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Abstract 

This work presents a new code for solving the multicommodity network flow problem with a linear or nonlinear 
objective function considering additional linear side constraints that link arcs of the same or different commodities. For 
the multicommodity network flow problem through primal partitioning the code implements a specialization of Murtagh 
and Saunders’ strategy of dividing the set of variables into basic, nonbasic and superbasic. Several tests are reported, 
using random problems obtained from different network generators and real problems arising from the fields of long and 
short-term hydrothermal scheduling of electricity generation and traffic assignment, with sizes of up to 150000 variables and 
45 000 constraints. The performance of the code developed is compared to that of alternative methodologies for solving the 
same problems: a general purpose linear and nonlinear constrained optimization code, a specialised linear multicommodity 
network flow code and a primal-dual interior point code. 

Keywords: Linear programming; Multicommodity Network flows; Network programming; Nonlinear programming; Primal partitioning 

1. Introduction 

Primal partitioning has been reported for quite some 
time to be an appropriate technique for solving the 
multicommodity linear network flow problem, and its 
algorithm has been described in detail [20], but no 
report can be found either of its comparative compu- 
tational performance with large scale multicommodity 
problems or its adaptation to the nonlinear objective 
function case. This work aims at filling this void by 
describing the algorithmic principles followed in an 
extension of the classical techniques and the compar- 
ative computational results obtained with an efficient 
implementation. 

* Corresponding author. 

The multicommodity network flow problem (which 
will be referred to as the MCNF problem) can be cast 
as 

min 
Xl,X2,...,XK 

h(Xl,X2,...,XK) 

subjectto AXk=Rk k=l,...,K, 
- 

0 < X/c < Xt, k= l,...,K, 
K 

c xk 6 T, 

k=l 

(1) 

(2) 

(3) 

(4) 

where & E JR” (n is the number of arcs) is the flow 
array for each commodity k (k = 1, . . . , K) , K being 
the number of commodities of the problem, and h 
being a !RKxn + R’ real valued linear or nonlinear 
function. A E lP’x” (m is the number of nodes) is the 
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arc-node incidence matrix. Constraints (3) are simple 
bounds on the flows, Xk E IV, k = 1, . . . , K, being the 
upper bounds. Eq. (4) represents the mutual capacity 
constraints, where T E IV. 

In this work the original MCNF problem has been 
extended to include linear side constraints defined by 

(5) 

where Lk: Lk E Rpxn, k = 1,. . . , K, and L,U E Rp 
(p is the number of side constraints), These side con- 
straints can link arcs of the same or different com- 
modities. In fact, constraints (4) are a special case of 
constraints (5)) but in this work they have been specif- 
ically treated, instead of being considered as plain side 
constraints. This is made in order to exploit the inher- 
ent structure of the mutual capacity constraints. There- 
fore, the final formulation of the problem considered 
can be stated as follows: 

*,,$n,xr ( l) 

subject to (2)-(5) (6) 

and will be referred to as the MCNFC problem. 
The code here presented (which will be referred to 

as the PPRN code [7] in the rest of the document) 
can be viewed as a general purpose code for solving 
the MCNFC problem. The MCNFC problem was first 
approached for nonlinear objective functions using the 
price-directive decomposition [ 251 but this procedure 
does not seem to be as computationally efficient as pri- 
mal partitioning [ 8 1. If the set of side constraints (5) 
is empty, code PPRN will only solve a multicommod- 
ity network flow problem (MCNF) . If the number of 
commodities is equal to one, it will work as a special- 
ized linear and nonlinear network flow code with side 
constraints, as described in Refs. [ 20,211. Even in the 
latter case the PPRN code can be more efficient than a 
plain network flow code with side constraints, due to 
the fact of considering a variable-dimension working 
matrix instead of a fixed one (as will be shown in later 
sections). This can improve the performance of the 
algorithm when the number of active side constraints 
at the optimum is small with respect to the whole set 
of side constraints. 

