
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 92 (1996) 37-53

Theory and Methodology

An implementation of linear and nonlinear multicommodity
network flows

J. Castro *, N. Nabona
Statistics & Operations Research Dept., Universitat Politknica de Catalunya, Pau Gargallo 5, 08071 Barcelona, Spain

Received December 1994; revised May 1995

Abstract

This work presents a new code for solving the multicommodity network flow problem with a linear or nonlinear
objective function considering additional linear side constraints that link arcs of the same or different commodities. For
the multicommodity network flow problem through primal partitioning the code implements a specialization of Murtagh
and Saunders’ strategy of dividing the set of variables into basic, nonbasic and superbasic. Several tests are reported,
using random problems obtained from different network generators and real problems arising from the fields of long and
short-term hydrothermal scheduling of electricity generation and traffic assignment, with sizes of up to 150000 variables and
45 000 constraints. The performance of the code developed is compared to that of alternative methodologies for solving the
same problems: a general purpose linear and nonlinear constrained optimization code, a specialised linear multicommodity
network flow code and a primal-dual interior point code.

Keywords: Linear programming; Multicommodity Network flows; Network programming; Nonlinear programming; Primal partitioning

1. Introduction

Primal partitioning has been reported for quite some
time to be an appropriate technique for solving the
multicommodity linear network flow problem, and its
algorithm has been described in detail [20], but no
report can be found either of its comparative compu-
tational performance with large scale multicommodity
problems or its adaptation to the nonlinear objective
function case. This work aims at filling this void by
describing the algorithmic principles followed in an
extension of the classical techniques and the compar-
ative computational results obtained with an efficient
implementation.

* Corresponding author.

The multicommodity network flow problem (which
will be referred to as the MCNF problem) can be cast
as

min
Xl,X2,...,XK

h(Xl,X2,...,XK)

subjectto AXk=Rk k=l,...,K,
-

0 < X/c < Xt, k= l,...,K,
K

c xk 6 T,

k=l

(1)

(2)

(3)

(4)

where & E JR” (n is the number of arcs) is the flow
array for each commodity k (k = 1, . . . , K) , K being
the number of commodities of the problem, and h
being a !RKxn + R’ real valued linear or nonlinear
function. A E lP’x” (m is the number of nodes) is the

0377-2217/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved
SSDf 0377-2217(95)00137-9

38 .I. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53

arc-node incidence matrix. Constraints (3) are simple
bounds on the flows, Xk E IV, k = 1, . . . , K, being the
upper bounds. Eq. (4) represents the mutual capacity
constraints, where T E IV.

In this work the original MCNF problem has been
extended to include linear side constraints defined by

(5)

where Lk: Lk E Rpxn, k = 1,. . . , K, and L,U E Rp
(p is the number of side constraints), These side con-
straints can link arcs of the same or different com-
modities. In fact, constraints (4) are a special case of
constraints (5)) but in this work they have been specif-
ically treated, instead of being considered as plain side
constraints. This is made in order to exploit the inher-
ent structure of the mutual capacity constraints. There-
fore, the final formulation of the problem considered
can be stated as follows:

*,,$n,xr (l)

subject to (2)-(5) (6)

and will be referred to as the MCNFC problem.
The code here presented (which will be referred to

as the PPRN code [7] in the rest of the document)
can be viewed as a general purpose code for solving
the MCNFC problem. The MCNFC problem was first
approached for nonlinear objective functions using the
price-directive decomposition [251 but this procedure
does not seem to be as computationally efficient as pri-
mal partitioning [8 1. If the set of side constraints (5)
is empty, code PPRN will only solve a multicommod-
ity network flow problem (MCNF) . If the number of
commodities is equal to one, it will work as a special-
ized linear and nonlinear network flow code with side
constraints, as described in Refs. [20,211. Even in the
latter case the PPRN code can be more efficient than a
plain network flow code with side constraints, due to
the fact of considering a variable-dimension working
matrix instead of a fixed one (as will be shown in later
sections). This can improve the performance of the
algorithm when the number of active side constraints
at the optimum is small with respect to the whole set
of side constraints.

2. Linear multicommodity network flows

If the objective function (1) is linear we will re-
fer to the multicommodity problem (MCNF) merely
as the LMCNF problem. To solve the LMCNF prob-
lem by exploiting the network structure, various tech-
niques have been described in the literature. Some of
them deal with the mutual capacity constraints (4)
in an exact fashion whereas others replace them by a
Lagrangian relaxation in the objective function. The
price-directive decomposition, resource-directive de-
composition and primal partitioning methods [201 be-
long to the first class, and a first attempt at compar-
ing these techniques can be found in Ref. [31. The
Lagrangian relaxation technique does not guarantee
finding the optimal flows, but it can achieve good ap-
proximations simply by solving decoupled single net-
work flow problems obtained by relaxing constraints

(4) ill.
Interior point methods are an alternative approach

to solve the LMCNF problem. These methods appear
to be really efficient when the size of the network is
very large [11,181.

3. The primal partitioning method

A brief description of the primal partitioning
method [20] will be presented, paying special atten-
tion to the changes brought about by considering the
additional side constraints (5).

3.1. Structure of the problem

Given that constraints (2), (4) and (5) in (6) are
linear, it is possible to consider the problem constraint
matrix A. Then each variable jk (that is, each flow j
of the kth commodity) has an associated column @
in A, with the following nonzero components:

i

4
T

Uj, . ..Ujp

Mutual capacity Side constraints

where s and t identify the source and target nodes of
arc jk. It can be noticed that each variable appears
in three clearly different types of constraint: network,

J. Castro, N. Nabona/European Joumal of Operational Research 92 (1996) 37-53 39

mutual capacity and side constraints. The structure of
the network and mutual capacity constraints is inde-
pendent of the commodity, but the structure of side
constraints may be different for each commodity. Net-
work constraints are always active (they are equal-
ity constraints), whereas mutual capacity and side
constraints may not be (as they are inequality con-
straints).

Every basis in the prima1 partitioning method can
be decomposed as follows:

(7)

L’, R2 and 1 being square matrices where
?? L’ refers to the network constraints and arcs of the
K spanning trees. The topology of this matrix is:

each Bk being a nonsingular matrix associated with
the kth spanning tree. L’ can be represented at every
iteration by K spanning trees following the methodol-
ogy described in Refs. [5,151.
?? R’ refers to the network constraints and comple-
mentary arcs of the K commodities. Complementary
arcs do not belong to any spanning tree and they are
just additional arcs exchanged against the active con-
straints (4) or (5).
?? L2 refers to the active mutual capacity and
constraints, for the arcs of the spanning trees.
?? Rz refers to the active mutual capacity and
constraints, for the complementary arcs.
?? Ls refers to the inactive mutual capacity and
constraints, for the arcs of the spanning trees.
?? R3 refers to the inactive mutual capacity and
constraints, for the complementary arcs.

side

side

side

side

?? 1 , an identity matrix, refers to the slacks of the in-
active mutual capacity and side constraints. (It should
be noticed that constraints whose slacks are in matrix
1 are treated as inactive constraints, even though the
slack values are zero).

