· analysis of the type of contribution of each unit considered to the bids at

zero price (either as a given proportion of its power capacity, or as a given
proportion of the pool hourly load),

· fitting a polynomial to the forecast of each hourly supply-bid function,
· determining the relative influence of the amount of power bid by each unit

in the slope of the hourly supply-bid function,
· the hourly load forecast

⋆ the linearized unit commitment solution using:
· a linearized market-price estimate as in (6), where yi and bi are estimated

in the data analysis stage, but ẑ i is optimized and calculated from the
unit commitment results.
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· a linearized hydro-generation function (4) in terms of the reservoir dis-
charges for the reservoirs of the SGC,

and finding
· the unit commitment of all units considered,
· the hourly zero-priced energy bids of all units and their summation ẑ i,
· an initial estimate of hourly market prices m̂i and of hourly generations.

⋆ the nonlinear scheduling refinement using:
· the unit commitment and the hourly zero-priced bids of the committed

units or pseudo-units ẑ i,
· a polynomial supply-bid function for each hour with a linear coefficient

having a limited range of variation in terms of the generations of the
committed units,

· the nonlinear hydro-generation functions for the reservoirs (3) of the SGC,
and finding
· the hourly generation of each unit and the hourly power bids,
· the estimates of the hourly market prices m̃i and of the expected profit.

Ideally, the second and third stages could be a single one, in which a mixed-
integer nonlinearly-constrained nonlinear problem would be solved. To date,
efficient practical methods for solving such a problem are not available, so the
problem is split into two separate stages, the first solving a mixed-integer linear
version of the problem, and the second optimizing a continuous nonlinear
scheduling refinement in which the mixed-integer solution results are employed
as data.

5 The data analysis and parameter preparation stage

The experience with the auction system in the Spanish electricity market,
which has been a pure pool system up to July 2006 [11], shows that there are
some regular bidding patterns which, together with the smooth evolution of
the demand, bring about a certain regularity in the evolution of the market
price.

5.1 Required data and data sources

For each hour in the short-term period considered we must have:

• For the same hour in an equivalent period of some precceding weeks and of
several former years
· Aggregated supply-bid curves of the daily market for each unit.
· Market clearance price.
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• Forecasted load demand li: the interval load, to be predicted from historical
records of loads in preceeding weeks and in similar weeks of former years.
Time-series analysis techniques can be applied to forecast interval loads.

• For each generation unit j in the pool, the data specified in Section 2 should
be known for the units of the SGC, and known or estimated for the rest of
the units.

One of the criteria employed to determine the units that are merged into a
pseudo-unit is type and the uniformity in the coefficients of contribution to
the zero-priced energy.

In the Spanish Electricity Pool such data can be obtained from the Network
Operator web site www.ree.es, or from the Market Operator’s www.omel.es.

5.2 Parameters for the second stage

The 2nd stage is a unit commitment leading to the determination of the esti-
mates ẑ i and ẑi

j , and the state ui
j of committed units.

No previous market-price estimation is employed. Instead, a linearized supply-
bid function estimation will be used. The parameters yi and bi: basic and
linear term of linear approximation to supply-bid function, are to be previously
computed by linear regression for a number of market-price curves of the same
hour of similar former days and in similar weeks of former years.

The experience with the Spanish power pool shows that the proportion of
zero-priced energy bids ẑi against load to be supplied li has generally been
over 65%. Furthermore, the amount of zero-priced bid has similar patterns
for several units and hours. Committed thermal units contribute to ẑi with
χj ∗ cj , where χj is the proportion of zero-priced energy offered with respect
to maximum capacity, and can be calculated from past records. Fig. 3 shows
the patterns for the second week of March of two coal pseudo-units.

For hydro units the amount of zero-priced bid is proportional to the forecasted
demand: zi

j = λjl
i, as shown in Fig. 4.