2. Linear multicommodity network flows 

If the objective function ( 1) is linear we will re- 
fer to the multicommodity problem (MCNF) merely 
as the LMCNF problem. To solve the LMCNF prob- 
lem by exploiting the network structure, various tech- 
niques have been described in the literature. Some of 
them deal with the mutual capacity constraints (4) 
in an exact fashion whereas others replace them by a 
Lagrangian relaxation in the objective function. The 
price-directive decomposition, resource-directive de- 
composition and primal partitioning methods [ 201 be- 
long to the first class, and a first attempt at compar- 
ing these techniques can be found in Ref. [ 31. The 
Lagrangian relaxation technique does not guarantee 
finding the optimal flows, but it can achieve good ap- 
proximations simply by solving decoupled single net- 
work flow problems obtained by relaxing constraints 

(4) ill. 
Interior point methods are an alternative approach 

to solve the LMCNF problem. These methods appear 
to be really efficient when the size of the network is 
very large [ 11,181. 

3. The primal partitioning method 

A brief description of the primal partitioning 
method [20] will be presented, paying special atten- 
tion to the changes brought about by considering the 
additional side constraints (5). 

3.1. Structure of the problem 

Given that constraints (2), (4) and (5) in (6) are 
linear, it is possible to consider the problem constraint 
matrix A. Then each variable jk (that is, each flow j 
of the kth commodity) has an associated column @ 
in A, with the following nonzero components: 

i 

4 
T 

Uj, . ..Ujp 

Mutual capacity Side constraints 

where s and t identify the source and target nodes of 
arc jk. It can be noticed that each variable appears 
in three clearly different types of constraint: network, 
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mutual capacity and side constraints. The structure of 
the network and mutual capacity constraints is inde- 
pendent of the commodity, but the structure of side 
constraints may be different for each commodity. Net- 
work constraints are always active (they are equal- 
ity constraints), whereas mutual capacity and side 
constraints may not be (as they are inequality con- 
straints). 

Every basis in the prima1 partitioning method can 
be decomposed as follows: 

(7) 

L’, R2 and 1 being square matrices where 
?? L’ refers to the network constraints and arcs of the 
K spanning trees. The topology of this matrix is: 

each Bk being a nonsingular matrix associated with 
the kth spanning tree. L’ can be represented at every 
iteration by K spanning trees following the methodol- 
ogy described in Refs. [ 5,151. 
?? R’ refers to the network constraints and comple- 
mentary arcs of the K commodities. Complementary 
arcs do not belong to any spanning tree and they are 
just additional arcs exchanged against the active con- 
straints (4) or (5). 
?? L2 refers to the active mutual capacity and 
constraints, for the arcs of the spanning trees. 
?? Rz refers to the active mutual capacity and 
constraints, for the complementary arcs. 
?? Ls refers to the inactive mutual capacity and 
constraints, for the arcs of the spanning trees. 
?? R3 refers to the inactive mutual capacity and 
constraints, for the complementary arcs. 

side 

side 

side 

side 

?? 1 , an identity matrix, refers to the slacks of the in- 
active mutual capacity and side constraints. (It should 
be noticed that constraints whose slacks are in matrix 
1 are treated as inactive constraints, even though the 
slack values are zero). 

3.2. Motivation for using a working matrix 

During the optimization process systems Bx = b 
and uTB = cT must be solved at each iteration, X, u 
and b, c being the variable and independent term vec- 
tors , respectively. A description of the solution tech- 
nique can be found in Ref. [20] and is briefly out- 
lined here. Considering for x, u and b, c partitions 
X1~x29X39uI~U2~U3 andh7b2,b3,cl,c2,c3 as theone 
employed above for the basis B we have 
??For Bx = b 

x2=(R2-L2L;‘R’)-‘(b2-L2L;‘xl), (8) 

xl = L,‘b, - L;‘R’x2, (9) 

~3 = b3 - L3~1 - R3~2. (10) 

Thus by solving (S), (9) and (10) consecutively we 
obtain the solution of the original system. 
??For uTB = cT 

u3 = c3 , (11) 

~2 = ((~2 - c3R3) - (~1 - c3L3W;‘R’) 

x(R2 - L2Lr1Rl)-‘, (12) 

24’ = (C’ - u3L3 - u2L2)L;‘. (13) 

Thus by solving (ll), (12) and (13) we obtain the 
solution of the original system. 