3.2. Motivation for using a working matrix

During the optimization process systems Bx = b
and uTB = cT must be solved at each iteration, X, u
and b, c being the variable and independent term vec-
tors , respectively. A description of the solution tech-
nique can be found in Ref. [20] and is briefly out-
lined here. Considering for x, u and b, c partitions
X1~x29X39uI~U2~U3 andh7b2,b3,cl,c2,c3 as theone
employed above for the basis B we have
??For Bx = b

x2=(R2-L2L;‘R’)-‘(b2-L2L;‘xl), (8)

xl = L,‘b, - L;‘R’x2, (9)

~3 = b3 - L3~1 - R3~2. (10)

Thus by solving (S), (9) and (10) consecutively we
obtain the solution of the original system.
??For uTB = cT

u3 = c3 , (11)

~2 = ((~2 - c3R3) - (~1 - c3L3W;‘R’)

x(R2 - L2Lr1Rl)-‘, (12)

24’ = (C’ - u3L3 - u2L2)L;‘. (13)

Thus by solving (ll), (12) and (13) we obtain the
solution of the original system.

Thus it is enough to invert the submatrix L’ and
a matrix whose expression is R2 - L2L;’ R’. This
last matrix will be referred to as the working ma-
trix, and denoted by Q. There is no need to invert
L' , given that is a block diagonal matrix, where each
block represents a spanning tree. This kind of sys-
tem can be solved by simply exploiting the tree struc-
ture of the matrix and highly efficient procedures have
been developed [51. Therefore, the problem of solv-
ing both systems of equations is reduced to factorizing
the working matrix Q instead of basis B, and having
a procedure to update this factorization at each itera-
tion [151. Since the dimension of the working matrix
is small compared with the whole dimension of basis
B, it can be expected that the computation time of an
algorithm using this prima1 partitioning will likewise
be small compared with a general-purpose linear op-
timization package. On the other hand, the dimension
of basis B is fixed during the optimization process,
whereas the dimension of Q is variable, given that it

40 J. Castro, N. NabonaIEuropean Journal of Operational Research 92 (1996) 37-53

depends on the number of active mutual capacity and
side constraints. That implies that the updating pro-
cess of the factorization of Q must be able to deal with
variable size, increasing the difficulty of the algorithm
(as will be shown in later sections).

3.3. Computing the working matrix Q

Some new concepts must first be defined in order to
use them in an efficient procedure for computing Q:
??As,: set of active side constraints at current iteration.

??A,,,: set of active mutual capacity constraints at
current iteration.
??A: set of active constraints (mutual capacity and
side constraints), that is, A = A, U A,,.
??ICI: number of elements of set C.
??dim(M) : dimension of matrix M.

Given that R2 and L2 are associated with the ac-
tive mutual capacity and side constraints, they can be
subdivided into two submatrices as follows:

R2 = RL
[1 kc

R2,,
, L2 = [1 L2,, ’

where Rz,,, and Lz,,, refer to constraints belonging to
A,,,, and R2, and L2, refers to constraints of the set

AX.

Q=

Since Q = R2 - L2Ll’ RI, it can also be consid-
as subdivided into two submatrices,

whose dimensions are dim(Q,& = 1 AmI x IAl and

dim(Qsc) = IA,1 x I4
The expression for computing Q involves the calcu-

lation of L;’ RI. Since L1 is a block diagonal matrix
where the kth block is a minimum spanning tree for
the kth commodity, and RI expresses for each com-
plementary arc of the kth commodity its connection to
the kth minimum spanning tree, then solving LF’RI
is equivalent to having the paths (denoted by Pi, j =
1 ..&A]) f ~1 o corn ementary arcs in their associated
spanning trees. Given an arc a E Pj, we will say that
a has normal orientation if it points to the source node
of the complementary arc j; otherwise, it has reverse
orientation.

If we denote by
??a,j the arc associated with the jth column of Q, j =
l,...,JAl;

??mci the mutual capacity constraint of the ith row of
Q,i= l,..., I A,,,, I (this capacity constraint refers to
the saturated arc mci) ;
??SCI the side constraint of the ith row of Q, i = I A,,,] +
1 .., JAI;
??’ B(a, n) a logical function which becomes true if
the arc a appears in the side constraint n, and false
otherwise;
??co,,, the coefficient of the arc a in the side constraint
n;
then we can compute directly the matrix Q as follows:
??Submatrix Qmc:

+1, if aj = mCi,
+l, if mci E Pj with normal

Qij orientation,
i=l,...,Idn,cI =

j=l,...,dim(Q)
-1, if mci E Pj with reverse

orientation,
I 0, otherwise.

??Submatrix Qsc with entries Qij, i = IAmcI + 1,. . . ,
dim(Q), j = 1,. . . , dim(Q), computed following the
following steps:

(1) Set Qij = 0,
(2) If B(a,i, SC~) then Qij = c,~,$~,.
(3) For each a E Pj, perform next 2 steps.
(4) If B(a, sq) and a has normal orientation then

Qij = Qij + Ca.sc,~
(5) If B(a, Sci) and a has reverse orientation then

Qij = Qij - Co,sc,~

A full and more detailed description of the compu-
tation of Q can be found in Ref. [61.

4. Implementation of primal partitioning

The implementation of the primal partitioning
method developed in the PPRN code follows three
stages, called phases 0, 1 and 2, instead of the two
classical phases of the simplex method. Phases 0 and
1 attempt to obtain a feasible starting point, whereas
phase 2 achieves the optimizer. However, although
phases 0 and 1 work sequentially to find a feasible
point, it can be said that primal partitioning is only
applied in phases 1 and 2. The following subsections
will clarify these ideas by describing each phase.

For computational purposes the inequality con-
straints (4) and (5) in the original MCNFC problem

J. Castro, N. NabonalEuropean Journal of Operational Research 92 (1996) 37-53 41

are replaced by equality constraints by adding slacks,
obtaining:

f-, Xk+S=T, O<S, (14)
k=l

K

c LkXk+t=u, O<t<lJ-L, (15)
k=l

where s E R” and t E IF’. In this formulation Eqs.
(14) and (15) replace the original Eqs. (4) and (5).
Then the formulation of the problem considered by the
algorithm (which will be referred to as MCNPC2) is

min
XI.X?....,XK (1)

subject to (2), (3), (14), (15). (16)

It can be noticed that the current version of PPRN
cannot deal with lower bounds other than zero in the
variables.

4.1. Phase 0

In phase 0 the algorithm considers only the network
constraints and bounds on the variables of the problem,
without any constraint linking the flows of different
commodities. It attempts to obtain for each commodity
k, k= I,... , K, a feasible starting point for the linear
network problem:

rn*m C,TXk

subject to AXk = Rk ,

0 6 xk < xk, (17)

where Ck refers to the cost vector for commodity k
if C I) is linear, or an arbitrary cost vector provided
by the user (which can be the gradient at some initial
point xg) if the problem to be solved is nonlinear.

This problem is solved by applying a specialization
of the simplex algorithm for networks. The implemen-
tation developed mainly follows the ideas described in
Ref. [151 with regard to the pivotal operations when
managing the spanning trees. It is important to note
that phase 0 has nothing to do with primal partition-
ing, as it only solves single network problems.

The code developed can either merely obtain a fea-
sible point for (17) or reach its optimum solution.
(The default option is to obtain a feasible point).

4.2. Phase 1

The K points obtained in phase 0 will not satisfy
in general the mutual capacity and side constraints.
thus giving rise to a pseudofeasible point. That im-
plies than some slack variables s for the mutual ca-
pacity constraints or t for the side constraints will be
out of bounds. Let Jik, k = 1 . . . K be the pseudofea-
sible point obtained; then the following index sets are
defined:

S--(i: ($2k);>Z*Si<O},

‘;ii: ($Lk*k)i>“i%ti<o},

<LiHti>(U-L)i

i

Introducing new artificial variables e and f, and fixing
initial values for s and t such that

+ Si - ei = T; Si=O; ViES-,

i

+ti+fi=Ui; t; = (U - L)i;

i Vi E t+.