The proportions χj and λj presented are not the same all day long. (In some
hours, they are systematically higher than in others. See figures 3 and 4.)
However, by splitting the hours into two subsets: peak and base we can observe
a good deal of uniformity, as can be seen in the figures mentioned. Peak hours
go from 9 to 23h on working days and the rest of the week are the base hours.

To summarize, the zero-priced part of the supply-bid function, ẑi, is the sum-
mation of:
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• peak hours (9-23h working days), denoted by the superscript P :
· zi

j = χP
j cj: where j is not a hydro unit and is committed

· zi
j = λP

j li: where j is a hydro unit
• base hours (24th hour, 0-8h in working days, plus weekend), denoted by the

superscript B:
· zi

j = χB
j cj: where j is not a hydro unit and is committed

· zi
j = λB

j li: where j is a hydro unit.

Therefore, the following sets of parameters are to be previously determined:

• C , Λ separation of units into two subsets regarding their bid of zero-priced
energy. Units in set C bid their zero-priced energy as a fixed proportion of
their capacity cj , whereas units in set Λ bid theirs as a fixed proportion of
the interval load li.

• B , P : separation of intervals into two subsets, those with low demand (base)
and those with high demand (peak), given that units in subset C have
different proportionality coefficients, χB

j and χP
j , with respect to capacity

cj for zero-priced bids in base and in peak intervals.
• Coefficients of contribution to zero-priced energy to be determined through

queries to a data base including records of zero-priced energy bids of units:
· λB

j , λP
j with respect to system load li for units in subset Λ in base and

peak intervals, and
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· χB
j , χP

j with respect to unit capacity cj for units in subset C in base and
peak intervals.

5.3 Parameters for the third stage

The 3rd stage is a nonlinear optimal scheduling leading to a market-price esti-
mate m̃i and optimal generations gi

j and hi
k. Again, no market-price estimation

is employed. Instead, a nonlinear supply-bid function is used with a linear term
that is a linear function of the available generations.

The parameters required are:

• b̃i, γi
q, γi

c, γi
t: linear, quadratic, cubic and quartic coefficients of polynomial

fit to supply-bid function determined through nonlinear regression for a
number of supply-bid curves of the same hour on similar former days.

• It is necessary to refer next to the set U i of available units at interval i
(from the unit commitment results of the 2nd stage).

• βi
0: has been taken to be a fraction between 1

2
b̃i in the intervals, if there are

any, where all units are committed (
∑nu

j=1 cj=
∑

j∈U i cj=CAll), and 3
4
b̃i in the

interval where
∑

j∈U i cj is a minimum: Cmin=
min

i

∑
j∈U i cj. For each hourly
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interval, we have considered:

βi
0 = b̃i

(
1

2
+

CAll −
∑

j∈U i cj

CAll − Cmin

×
1

4

)
∀ i (8)

• βi
j: indicates the contribution to the estimated slope b̃i of the generation of

the jth unit above ẑi
j. The βi

j employed take into account the unit cost fj

and are as follows:





βi
j = αifj with αi =

1.1 × (b̃i − βi
0)∑

j∈U i

(cj − ẑi
j)fj

j ∈ U i

βi
j = 0 j /∈ U i

∀ i . (9)

Using expression (9) the summation of the contribution of the available units
to the estimated slope of the supply-bid function (7) will be:

∑

j∈U i

βi
j(g

i
j − ẑi

j) = 1.1 × (b̃i − βi
0)

∑

j∈U i

(gi
j − ẑi

j)fj

∑

j∈U i

(cj − ẑi
j)fj

which is reasonable, because, for all available units generating at their max-
imum capacity, we would have that the generation contribution to the slope
would be 1.1 × (b̃i − βi

0).

Given that the slope in the supply-bid function has a direct influence in the
overall profit (being maximized), in order to prevent the effect of collusion
between participants, it is necessary to place a constraint on the changes in
the slopes with respect to the original ones b̃i, which are a forecast deduced
from available data. The type of constraint introduced is

−σ ≤
ni∑

i=1

{
b̃i − βi

0 −
∑

j∈U i

βi
j(g

i
j − ẑi

j)
}
≤ σ

where σ is a small tolerance.