Thus it is enough to invert the submatrix L’ and 
a matrix whose expression is R2 - L2L;’ R’. This 
last matrix will be referred to as the working ma- 
trix, and denoted by Q. There is no need to invert 
L' , given that is a block diagonal matrix, where each 
block represents a spanning tree. This kind of sys- 
tem can be solved by simply exploiting the tree struc- 
ture of the matrix and highly efficient procedures have 
been developed [ 51. Therefore, the problem of solv- 
ing both systems of equations is reduced to factorizing 
the working matrix Q instead of basis B, and having 
a procedure to update this factorization at each itera- 
tion [ 151. Since the dimension of the working matrix 
is small compared with the whole dimension of basis 
B, it can be expected that the computation time of an 
algorithm using this prima1 partitioning will likewise 
be small compared with a general-purpose linear op- 
timization package. On the other hand, the dimension 
of basis B is fixed during the optimization process, 
whereas the dimension of Q is variable, given that it 
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depends on the number of active mutual capacity and 
side constraints. That implies that the updating pro- 
cess of the factorization of Q must be able to deal with 
variable size, increasing the difficulty of the algorithm 
(as will be shown in later sections). 

3.3. Computing the working matrix Q 

Some new concepts must first be defined in order to 
use them in an efficient procedure for computing Q: 
??As,: set of active side constraints at current iteration. 

??A,,,: set of active mutual capacity constraints at 
current iteration. 
??A: set of active constraints (mutual capacity and 
side constraints), that is, A = A, U A,,. 
??ICI: number of elements of set C. 
??dim(M) : dimension of matrix M. 

Given that R2 and L2 are associated with the ac- 
tive mutual capacity and side constraints, they can be 
subdivided into two submatrices as follows: 

R2 = RL 
[ 1 kc 

R2,, 
, L2 = [ 1 L2,, ’ 

where Rz,,, and Lz,,, refer to constraints belonging to 
A,,,, and R2, and L2, refers to constraints of the set 

AX. 

Q= 

Since Q = R2 - L2Ll’ RI, it can also be consid- 
as subdivided into two submatrices, 

whose dimensions are dim( Q,& = 1 AmI x IAl and 

dim(Qsc) = IA,1 x I4 
The expression for computing Q involves the calcu- 

lation of L;’ RI. Since L1 is a block diagonal matrix 
where the kth block is a minimum spanning tree for 
the kth commodity, and RI expresses for each com- 
plementary arc of the kth commodity its connection to 
the kth minimum spanning tree, then solving LF’RI 
is equivalent to having the paths (denoted by Pi, j = 
1 ..&A]) f ~1 o corn ementary arcs in their associated 
spanning trees. Given an arc a E Pj, we will say that 
a has normal orientation if it points to the source node 
of the complementary arc j; otherwise, it has reverse 
orientation. 

If we denote by 
??a,j the arc associated with the jth column of Q, j = 
l,...,JAl; 

??mci the mutual capacity constraint of the ith row of 
Q,i= l,..., I A,,,, I (this capacity constraint refers to 
the saturated arc mci) ; 
??SCI the side constraint of the ith row of Q, i = I A,,,] + 
1 .., JAI; 
??’ B( a, n) a logical function which becomes true if 
the arc a appears in the side constraint n, and false 
otherwise; 
??co,,, the coefficient of the arc a in the side constraint 
n; 
then we can compute directly the matrix Q as follows: 
??Submatrix Qmc: 

+1, if aj = mCi, 
+l, if mci E Pj with normal 

Qij orientation, 
i=l,...,Idn,cI = 

j=l,...,dim(Q) 
-1, if mci E Pj with reverse 

orientation, 
I 0, otherwise. 