The problem to be solved in phase 1 is

min
XI ,.L...,XK,s,t,e,f

C ei + C fi + C fi (18)

iEs- iEt- iEt ’

subject to (2), (3),
K

c xk f S f l’e = T, (19)
k=l

Lk&+t+l+~, (20)
k=l

42 J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53

O<t<U--L, o<s,

06e, o<.f,

where both matrices 1” E Wnxn and lf E E!YxP in
(19) and (20) are diagonal and defined as follows:

1 -1, ifiE t-,
(lf>jj= i-l, if i E t+,

0, otherwise.

It can be noticed that the objective function (18) at
phase 1 is nothing but the sum of the infeasibilities of
the mutual capacity and side constraints. Therefore,
the MCNFC2 problem defined in (16) will be feasible
if, at phase 1, the value of (18) at the optimizer is 0.

Dividing the process of finding a feasible starting
point for problem MCNFC2 into two stages (phases
0 and 1) has proved to be very efficient in number of
iterations with respect to methods that starting from
any given point consider the sum of infeasibilities for
all constraints.

4.3. Phase 2

Once a feasible point has been obtained, phase 2 at-
tempts to achieve the optimizer of the objective func-
tion. The primal partitioning method, as presented in
Ref. [201, was intended for linear objective functions.
In this case PPRN works as a specialized simplex al-
gorithm based on primal partitioning, where the main
implementation detail is based on the pivot operations
described later.

However, when optimizing nonlinear functions, pri-
mal partitioning can be applied together with Murtagh
and Saunders’ strategy - described in Ref. [221 - of
dividing the set of variables into basic, superbasic and
nonbasic variables:

a = [B 1 s 1 iv] ,

A being the matrix of constraints (2), (4) and (5).
The efficiency in managing the working matrix Q with
respect to the whole basis B is preserved in the nonlin-
ear case. Furthermore, the structure of network, mu-
tual capacity and side constraints, can be exploited,
improving the computation time with respect to gen-

eral methods of optimization where these constraints
are treated in a general way.

Suppose that at iteration i we have (the subscript i
is omitted in almost all cases to simplify the notation) :
??xi, h(xi) : the current feasible point and the value of
the objective function at this point.
??B, S, N: the sets of basic, superbasic and nonbasic
variables. B is represented by just K spanning trees
and an LU decomposition of the working matrix Q.
??g(Xi): where g(xi) = Vh(xi) divided into g(xi) =
[gB 1 gs 1 g,v] for basic, superbasic and nonbasic
variables.
??Z: a representation matrix of the null subspace of the
constraint matrix A defined in (4.3). The expression
for Z is

-B-IS
z= 1 .

[1 0

It can easily be observed that AZ = 0.
??g, , es: : the current reduced gradient g, = ZTg(Xi),
and a tolerance to estimate when its norm is small
enough.
??x a vector satisfying rTB = gs.
Then the algorithm of phase 2 can be expressed as
the following succession of steps (steps where one
can take advantage of the particular structure of the
constraints are marked with (*)) :

Step 1. Optimality test in the current subspace.
(i) If l]gz]l b ??g: go to Step 3.

Step 2. Price nonbasic variables.
(i) Compute Lagrange multipliers A = g,v - NTr.

(*)
(ii) Choose a suitable A, and the associated column

N,. If no multiplier can be chosen go to Step 8.
(iii) Update data structures: remove N, from N and

add it to S; add A, as a new component of g, .

Step 3. Find descent direction PT = [PB 1 PS) OIT for
basic and superbasic variables.

(i) Solve ZTHiZPs = -g,, where Hi = V*h(xi).
(*)

(ii) Solve BPE = -SPs.
Step 4. Ratio test.

c*>

(i) Find urnax > 0 such that xi + crmaxP is feasible.
(ii) If amax = 0 go to Step 7.

Step 5. Line search.
(i) Find LY* such that

J. Castro. N. Nabona/European Journal of Operational Research 92 (1996) 37-53 43

h(Xi+CY*P) =,<~I h(Xi+CfP)
\\-

(ii) Update the new point xi+1 = xi+ of P, and com-
pute h(xi+i) and gi+i.

Step 6. Update reduced gradient g, .
(i) Solve vrTB = gi.

(ii) Perform g, = gs - ST,rr. ;:;

(iii) If cy < amax go to Step 1.
Step 7. A basic or a superbasic variable becomes non-
basic (it reaches its lower or upper bound).

(i) If a superbasic variable S, hits its bound then:
- Remove the component of g, associated with

the column S,, from S.
- Remove S,, from S and add it to N.

(ii) If a basic variable B, hits its bound then:
- Find a superbasic variable S, to replace B, in

B preserving the nonsingularity of the basis.

(*)
- Remove B, from B and add it to N. Remove

S, from S and add it to B (pivot operation).
This involves updating the working matrix Q
since a change in the basis B has been made.

- Update rr.
- Perform gz = gs - ST,rr.

(iii) Go to Step 1.
Step 8. Optimal solution found.

(*)

Some comments should be made about the finer
points of this algorithm:

(a) Computing the descent direction. The current im-
plementation of the program makes it possible to solve
the system ZTi?ZiZPs = -g, in Step 3 (i) by two meth-
ods: through a truncated-Newton algorithm [121, or
using a quasi-Newton approximation of the projected
Hessian ZTHiZ [22]. In neither case is an analyti-
cal expression for the Hessian of the objective func-
tion (1) required. Thus the PPRN code only needs the
evaluation of the objective function and its gradient.

The algorithmic details on this implementation can
be found in Ref. [IO].

(6) Optimal@ test in the current subspace. At each
iteration it must be tested whether the optimum point
of the current subspace has already been reached
(Step 1 (i) of the algorithm). However, the test per-
formed is much more exhaustive than simply ascer-

mining whether 1 lg, 11 2 Ed_. Actually, the code dis-
cerns between two situations: when we have still not
reached the optimum active constraint set (thus being
far from the optimizer) and when we are already in
the optimum active constraint set and merely a final,
more accurate subspace minimization is required. The
variable cs tells us which is the current situation, and
it can take the values “far” or “near” depending on
whether we are in the first or the second case. The
code uses six logical variables (Ti) to decide whether
or not the optimum point has been achieved in the
current subspace. Each Ti is defined as follows.

Tl := (~*II~sIl, < (&“;‘-I- d&&l + Il4Id) 3
T2:=(IAhl 6 (EC~S+EMU)(I + IhI)),

T3 := (Ildx GT,:) 9
T4 := (llszllm < max{T,r/10,~g~(lI~ll~)})3
T5 := ((Tj is active) and (cs = “far”) and

(nsame 6 MAXsame)) ,

T6 := (ncurrent 6 MAXcurrent) .

The first test, TI , controls whether the l-norm of the
current movement in the superbasic variables cy*)) PSI I 1
is significant with respect to the l-norm of the super-
basic components of the current iterate I Ix,~I 11, using
for such comparison the machine precision EM and
the value E? which depends on the variable cs (if
cs= “near” this value will be much smaller than when
cs= “far”, requiring a smaller movement to satisfy the
test).

The second test, T2, will be true when the variation
in the objective function /AhI is not significant with
respect to the absolute value of h at the current iterate
(I hi) . The value aCfS used in the comparison depends
also on the variable cs, and, as in the previous case,

9
““ear” << eF”.

At test T3 the tolerance TRz has been previously com-
puted as TRL = ~~Jlg~llm9 where gf was the reduced
gradient vector at the first point of the current sub-
space, and vif E [0, 11 is a value that can be chosen
by the user. Thus, this test attempts to control when a
sufficient reduction in the reduced gradient has been
made since the minimization in the current subspace
started. When cs =“near” it is desirable to require a
greater reduction in the projected gradient, so, as in
previous cases, vif”“” < vfi, .