6 The unit commitment stage

6.1 Binary variables for unit commitment and associated constraints

The formulation in this subsection uses the same type of binary variables and
constraints as in [7].
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Let Φ be the subset of units to be committed (started up and shut down). Let
ui

j∈IB (IB={0, 1}), j∈Φ be a binary variable expressing the off–on operating
status of the jth thermal unit over the ith interval. The generation gi

j of the
jth thermal unit in the ith interval will satisfy

cj ui
j ≤ gi

j ≤ cj ui
j ∀ j ∀ i (10)

and the load balance equation

nu∑

j=1

gi
j + hi = li ∀ i (11)

Note that all variables ui
j, which form the binary vector u, take part linearly

(with constant coefficients) in the equations in (10).

Values of ui
j and ui+1

j must obey certain operating rules to take into account
the constraints of the minimum in service time of Nonj hours and minimum
idle time of Noffj hours. It is necessary to introduce two extra binary variables
ei

j and ai
j (ei

j , a
i
j∈IB) for each ui

j.

ei
j is a start-up indicator for the jth thermal unit. It is zero for i=1, ..., ni

except when the jth unit has changed from ui−1
j =0 to ui

j=1. Similarly ai
j is a

shut-down indicator for the jth thermal unit. It is zero for i=1, ..., ni except
when the jth unit has changed from ui−1

j =1 to ui
j=0. With ei

j and ai
j it is then

easy to model the minimum up and down times of unit j.

The following set of constraints:




ui
j − ui−1

j − ei
j + ai

j = 0 ∀ j ∈ Φ ∀ i

ei
j +

∑min(i+Nonj ,ni)

k=i a
(k
j ≤ 1 ∀ j ∈ Φ ∀ i

ai
j +

∑min(i+Noffj ,ni)

k=i+1 e
(k
j ≤ 1 ∀ j ∈ Φ ∀ i

(12)

uniquely define the binary variables, and force the service and the idle times
to be, at least, Nonj and Noffj .

6.2 Determination of the zero-priced energy ẑ i of the ith interval

As indicated in subsection 5.2, in order to properly determine ẑ i, we need
to define several sets and subsets of thermal units and two sets of intervals.
Moreover, some of the units are not subject to being committed because they
are either permanently in service (e.g., a nuclear unit) or they can be started
and stopped at any time and have zero minimum capacity (e.g., the hydro-
generation of the competitor companies). Let A define the set of units and
pseudo-units always available (Φ is the set of units to be committed).
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The full definition of ẑ i taking into account the binary variables ui
j to be

optimized is then:





ẑ i =
∑

j∈(Λ∩A)

li λj +
∑

j∈(C∩A)

cj χP
j +

∑

j∈(Λ∩Φ)

li λj ui
j +

∑

j∈(C∩Φ)

cj χP
j ui

j ∀ i ∈ P

ẑ i =
∑

j∈(Λ∩A)

li λj +
∑

j∈(C∩A)

cj χB
j +

∑

j∈(Λ∩Φ)

li λj ui
j +

∑

j∈(C∩Φ)

cj χB
j ui

j ∀ i ∈ B

(13)

6.3 Objective function of unit commitment and associated constraints

In order to obtain a unit commitment that maximizes profit, market price
minus costs should be maximized

maximize
ui

j
,ei

j

ni∑

i=1

{
li m̂ i −

nu∑

j=1

(fj gj + qj ei
j)
}

(14)

subject to m̂ i = yi + bi (li − ẑ i) ∀ i (15)

where, from (15) and (13), the objective function (14) is linear in the binary
variables ui

j and ei
j.

Another important constraint to be taken into account is that of coordination
with long-term results (5), as explained in Subsection 2.4.