44 J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53

The next test, T4, will be true when the reduced gra-
dient is so small that the current point can be consid-
ered to be the optimum one of the current subspace.
In this case the value eR does not depend on how far
we are from the optimum active constraints set (vari-
able cs), and ~(ll~ll~)} is a function that depends on
the 7r vector computed in Step 6 (i) of the phase 2 al-
gorithm. In the current implementation of the PPRN
code E(I~T~II) has been defined as

(21)

where m was the number of nodes, K the number of
commodities, II the number of arcs and p the number
of side constraints. The coefficient JmK + n + p is an
attempt at scaling the optimality tolerances depending
on problem size.

The last two tests have been included for highly non-
smooth functions where the four previous tests could
mean very slow convergence. The first of these two
tests (Ts) is inactive by default (the user can decide
to activate it if he/she so desires) and can only be ap-
plied when we are far from the optimum. T5 will be-
come true if the first three tests, Tl , T2 and T3, gave the
same result during MAXsame consecutive iterations
in the current subspace (where the value MAXsame
can be chosen by the user). The second one (T6) con-
trols whether the number of iterations in the current
subspace ncurrent is greater than a maximum allow-
able value MAXcurrent.

Once the six logical tests have been made, the code
will consider that the optimum in the current subspace
has been reached if the logical variable T is true, where
T is defined as

T:=(T,andT2andT3)orTqorTgorTg. (22)

Thus, in Step 1 (i) , the condition that is really verified
as the criterion for going to Step 3 is “if T is true”
instead of If I lg,(I > egZ .

(c) Choosing a nonbasic variable to become superba-
sic. In Step 2 (ii) the process of choosing a nonba-
sic variable to enter the superbasic set was reduced to

choose a suitable A, and the associated column Nq .
In fact, the PPRN code implements a more elaborated
algorithm for this point, which is most crucial since a

bad choice or poor tolerances may mean slow conver-
gence when finding the optimum active constraint set.

The following algorithm is the very sequence of
steps in which point 2 (ii) is expanded in the PPRN
code. The algorithm uses a tolerance Tn, for choos-
ing a good multiplier h,. At the beginning of phase 2
this tolerance is initialized with an arbitrary high value
cq. The variable cs for knowing how far we are from
the optimal active constraints set is also consulted and
updated in this algorithm. The function E() ITI 11) was
defined in (2 1) , and the tolerance Ts: - to detect a suf-
ficient reduction in the norm of the reduced gradient
I lg, I loo - was already introduced in the previous sub-
section. The value eopt, chosen by the user, is the op-
timality precision required at the optimum point (by
default Eopt = 10w6).

(0)

(1)
(2)

(3)
(4)

(5)

(6)

At the beginning of phase 2 set T+ = e<, and
cs = “far”.

TA, = max{TA4, 1.12. Ilgzllm).
Find the first A4 such that /AsI 2 TAG or, if there
is none, the greatest I&J.
If (I&l > TAG) go to (7).
No multiplier satisfies the current tolerance T,+,, .
If (IA91 2 •opt41~lll)) then
(i) TAG =m~~l~,l/lO,~opt~(~I~TT(I~)}.

(ii) Go to (7).
No multiplier is greater than the optimality tol-
erance EoptE(ll~ll1). We are near the optimum.
If ((cs = “near”) or (I lg, I loo 6 ~opt4/ ITI I I 1) >
then go to (8).
No multiplier is greater than the optimality toler-
ance and the point does not satisfy the optimality
conditions. We adjust the tolerances for a more
accurate optimization - probably the last - in the
current subspace.
Ci) 7. _ ~ww Il~Zll~~ g: - rn .

(ii> If (Tg2 < ~opt41141~) then
- cs= “near”.

- TR: = +,ptE(II~II1).
[iii) Continue with Step 3 of the phase 2 algo-

rithm.
(7) A suitable A, has been found:

(i) Update Ilgzllm = m~Wq17 llgzllm~~
(ii> Update T,: = v~flIgzlla,.

(iii) If (cs = “near”) then cs= “far”.
(iv) Continue with Step 2(iii) of the phase 2 al-

J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53 4s

gorithm.
(8) The current point satisfies the optimality condi-

tions. STOP: optimal solution found.

The main idea of this algorithm is to use initially
an arbitrary high tolerance TA, and to reduce it when
no multiplier can be found greater than this tolerance.
This value is reduced until it reaches the optimality
tolerance ~,r+(11~11,). When that happens it can be
considered that the optimum constraints set has been
found, and the tolerance Tgz is adjusted for a final,
more accurate optimization in the current optimum
active constraints set. It must be noted that at Step
1 we always choose the greater value between 1.12 .

Ilg~llcc and TA, for finding a good A,, following the
recommendation in Ref. [221. This is done because
the chosen h, will be added as a component of the new
reduced gradient, which means that this value will be
significant with respect to the rest of components of
the current gZ.

(d) Pivot operation. In case of a nonlinear objective
function (1), when a basic variable hits its bound in
Step 7(ii), a column of the basis B is removed and
replaced by a column of the superbasic set S. If the
objective function is linear a column of the basis is
replaced by a nonbasic column. In both cases the new
basis (denoted by B,) could be expressed as B, = Bq
being ~7 a convenient eta-matrix. However, the algo-
rithm does not work with the whole basis B. For our
purposes it is necessary to reflect how this change in
the basis affects the K spannings trees and the working
matrix Q. During the pivotal operations the dimension
of matrix Q can be modified, since dim(Q) = (Al
(where Id(is the number of active mutual capacity
and side constraints). Considering that the variables
of the problem can be arcs or slacks (and the arcs of
the basis B can be subdivided into arcs of the K span-
ning trees or complementary arcs), then, depending
on the type of variable entering and leaving the basis,
the following six cases can be observed (denoting by
“E: -” the case of an entering variable and by “L: -”
the case of a leaving variable) :
??E: slack-l: slack. The row of Q associated with the
entering slack is removed and replaced by a new row
for the leaving slack. dim(Q) is not modified.
??E: slack-l: complementary arc. The row and column
of Q associated with the entering slack and leaving

complementary arc respectively are removed. dim(Q)
must be updated as dim(Q) - 1.
??E: slack-l: aTc of kth tree. A complementary arc of
the kth commodity, e.g. the jth complementary arc,
having the leaving arc in its path Pi, must be found
to replace the leaving arc in the kth tree. This com-
plementary arc will always exist (otherwise the basis
would become singular). The row and column of Q
associated with the entering slack and the jth comple-
mentary arc are removed. dim(Q) must be updated as
dim(Q) - 1.
??E: arc-L: slack. A new row associated with the leav-
ing slack is added to Q. To maintain the nonsingularity
of Q a new column for theentering arc - which will be-
come a complementary arc - is also added to the work-
ing matrix. dim(Q) must be updated as dim(Q) + 1.
a E: arc-L: complementary arc. The column of Q as-
sociated with the leaving complementary arc is re-
moved, and replaced by a column corresponding to
the entering arc, which will become a complementary
arc. dim(Q) is not modified.
??E: arc-L: arc of kth tree. A complementary arc of
the kth commodity, e.g. the jth complementary arc,
having the leaving arc in its path Pi, is sought. If this
arc is found, it will replace the leaving arc in the kth
tree, and the entering arc will become a complemen-
tary arc. If no complementary arc is found, then the
entering arc will replace the leaving arc in the kth tree.
One of the two possibilities described will always hap-
pen, otherwise the basis would become nonsingular.
dim(Q) is not modified.

It has not been made explicit, but it must be noticed
that, when rows of the matrix

Q=[F]
SC

are removed or added, depending on the type of asso-
ciated slack (whether it is a slack of mutual capacity
or side constraints) the operations will affect the sub-
matrix Qmc or/and Q,,.

5. Updating the working matrix

The way in which the working matrix is handled
is instrumental in ensuring the efficiency of the al-
gorithm, since it is the only matrix to be factorized
(together with matrix R that has been presented in

46 J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53

the former section). Several tests have shown that the
sparsity of Q is, in general, high (Q has less than
10% nonzero elements). The current implementation
of code PPRN performs a sparse LU decomposition
of Q with partial pivoting allowing a choice between
two ways of pre-reordering the matrix: applying either
the P3 algorithm developed by Hellerman and Rarick
[161 or a pre-reorder which attempts to put all the
spikes at the end of the matrix. The latter pre-reorder
is taken as default.

An initial description of how to update this matrix
was made by Kennington and Helgason in [201. Two
importants remarks should be made on the approach
described there:

(i)

(ii)

It only considers the updating of the Q matrix
with mutual capacity constraints. As mentioned
above, the updating of Q in code PPRN has been
extended to include side constraints.
It considers an updating of Q-’ instead of Q. The
difficulty of the variable dimension of Q at each
iteration means that updating Q-’ is a costly op-
eration if it is stored as a sparse matrix, since it is
necessary to add or remove columns in a sparse
structure. On the other hand, it seems inappropri-
ate to store Q-’ as a dense matrix, given its high
sparsity. This led one of the authors to develop
an ad hoc and very efficient update of Q, instead
of its inverse [6].

It is beyond the scope of this paper to describe all
the formulae required in the updating process, as they
were developed in a previous work [61, Nevertheless,
a brief outline will be given here.

Let us consider that at iteration p the working ma-
trix Q, is recomputed (not merely updated), with di-
mension dim(Qp) = np, and that it will not be newly
recomputed until after i iterations (that is, until itera-
tion p + i), where its dimension will be dim(Q,+i) =
n,,+;. Since the dimension of Q can only increase at
most by a row and column at each iteration, it follows
that n.i < nt, + i, V j p < j < p + i, p + i being the
maximum dimension of Qj between iterations p and
p + i. Thus the proposed procedure would be to work
with an extended matrix Qj at iterations j, p < j <
p + i, where ~j is defined as

tij lj

Dimensions n,i and 1.i of matrices Qj and identity 1
satisfy nj + lj = np + i, i.e. the extended matrix Qj
has at every step the maximum dimension that Q,i can
achieve between iterations p and p + i.

Thus the structure that will be updated will be that
of the extended matrices Dj, even though the systems
to be solved are systems Qjxj = bj and xTQ,i = b;.
In fact these systems can be directly computed from
ei, using Fj and gj, which are extensions of x.i and
bjs such that

Then

{

ffj = 0
- [ejx,

the marked expression being the desired result. Anal-
ogously XTQ,i = b; can be solved in the same way.

The increase (decrease) in the number of
rows/columns in Qj can now be treated through
direct pre and post-multiplications by eta and permu-
tation matrices, implying that nj will become n,i + 1
(nj - 1) and_ the identity submatrix in the bottom
right part of Q, will lose (gain) a unit in dimension.

Therefore, it is clear than gi+] can be updated from
~j through ~j+l = EjQj Fj, where Ej and <i are
made up of eta and permutation matrices. Recursively
it is possible to write Dj+l = EjEj-loj-1 Fj-1 Fj,
and so on, until reaching iteration p where the work-
ing matrix was recomputed. Thus it can be written
in a general form V j, p < j < p + i, Dj = EapF,
where E = n{ip Ej-1 and F = IT{:” E,+l_l. So
the solution to system CjYj = EGpF Ifi = qi can be
computed as follows:

DpFIifj = E-‘Zj,

Qpzj = E-‘bj, where zj = F Tj ,

zj = a-‘E-‘E. P J

and finally

J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53 41

Ifi = F-'z,i .

Since Q,, has been factorized when recomputed, to
solve the required systems E and F must simply be
inverted at each iteration. Nevertheless, the inverses of
E and F are directly computed, since they are nothing
but products of eta and permutation matrices. In fact,
code PPRN directly stores the inverses of E and F,
which continue to be products of eta and permutation
matrices.

6. Computational results

This section will present the results obtained on a
set of linear and nonlinear test problems, comparing
PPRN with other available codes. PPRN is mainly
written in Fortran-77, with the routines for the dy-
namic memory assignment coded in ANSI-C. All runs
were carried out on a Sun Spare lo/41 (one CPU),
having a rise-based architecture, with a 40 MHz clock,
about 100 Mips and about 20 Mflops CPU, and 64
Mbytes of main memory (32 real and 32 mapped in
disk).

6.1. Tests of linear problems

Two types of linear problems have been employed
to test the performance of the code. The first type
was obtained from five network generators, while the
second one arises from the field of long and short-term
hydrothermal coordination of electricity generation.

The first four network generators employed (Rm-
fgen [141, Grid-on-torus, Gridgen and Gridgraph)
were taken from the suite of generators distributed
for the First DIMACS International Algorithm Imple-
mentation Challenge [131. They are freely distributed
and have been obtained via anonymous ftp from di-
mawrutgetxedu at directory/pub/net$ow. These net-
work generators do not consider the case of multicom-
modity flows, and the output network had to be con-
verted to a multicommodity one. The conversion algo-
rithm is described in Ref. [91. Besides, although code
PPRN can deal with side constraints, the generators
produce networks without them. Thus all test problems
obtained through generators have no side constraints.
Eight particular instances have been created with each
of these four generators. These eight instances can be

classified into two groups of four instances. The first
group is made up of problems with few commodi-
ties and medium-sized networks, whereas the second
group is composed of small networks with many com-
modities. The input parameters for each generator are
fully detailed in Ref. [91. Each test problem will be
denotedasLi(.i),i=l ,..., S,j=l,..., 4,jdenoting
the generator employed (1 for Rmfgen, 2 for Grid-on-
torus, 3 for Gridgen and 4 for Gridgraph).

The fifth generator used is Mnetgen [2], a mul-
ticommodity generator without side constraints. Six
tests have been performed with this generator; they
will be denoted as Lies), i = 1 .‘,

The second type of problems
6.

was obtained as in-
stances of long and short-term hydrothermal schedul-
ing of electricity generation according to the models
proposed in Refs. [24,171 (where a comprehensive
explanation of the models can be found). The orig-
inal nonlinear objective function has been linearized
so that it can be solved as a linear problem. The long-
term model produces multicommodity tests (that will
be denoted as Lic6), i = 1,. . . ,5), whereas the short-
term model gives rise to single-commodity problems
with side constraints (that will be denoted as Lic7), i =
192).

Table 1 shows the characteristics of the linear prob-
lems. The first column, “test”, is the name given to the
test instance. Column K denotes the number of com-
modities considered in the test. The column “#s.c.”
gives the number of side constraints considered in
the problem. Columns “nodes” and “arcs” give the
number of nodes and arcs of the single commodity
network. Columns “rows A” and “columns A” give
the dimensions of the constraint matrix of the stan-
dard form of the multicommodity network problem
to be solved (that is, with inequality constraints con-
verted into equalities by adding slacks). It can be
observed that “rows a”= K.“nodes”+“arcs”+“#s.c.“,
and “columns A”= K~“arcs”+“arcs”+“#s.c.” (these
last two terms correspond to the slack variables asso-
ciated to constraints (4) and (5)). The last column
shows the optima1 objective function value.