The fact that we are maximizing the overall profit of all SGCs participating
in the pool, and not just the one of the SGC we are dealing with in detail,
comes from the fact that we assume that all participating SGCs are trying
to maximize their profit at the same time. The market-share of our SGC in
the short term is dictated by constraints (5), whose Ej are a long-term result,
which is where market shares are to be taken into account [16,15].

A similar form of reasoning can be applied to the effect of hydro-generation
or any type of thermal generation whose fuel availability is subject to a long-
term constraint (such as a take-or-pay contract). The seasonal use of hydro
or this specific thermal is a long-term affair, that is rationally to be solved
in long-term planning [16,15], and constraints (5) and the Ej from long-term
results for the short-term weekly period take care of their best use.

It should be noticed that for pseudo-units corresponding to hydro-generation
basins of competing companies Ej will be the production of these basins over
the whole short-term period. For the SGC hydro-production, the long-term
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planning may have detailed each reservoir [15], and the long-term with short-
term coordination is via the final volumes in reservoirs vni

k ∀ k, which were
obtained as a result of the long-term planning solution.

The complete linearized unit-commitment problem can be recast as:

maximize
ui

j
,ai

j
,ei

j
,ẑ i

j
,gi

j
,di

k
,pi

k
,vi

k

∑ni

i=1

{
li m̂ i −

∑nu

j=1(fj gi
j + qj ei

j)
}

subject to m̂ i = yi + bi (li − ẑ i) ∀ i

ẑ i
j = li λP

j ∀ i ∈ P ẑ i
j = li λB

j ∀ i ∈ B ∀ j ∈ (Λ ∩ A)

ẑ i
j = cj χP

j ∀ i ∈ P ẑ i
j = cj χB

j ∀ i ∈ B ∀ j ∈ (C ∩ A)

ẑ i
j = li λP

j ui
j ∀ i ∈ P ∀ j ∈ (Λ ∩ Φ)

ẑ i
j = li λB

j ui
j ∀ i ∈ B ∀ j ∈ (Λ ∩ Φ)

ẑ i
j = cj χP

j ui
j ∀ i ∈ P ∀ j ∈ (C ∩ Φ)

ẑ i
j = cj χB

j ui
j ∀ i ∈ B ∀ j ∈ (C ∩ Φ)

ẑ i =
∑nu

j=1 ẑ i
j ∀ i

vi−1
k + wi

k +
∑

j∈Gk
(di

j + pi
j) = vi

k + di
k + pi

k ∀ k ∀ i

hi = g
T i

∑nk

k=1 ρkŝ
i
kd

i
k ∀ i

∑nu

j=1 gi
j + hi = li ∀ i

(1 − δ)Ej ≤
∑ni

i=1 T igi
j ≤ (1 + δ)Ej ∀ j

ei
j +

∑min(i+Nonj ,ni)

k=i a
(k
j ≤ 1 ∀ j ∈ Φ ∀ i

ai
j +

∑min(i+Noffj ,ni)

k=i+1 e
(k
j ≤ 1 ∀ j ∈ Φ ∀ i

ui
j − ui−1

j − ei
j + ai

j = 0 ∀ j ∈ Φ ∀ i

cj ui
j ≤ gi

j ≤ cj ui
j ∀ j ∈ Φ ∀ i

cj ≤ gi
j ≤ cj ∀ j ∈ A ∀ i

gi
j ≥ ẑ i

j ∀ j ∀ i

ui
j, a

i
j, e

i
j ∈ IB ∀ j , ∀ i

0 ≤ di
k ≤ dk 0 ≤ pi

k ≤ pk 0 ≤ vi
k ≤ vk ∀ k , ∀ i

(16)
which is a mixed-integer linear programming problem. From its solution, only
the on-off state variables ui

j and the zero-priced bids zi
j will be kept; the rest,

including a market-price estimation m̂ i, and generation levels for each unit
and interval, will be discarded.
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7 The nonlinear scheduling stage

The nonlinearities considered in this stage come from the water head function
and hydro-generation function in the reservoirs of the SGC (1, 3), and from
the hourly supply-bid functions employed (7). The zero-priced energy bids ẑ i

obtained in the linearized unit commitment stage are here taken as a param-
eter, and so are the availability of units and pseudo-units according to the
optimal ui

j obtained. Let U i be the set of available units in the ith interval.

U i = {j ∈ A, j ∈ Φ : ui
j = 1}

The nonlinear continuous problem to be solved is now

maximize
gi

j
,di

k
,pi

k
,vi

k

ni∑

i=1

{
li m̃ i −

∑

j∈U i

fj gi
j

}

subject to m̃ i =
{
βi

0 +
nu∑

j=1

βi
j(g

i
j − ẑi

j)
}
(li − ẑ i) + Γ i ∀ i

−σ ≤
ni∑

i=1

{
b̃i − βi

0 −
∑

j∈U i

βi
j(g

i
j − ẑi

j)
}
≤ σ

vi−1
k + wi

k +
∑

j∈Gk

(di
j + pi

j) = vi
k + di

k + pi
k ∀ k ∀ i

hi =
g

T i

nk∑

k=1

ρk

{
sbk +

slk

2
(vi−1

k + vi
k) +

sqk

3
(vi

k − vi−1
k )2

+sqkv
i−1
k vi

k +
sck

4
(vi−1

k

2
+ vi

k

2
)(vi−1

k + vi
k)
}
di

k ∀ i (17)
∑

j∈U i

gi
j + hi = li ∀ i

(1 − δ)Ej ≤
ni∑

i=1

T igi
j ≤ (1 + δ)Ej ∀ j

cj ≤ gi
j ≤ cj gi

j ≥ ẑi
j ∀ i ∀ j ∈ U i

gi
j = 0 ∀ i ∀ j /∈ U i

0 ≤ di
k ≤ dk 0 ≤ pi

k ≤ pk 0 ≤ vi
k ≤ vk ∀ k ∀ i ,

which is a nonlinear continuous optimization problem, but only due to the
hydro-generation function (3), given that the objective function and the rest
of the constraints are linear. From its solution, a market-price estimation m̃ i,
generations gi

j , and optimal reservoir variables are obtained.

The same justification of the overall profit maximization instead of that of the
SGC dealt with, as in subsection 6.3, applies here.
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The preparation of a generation bid for the SGC from the results of the lin-
earized unit commitment and from the results of the nonlinear scheduling is
simple. The results of the linearized unit commitment (16) indicate which
units of the SGC will be operated and when. From (13) and the optimized ui

j

we can readily establish the zero-priced bids ẑi
j of each unit at all intervals.

From the optimal generations gi
j and the market prices m̃ i of the nonlinear

scheduling solution of (17), the generation segment of the jth unit in the ith

interval between ẑi
j and gi

j should be bid at a price safely below m̃ i (possibly
subdivided into sections at increasing price). The power of this unit higher
than gi

j should be bid at prices safely above m̃ i

8 Computational results

8.1 Test cases

Each test case considers one specific generation company (SGC) in detail,
while the rest of the generation units are amalgamated in big pseudo-units so
as to limit nu. Hydro-generation of the SGC considered has also been mod-
eled in detail, using the water balances (2) and either the nonlinear hydro-
generation (3) for the nonlinear scheduling, or the linearized one (4) for the
unit commitment, while the rest of hydro-generation is approximated by con-
sidering the hydro production of one or several basins as a single thermal unit
with a total energy constraint determined in the long-term solution [15].

All problems have ni=168 corresponding to the hours of a weekly period.
These intervals are subdivided into 75 peak-load intervals and 93 base-load
intervals.