PPRN has been compared with the general-purpose
package MINOS 5.3 [23], the MCNF85 code [191
(a specialized code for linear multicommodity prob-
lems - it does not support side constraints) and the
LoQo package [271 (a state of the art primal-dual in-
terior point implementation). The default values were

48 J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53

Table I
Linear test problems

Test K #s.c. Nodes Arcs Rows d Columns A Optimal value

1 0 2048 9472 2048 9472 375675.1
4 0 2048 9412 17664 47360 2027285.0
8 0 2048 9472 25856 85248 4506263.3

16 0 2048 9472 42240 161024 9870432.7
50 0 128 496 6896 25296 11839382.1

100 0 128 496 13296 50096 27150952.5
150 0 128 496 19696 74896 39835825.1
200 0 128 496 26096 99696 54343948.3

1 0 1500 9000 1500 9000 36896.8
4 0 1500 9000 15000 45000 187962.0
8 0 1500 9000 21000 81000 1197048.7

16 0 1500 9000 33000 153000 5876840.3
50 0 100 600 5600 30600 5207622.6

100 0 100 600 10600 60600 12922703.9
150 0 100 600 15600 90600 22663204.5
200 0 100 600 20600 120600 36829147.5

1 0 2502 5000 2502 5000 94212753.2
4 0 2502 5000 15008 25000 355884986.5
8 0 2502 5000 25016 45000 128743093.6

16 0 2502 5000 45032 85000 253615755.8
50 0 227 450 11800 22950 27853327.9

100 0 227 450 23150 45450 65 144564.0

150 0 227 450 34500 67950 27066715.2
200 0 227 450 45850 90450 37964963.7

1 0 976 7808 976 7808 5541980.3
4 0 976 7808 11712 39040 23223474.9
8 0 976 7808 15616 70272 61792270.7

16 0 976 7808 23424 132736 165808232.3
50 0 101 606 5656 30906 1409470.3

100 0 101 606 10706 61206 2940217.3
150 0 101 606 15756 91506 4614971.4

200 0 101 606 20806 121806 6440385.5

4 0 50 104 304 520 378009.3
8 0 300 671 3071 6039 9890447.9

16 0 300 681 5481 11577 18700864.0

16 0 400 821 7221 13957 23697345.2
31 0 300 613 9973 21536 36907046.0
48 0 300 683 15083 33467 54636652.8

2 37 117 267 587 - 1282480.0
12 37 153 313 777 -57 1304.7
18 25 98 216 508 -400688.8
3 99 315 714 1578 -995067.1

3 685 2141 4884 10708 7 1115082.6

36 85 348 121 384 - 16.9344
504 1177 4872 1681 5376 -54.43203

J. Castro, N. NabonaIEuropean Journal of Operational Research 92 (1996) 37-53

Table 2
Results for the linear test problems

49

Test h.0

PPRN MINOS MCNF85 LQQO

It. 1 1t.2 CPU set It.1 1t.2 CPU set It. CPU set It. CPU set

5689
12103
24486
48928

7962
I5924
23129
32188

6746
IS464
31241
60086

7348
1 so53
22345
29930

4178
16590
26161
51537

8735
17425
25693
53524

7576
33544
69242

131.543
15113
30825
44646
59639

310
4094

11019
14190
21559
34521

184
162
219
646

5200

228
3750

0 0
13 818

389 4510
6317 21024
2219 5861 6669 22071 2639.4
5856 32175 20829 123619 29665.3
8879 60974 b

11219 88548

0 74 12 8007 160.3
556 8320 312 68429 10594.5 10358 684.3

3840 40630 b 43226 4833.0’
12080 170041 182343 34383.0*

1313 3660 3163 12932 1402.8 9777 466.9
509 1 19170 38924 15696 18085.3 26345 3135.8

12590 59436 144062 253256 105082.5 74806 15836.2
31574 127657 246426 81903.5

0 0 820 2874 97.5 d

2544 9429 12561 44814 10225.6 22280 1370.7
2500 8620 b 25426 2134.1

12221 49034 91939 14709.9
1645 5497 3869 16580 3172.8 12533 533.9
6549 33218 b 42553 5381.2
6052 22811 a 37013 6142.8

10392 43132 a 59798 19458.0

0 0 193 4246 70.4 d

625 5845 7330 68026 9017.3 e

3011 35263 57801 870882 205836.0 e

11892 248422 c e

110 592 1617 9779 918.2 e

498 2046 5336 31486 6147.6 e

831 2999 8862 46991 15236.6 e

1528 7504 E e

19 21 145 162 1.6 400 4.0
288 1190 3125 4173 212.8 5450 112
299 1514 547 1 6697 733.4 8743 266.2
497 2386 5473 7666 1108.3 10240 371.0
525 5413 9570 13547 2141.2 17671 788.0
695 5930 13961 18887 7140.4 23440 1707.6

71 82 238 79 2.5 I

79 86 154 230 3.1 f

276 343 222 218 2.3 f

434 1508 542 796 13.7 f

3665 10933 2312 8333 1110.3 f

106 40 128 159 2.8 f

1921 446 2171 1812 252.3 f

6.5’
98.7’

137.9’
6838.7

275.1’
2747.0’
8069.0*

15415.3*
6.9’

537.9*
4962.2

37470.5
169.2*

1625.4’
7605.5*

22218.4*
4.4*

807.7’
1409.2’

14139.s*
364.9*

4264. I *
4480.5*

11736.8*

5.1’
334.5’

3424.1.
40974.1*

39.4*
192.2*
415g*

1273.4’

0.3’
21.7’
46.5’
95.0*

293.2’
526.0’

0.5’
0.6’
0.9’
6.8

348.5

0.5*
46.0

0
5
9

4084
19864
47769

112.6
3628.5

15147.7

d

7809 588.5
16452 1778.2
31178 5652’

8719 398.6
36717 4305.5
55817 11319.0
82306 26479.9

20

36

25

49

32
31

39

22

14
20
19
22
22

14
13
23
18
24

17
21

499.65
E
I
s

3402.8
I
s

s

410.4
s
8
E

5211.1
f
I
f

29.8
874.1

E
f

3180.4
E
E
I

362.1
e
s
E
s
I
s
P

0.8
119.9
763.1

1909.5
2058.6

E

1.0
1.1

2
4.1%

111.6’

1 .o
30.68*

d Too many constraints.
h Error during execution.
’ Not executed (the execution would be too long).
d Not executed (single commodity problems were not executed
with MCNWS).

e Feasibility error.
f MCNFSS cannot solve problems with side constraints.
s Not enough memory to run this problem.

SO J. Castro, N. NabonalEuropean Journal of Operational Research 92 (I 996) 37-53

used for all the adjustable parameters of the codes
(only PPRN has been tuned to find the optimal solu-
tionof(17)atphaseOattestsLi(.“,i=1,...,8,j=
1, . . ,4, instead of finding just a feasible one, which is
the default option). In all the executions all the codes
reached the same optimal objective function value (in
fact there were some differences but none significant).
Table 2 shows the results obtained with all the codes.
For PPRN the information disclosed includes columns
“It.0” (number of iterations at phase 0) , “It. 1” (num-
ber of iterations at phase l), “It.2”(number of itera-
tions at phase 2) and “CPU sec.“(CPU seconds spent
by the execution). For MINOS the same information
is given excluding column “It.0”. For MCNF85 and
LoQo, besides the “CPU sec.” column, column “It.”
gives the total number of iterations required. For each
test the fastest execution (of those successfully fin-
ished) is marked with an asterisk (*) in the “CPU
sec.” column.

In Table 2 it can be observed that there were some
problems in the execution of some tests (these are
mentioned in the legend at the bottom of the table).
Minos could not solve problems with more than 32767
constraints, since it stores the number of rows in a
two-bytes signed integer. MCNF85 stopped some ex-
ecutions with a message of “feasibility error”, mean-
ing that it had difficulty in finding a feasible point. It
can also be seen that the interior point code LoQo re-
quired a large amount of memory to solve this kind of
problems. Thus, where it would have been possible to
take advantage of the interior point methodology, the
big examples could not be executed.

6.2. Tests of nonlinear problems

Two sets of problems were employed to test the
performance of the code for the nonlinear case. The
first set are expensive (in computation time) artifi-
cial problems, while the second arise from the fields
of long- and short-term hydrothermal coordination of
electricity generation and traffic assignment.

Three different artificial objective functions were
tested. The first two are simple convex functions de-
fined by

h(2)(XI,X2,..., XK>
k=l i=I

Xk; being the flow of the ith arc and kth commodity.
The third objective function is derived from that de-
scribed in Ref. [261, and is defined as

h’3’(X, x2 , ,..., &) = 2 Fk(xk) ,
k=l

Fkcxk)=-$:,
r=l

1+ x;i + (xki - xk,i+I I2

+ -++&L)ixki)4] (23)
i=l

ct , ~2, c3 E R (in the executions performed ct = 1000,
c2=1000andc3= 1200). Despite their simplicity,
these three objective functions have solutions with a
high number of superbasic variables, which increases
the execution time considerably. Three networks were
used with these artificial objective functions, which are
real ones and were obtained from long-term hydrother-
mal scheduling problems that will be introduced later.
We will refer to these tests as Ni(j), i = 1,. . . ,3, j =
1 .., 3, where the subscript i identifies the network
t&d and the superscript (j), j = 1, . . . ,3 refers to
the artificial objective function ((6.2)) (6.2) or (6.2),
respectively).

As in the linear case, the second set of problems
was obtained as instances of real problems. These can
be divided into two types of models. The first type are
long and short-term hydrothermal scheduling prob-
lems of electricity generation according to the models
proposed in Refs. [24,17] (where a comprehensive
explanation of the objective functions can be found).
These models are the same as those used in the linear
case, but consider the real function instead of a lin-
earized one. The long-term problems will be denoted
asNic4),i=1,... ,3, whereas the short-term ones will
be denoted as Nic5), i = 1,. . . ,4. The second type of
problems arise from the field of static user equilibrium
traffic assignment problems with inelastic demand and

J. Castro, N. NabonalEuropean Journal of Operational Research 92 (1996) 37-53 51

Table 3
Nonlinear test problems

Test K #SC. Nodes Arcs Rows .i Columns fi

N,‘,) a 4 12 37 153 313 777
N*(j) a 4 3 99 315 714 1578
N?(j) a 4 3 685 2141 4884 10708

NI’~’ I 528 1345 4416 1873 4944
N2t5) 1 840 1975 6048 2815 6888
NT’~’ I 840 2479 8064 3319 8904
Nj’5) 1 1848 4741 15600 2289 17448

N,ch) 16 0 182 309 3221 5253

“.j= I ,,,., 4.

separable link cost functions [4]. This problem has
been formulated as a multicommodity problem, con-
sidering that each commodity kij is the traffic flow

leaving from origin i and arriving at destination j. A
more detailed description of the model and the ob-
jective function employed can be found in Ref. [lo].
Only one test problem was used with this objective
function, This problem corresponds to a subnetwork
of the city of Barcelona (thus being a real case net-
work), and will be denoted as Nt (@. Table 3 shows the
characteristics of the nonlinear tests employed. The
meaning of the columns is the same as in Table 1.

For the nonlinear tests PPRN has been compared
only with the general-purpose package MINOS 5.3
[23], since no other specialized code for nonlinear
multicommodity flows with side constraints is known.
Table 4 shows the results obtained with both codes.
The information disclosed is the same as in the Table
2, considering an additional column “!I(x*)” with the
optimal objective value found with each code. The
fastest execution is also marked with an asterisk (*)
in the “CPU set” column.

Some comments should be made about the results
presented:
??In the problem N3 (4) PPRN and MINOS obtained
different solutions. This is due to the nonconvexity of
the objective function for the long-term hydrothermal
model.
?? In all runs the optimality tolerance required was
E0p1 = 10e6. Only for test problem N2c4) could this
tolerance not be achieved for both codes, due to the
nonlinearities in the long-term hydrothermal objective
function. In this case, the PPRN code reduced E&

more than the MINOS package (eopt = 3.1 x 1O-3 for
PPRN whereas MINOS achieves a point where eopt =
1.7 x lo-*), thus reaching a best optimum point (this
is why both codes have a different objective function
value, rather than considering different local minima).
??As stated previously, PPRN and MINOS were ex-
ecuted with the default options. This meant that the
PPRN code computed ZTHZPs = -g, using the
quasi-Newton methodology while s < 500 (s being
the number of superbasic variables), and changed
to the truncated-Newton algorithm when s > 500.
On the other hand, the MINOS package always per-
forms a quasi-Newton update. This affects heavily
the performance in test problems Ns(’), Ns(*) and
N3c3), where the number of superbasic variables at
the optimum is very high. In these three cases the
time spent by PPRN is much less than that required
by MINOS, even though the PPRN code performs
many more objective function evaluations since it is
using the truncated-Newton algorithm. Thus, it can
be concluded that the different behavior of both codes
in these examples is mainly due to the different al-
gorithm used for computing the superbasic descent
direction when the number of superbasic variables is
very high, and that the truncated-Newton algorithm
seems to be clearly much more efficient than the
quasi-Newton update in such cases.

7. Conclusions

The implementation made of primal partitioning for
solving multicommodity network flow problems is ef-

52 J. Casiro, N. NabonalEuropean Journal of Operational Research 92 (1996) 37-53

Table 4
Results for the nonlinear test problems

Test It.0 1t.1

N,(” 107 63
Nz(‘) 460 226
N3”) 4083 2896

N,c2) 107 63
N2t2) 460 226
N3c2) 4083 2896

N, (3) 175 74
N2(% 460 226
N3t3) 4083 2896

N,c4) 175 74
N2t4) 460 226
N3t4) 4083 2813

N,(‘, 3419 1177
N2(-5) 5209 915
Nj(” 7044 1216
N4(% I1650 3341

N,c”, 869 78

PPRN MINOS

1t.2 h(x*) CPU set It. 1 1t.2 h(x*) CPU set

654 285515.68 10.4’ 163 687 285515.68 17.0
1459 867915.88 87.2’ 617 1753 867915.87 139.7
9458 210894646.82 3086.7* 16598 12401 210894647.06 23579.6

845 3.9718~10’~ 10.4’ 163 1160 3.9718~10’~ 22.5
2127 6.0465 x 1O’O 83.1’ 689 2297 6.0465 x 10” 118.4

15463 1.9431x10’4 5823.3’ 16598 17019 1.9431 x1014 16524.7

1640 971.69 30.9* 256 1638 97 1.69 34.4
3539 891.69 236.0’ 689 3772 891.69 292.3

18289 212682.61 6831.2* 16598 28314 212682.61 19398.0

395 -3.7747 x 10’2 3.2* 261 202 -3.7747 x 10’2 3.9
4457 I .0792 x lo* a 183.1’ 574 5092 1.2228 x 10s a 213.9

14186 -7.9171 x 109 h 2504.1’ 16069 16569 -6.7860x lo9 h 4284.9

1692 0.4009 110.2’ 2653 2522 0.4009 226.5
1608 0.8715 156.7’ 7044 1216 0.8715 357.8
1850 0.3844 217.3* 2965 2455 0.3844 485.5
6768 1.0920 2026.0’ 12257 7507 1.0917c 3316.9

460 288.9697 11.6* 660 526 288.9697 69.6

a The required optimality tolerance ??opt = 10m6 could not be achieved.
h Different local minima were reached.
c In this execution the “feasibility tolerance” parameter of the MINOS package was increased considerably to obtain a feasible solution.
The different value h(x*) for MINOS and PPRN may be due to this fact.

ficient, and compares well with the alternative meth-
ods tried. Instrumental in the efficiency of the PPRN
code is the three-phase procedure used and the special
variable dimension update of the factorization of the
working matrix.