Table 1
Test cases for AMPL models of short-term electric power planning

case nk nh nth nuF nuC nb nuBP nuf week

stpcm01 4 1340 7392 5 17 8568 13 9 12

stpcm02 6 2010 11088 14 19 9576 28 5 31

stpcm03 20 6700 20496 37 24 12096 45 16 45

nh is the total number of hydro-variables in the full hydro model. nh, in a
basin with nk reservoirs (each having one discharge in case stpcm01), comes
to nh=nk×ni+nk×(ni−1) . These nh variables take part in ni nonlinear con-
straints in the nonlinear scheduling refinement.

nu is nu=nuF+nuC , where nuF are the units generating at all intervals (as

21



nuclear units) or with possibility of generation at any interval (as the pseudo-
thermal unit corresponding to a hydro-generation basin) and nuC , which is
the number of units to be committed at each interval, either to generation or
to be idle. nu is also decomposed as nu=nuBP +nuf , where nuBP are the units
that were found to have a differentiated pattern of bidding at zero price on
peak and on base hours, and nuf were the units whose zero-price bidding was
proportional to the load.

The size of the test cases employed is summarized in Table 1. Column nth=2×
nu×ni is the number of continuous thermal variables to be determined in the
unit commitment solution, and there are also nh continuous hydro-variables.
Column nb=3×nuC×ni holds the number of binary variables in the unit com-
mitment. The last column indicates the week number in the year to which the
test case refers.

In the data analysis stage, data-bases with generation bids in preceeding weeks
and in weeks of former years similar to that treated in the test case were formed
and used to deduce useful information. AMPL [8] was employed to perform the
calculations of the β coefficients (8,9). The long-term energies Ej of all gener-
ation units corresponding to the short-term weekly period (imposed through
constraints (5)) were obtained using the long-term planning procedure devel-
oped by the authors using an interior point algorithm to maximize a quadratic
long-term profit function subject to load matching constraints using the Bloom
and Gallant formulation [1]y and other non-load-matching constraints [18].

8.2 Solutions of short-term unit commitment and nonlinear scheduling

The second and third stages of the solution process were modeled using AMPL,
and AMPL data files for the test cases were prepared. The second stage (unit
commitment (16)) of all test cases was solved using the mixed-integer solver
in the Cplex 9.0 package [5], while the nonlinear scheduling refinement (17)
of the third stage was solved using the nonlinear optimization tool Minos 5.5

[14].

Calculations have been carried out on a Toshiba Satellite A30-303 notebook,
which has a Pentium 4 processor at 3,06 GHz with 512 MB RAM.

Table 2 shows the results for the test cases prepared. The unit commitment
columns show the number of nodes of the branch-and-bound tree explored un-
til an all-integer solution was found, the number of the dual-simplex iterations
required, and the duality-gap percentage, as calculated when this solution is
first obtained. Requiring a lower duality gap than that obtained leads to much
longer computation times without finding any different solution, i.e., once the
first all-integer solution is found, there is no point waiting for another one
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Table 2
Solutions of unit commitment and of nonlinear scheduling refinement

Unit Commitment using Cplex 9.0 Scheduling using Minos 5.5

nodes dual simp. gap CPU iters. profit (m̃ i) CPU

case iterations % (sec.) (no s-u.) (c= ) (sec.)

stpcm01 10620 912010 9.97 5543 10062 93119329 19.4

stpcm02 3410 1302803 3.94 5611 47902 149138015 75.9

stpcm03 1570 616170 3.74 5718 646863 148571949 3166

with a lower duality gap, as it requires an extremely long computation.

The columns of Table 2 corresponding to the nonlinear scheduling refinement,
show the iterations required, the optimal overall profit, where start-up costs
have not been considered, and the CPU time. It should be noted that the large
number of iterations (and CPU time) required for the nonlinear scheduling of
case stpcm03 may be due to the large number of reservoirs nk=20 considered
explicitly in the nonlinear hydro constraints of (17).

The shape of the load, zero-priced bids found in the unit commitment stage,
and market prices m̂ i and m̃ i, for each hourly interval, are shown for case
stpcm01 in Figs. 5 and 6. It can be observed that the market-price estimation
range of the unit commitment is higher than that of the nonlinear scheduling
refinement.

It is important to note that feasibility (as enforced by the System Operator)
and optimality of profit maximization (as sought by all market agents), which
are the only criteria applied in the models proposed, lead to the same type of
variability (volatility) in the market price as observed in practice.

9 Conclusions

• The solution of the short-term hydrothermal planning of the electricity gen-
eration problem in a liberalized market, as addressed by a SGC participating
in it, was formulated as a three-stage process: a data analysis and parame-
ter preparation stage using historical records of bids and loads, a unit com-
mitment solution using a linearized supply-bid function estimation, and a
nonlinear scheduling refinement using a nonlinear supply-bid function esti-
mation. No market-price predictions are employed.

• The first stage, of data analysis and parameter preparation, calculates pa-
rameters for the next two stages from records of historical data. It re-
quires forecasting (of loads), classification of units according to their bid-
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Fig. 5. Results of case stpcm01 showing load, zero-priced bids ẑ
i and market-price

estimation m̂
i (mpc) of unit commitment (grey line with △).

ding strategies, data fitting of predicted parameters (such as those of the
coefficients of the linear and polynomial approximations to the supply-bid
function), and estimation of parameters (such as the γ coefficients). A data
base and an AMPL calculation model were employed.

• The second stage calculates the unit commitment solution that maximizes
the overall profit of all market participants using a linear approximation of
the supply-bid function. The units committed, together with the bidding
strategies, determine the zero-priced bids of all units.

• The last stage consists of a nonlinear optimization process, in which the
commitment to generation and the zero-priced bids obtained in the former
stage are considered to be data. The overall profits of a nonlinear supply-
bid function, whose slope changes with generations, is maximized. Nonlinear
hydro functions are employed.

• The coordination with long-term results is assured in the second and third
stages.

• The implementation details of the solution using AMPL models and data
files were given for the unit commitment using the mixed integer solver of
Cplex 9.0, and the solver Minos 5.5 for the nonlinear scheduling optimiza-
tion.

• The computational experience with several real cases was reported. This
includes:
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· The solution of the second-stage unit commitments giving details of branch-
and-bound nodes explored, iterations, and gaps, optimal overall profit,
CPU requirements, and a full graphical output of one case.

· The solution of the third-stage nonlinear scheduling refinement giving de-
tails of iterations, optimal overall profit, CPU requirements, and a full
graphical output of one case.

• The procedure presented, though complex, has a rational structure, and
makes the most of the available optimization tools (linear mixed-integer
programming and nonlinear continuous optimization).

• Lagrangian relaxation procedures could also be employed to solve the mixed-
integer problem of the second stage in order to reduce the CPU time re-
quired. They have not been tried yet.

• The size of the resulting problems and the CPU requirements allow the
practical use by an SGC of the procedure described for short-term planning.

• The preparation of the weekly generation bids follows immediately from the
second and third-stage results. Shorter short-term periods (e.g., 24 or 48 h
long) can also be considered.

• Some of the procedures presented are specific to the Spanish power pool,
e.g., the zero-priced bidding types of units could not occur in different
power pools. However, the general idea of the three-stage procedure could
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be adapted to SGCs participating in any power pool.

10 Acknowledgments

The authors wish to thank Mr. Xavier Cordoncillo-Fontanet, consulting engi-
neer, for his helpful and constructive comments.

References

[1] J.A. Bloom and L. Gallant. Modeling dispatch constraints in production cost
simulations based on the equivalent load method. IEEE Transactions on Power

Systems, 9(2):598–611, 1994.

[2] A.J. Conejo, J. Contreras, J.M. Arroyo, and S. De la Torre. Optimal response of
an oligopolistic generating company to a competitive pool-based electric power
market. IEEE Transactions on Power Systems, 17(2):424–430, 2002.

[3] A.J. Conejo, F.J. Nogales, and J.M. Arroyo. Price-taker bidding strategy under
price uncertainty. IEEE Transactions on Power Systems, 17(4):1081–1088,
2002.

[4] A.J. Conejo, F.J. Nogales, J.M. Arroyo, and R. Garćıa-Bertrand. Risk-
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