As shown in Tables 2 and 4 in no case could the gen-
eral purpose code MINOS emp@yed as a linearly con-
strained optimization tool outperform the specialised
code PPRN, which was to be expected since PPRN
uses the same technique as MINOS for linear and for
nonlinear objective functions but it can take advantage
of the multicommodity network structure.

For linear problems without side constraints PPRN
is generally better than the specialised linear multi-
commodity network flow code MCNF85. Whenever
MCNF85 is better it is so by a little margin, whereas
PPRN is many times faster than MCNF85 in many
cases. It can be observed that MCNF85 only gets to be
better than PPRN when the number of commodities
is small but its performance gets worse than PPRN as

the number of commodities increases.
The iteration counts of PPRN and those of MINOS

and MCNF85 are not comparable since phase 0 of
PPRN iterates in single-commodity problems.

The general purpose interior point code employed
(LoQo) is in some cases better than PPRN but it
requires a lot more of workspace. In fact, only the
smaller problems could be solved due to memory limi-
tations. In other cases L,oQo did similar or quite worse
than PPRN. All the same, it would be worth special-
ising an interior point implementation for multicom-
modity network flows since it would reduce the mem-
ory requirements and would make interior point itera-
tions less time-consuming, thus comparing well with
a primal partitioning specialised code.

References

[1] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Nefwork Flows,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

J. Castro. N. Nabona/European Journal of Operational Research 92 (1996) 37-53 53

121 Ali, A., and Kennington, J.L., “MNETGEN program
documentation”, Technical Report 77003, Department of
Industrial Engineering and Operations Research, Southern
Methodist University, Dallas, TX 75275, USA, 1977.

13 I Ali, A., Helgason, R.V., Kennington, J.L., and Lall, H.,
“Computational comparison among three multicommodity
network flow algorithms”, Operations Research 28 (1980)
995-1000.

(4 1 Beckmann, M., McGuire, C.B., and Winsten, C.B., Studies
in rhe Economics of Transportahon, Yale University Press,
New Haven CT, 1956.

151 Bradley, G.H., Brown, G.G., and Graves, G.W., “Design
and implementation of large scale primal transshipment
algorithms”, Management Science 24/ 1 (1977) l-34.

16 1 Castro, J., “Efficient computing and updating of the
working matrix of the multicommodity network flow problem
with side constraints through primal partitioning”, DR
93/03 Statistics and Operations Research Dept., Universitat
PoliDcnica de Catalunya, Barcelona, Spain, 1993 (written
in Catalan).

17) Castro. J., “PPRN 1.0, User’s Guide”, DR 94/06 Statistics
and Operations Research Dept., Universitat Polit&cnica de
Catalunya, Barcelona, Spain, 1994.

18] Castro, J., and Nabona, N., “Nonlinear multicommodity
network flows through primal partitioning and comparison
with alternative methods”, in: J. Henry and J.-P. Yvon (eds.),
System Modelling and Optimization. Proceedings of the 16th
fFIP Conference, Springer-Verlag, Berlin, 1994, 875-884.

19 I Castro, J., and Nabona, N., “Computational tests of a
linear multicommodity network flow code with linear side
constraints through primal partitioning”, DR 94/02 Statistics
and Operations Research Dept., Universitat Polit&cnica de
Catalunya, Barcelona, Spain, 1994.

(101 Castro, J., and Nabona, N., “Computational tests of a
nonlinear multicommodity network flow code with linear side
constraints through primal partitioning”, DR 94105 Statistics
and Operations Research Dept., Universitat Pohtkcnica de
Catalunya, Barcelona, Spain, 1994.

I I1 1 Choi, I.C., and Goldfarb, D., “Solving multicommodity
network flow problems by an interior point method”, SIAM
Proceedings on Applied Mathemaks 46 (1990) 58-69,
Philadelphia, PA, USA.

(12 I Dembo, R.S., and Steihaug, T., “Truncated-Newton
algorithms for large-scale unconstrained optimization”,
Mathemutical Programming 26 (1983) 190-212.

(13 I DIMACS, “The first DIMACS international algorithm
implementation challenge: The bench-mark experiments”,
Technical Report, DIMACS, New Brunswick, NJ, USA,
1991.

[14] Goldfarb, D., and Grigoriadis, M. D., “A computational
comparison of the Dinic and network simplex methods for
maximum Bow”, Annuls of Operafions Research I3 (1988)
83-128.

[151 Grigoriadis, M.D., “An efficient implementation of the
network simplex method”, Mathematical Programming Study
26 (1986) 83-111.

[16) Hellerman, E., and Rarick, D., “Reinversion with the
preassigned pivot procedure”, Mathematical Programming I
(1971) 195-216.

[171 Heredia, F.J., and Nabona, N., “Optimum short-term
hydrothermal scheduling with spinning reserve through
network flows”, accepted for publication in IEEE
Transactions on Power Systems, 1994.

[18] Kamath, AI’, Karmarkar, N.K., and Ramakrishnan, K.G.,
“Computational and complexity results for an interior point
algorithm on multicommodity flow problems”, Presented at
Ne$ow93, San Miniato, Italy, October 3-7, 1993.

[191 Kennington, J.L., “A primal partitioning code for solving
multicommodity flow problems (version 1)“, Technical
Report 79008, Department of Industrial Engineering and
Operations Research, Southern Methodist University, Dallas,
TX, 1979

[20] Kennington, J.L., and Helgason, R.V., Algorifhms for
Network Programming, Wiley, New York, 1980.

[21] Kennington, J.L., and Whisman, A., “NETSIDE User’s
Guide”, TR86-OR-01 (revised April 1988), Southern
Methodist University, Dallas, TX 75275, USA, 1988.

[22] Murtagh, B.A., and Saunders, M.A., “Large-scale linearly
constrained optimization”, Mathematical Programming I4
(1978) 41-72.

[23] Murtagh, B.A., and Saunders, M.A.. “MINOS 5.0. User’s
guide”, Dept. of Operations Research, Stanford University,
Standard, CA, 1983.

[241 Nabona, N., “Multicommodity network flow model for long-
term hydrogeneration optimization”, IEEE Transactions on
Power Systems 8/2 (1993) 395-404.

[251 Nabona, N., and Verdejo, J.M., “Numerical implementation
of nonlinear multicommodity network flows with linear side
constraints through price-directive decomposition”, in: P.
Kall (ed.), System Modelling and Optimization. Proceedings
of rhe 15th IFIP Conference, Springer-Verlag. Zurich, 1992,
311-320.

[26] Toint, Ph.L., and Tuyttens, D., “On large scale nonlinear
network optimization”, Mathemarical Programming Series
B 48/l (1990) 125-159.

[27] Vanderbei, R.J., and Carpenter, T.J., “Symmetric indefinite
systems for interior point methods”, Marhematical
Programming 58 (1993) l-32.