??Submatrix Qsc with entries Qij, i = IAmcI + 1,. . . , 
dim(Q), j = 1,. . . , dim(Q), computed following the 
following steps: 

( 1) Set Qij = 0, 
(2) If B(a,i, SC~) then Qij = c,~,$~,. 
(3) For each a E Pj, perform next 2 steps. 
(4) If B(a, sq) and a has normal orientation then 

Qij = Qij + Ca.sc,~ 
(5) If B(a, Sci) and a has reverse orientation then 

Qij = Qij - Co,sc,~ 

A full and more detailed description of the compu- 
tation of Q can be found in Ref. [ 61. 

4. Implementation of primal partitioning 

The implementation of the primal partitioning 
method developed in the PPRN code follows three 
stages, called phases 0, 1 and 2, instead of the two 
classical phases of the simplex method. Phases 0 and 
1 attempt to obtain a feasible starting point, whereas 
phase 2 achieves the optimizer. However, although 
phases 0 and 1 work sequentially to find a feasible 
point, it can be said that primal partitioning is only 
applied in phases 1 and 2. The following subsections 
will clarify these ideas by describing each phase. 

For computational purposes the inequality con- 
straints (4) and (5) in the original MCNFC problem 
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are replaced by equality constraints by adding slacks, 
obtaining: 

f-, Xk+S=T, O<S, (14) 
k=l 

K 

c LkXk+t=u, O<t<lJ-L, (15) 
k=l 

where s E R” and t E IF’. In this formulation Eqs. 
( 14) and ( 15) replace the original Eqs. (4) and (5). 
Then the formulation of the problem considered by the 
algorithm (which will be referred to as MCNPC2) is 

min 
XI.X?....,XK (1) 

subject to (2), (3), (14), (15). (16) 

It can be noticed that the current version of PPRN 
cannot deal with lower bounds other than zero in the 
variables. 

4.1. Phase 0 

In phase 0 the algorithm considers only the network 
constraints and bounds on the variables of the problem, 
without any constraint linking the flows of different 
commodities. It attempts to obtain for each commodity 
k, k= I,... , K, a feasible starting point for the linear 
network problem: 

rn*m C,TXk 

subject to AXk = Rk , 

0 6 xk < xk, (17) 

where Ck refers to the cost vector for commodity k 
if C I ) is linear, or an arbitrary cost vector provided 
by the user (which can be the gradient at some initial 
point xg) if the problem to be solved is nonlinear. 

This problem is solved by applying a specialization 
of the simplex algorithm for networks. The implemen- 
tation developed mainly follows the ideas described in 
Ref. [ 151 with regard to the pivotal operations when 
managing the spanning trees. It is important to note 
that phase 0 has nothing to do with primal partition- 
ing, as it only solves single network problems. 

The code developed can either merely obtain a fea- 
sible point for (17) or reach its optimum solution. 
(The default option is to obtain a feasible point). 

4.2. Phase 1 

The K points obtained in phase 0 will not satisfy 
in general the mutual capacity and side constraints. 
thus giving rise to a pseudofeasible point. That im- 
plies than some slack variables s for the mutual ca- 
pacity constraints or t for the side constraints will be 
out of bounds. Let Jik, k = 1 . . . K be the pseudofea- 
sible point obtained; then the following index sets are 
defined: 

S--(i: ($2k);>Z*Si<O}, 

‘;ii: ($Lk*k)i>“i%ti<o}, 

<LiHti>(U-L)i 

i 

Introducing new artificial variables e and f, and fixing 
initial values for s and t such that 

+ Si - ei = T; Si=O; ViES-, 

i 

+ti+fi=Ui; t; = (U - L)i; 

i Vi E t+. 

The problem to be solved in phase 1 is 

min 
XI ,.L...,XK,s,t,e,f 

C ei + C fi + C fi (18) 

iEs- iEt- iEt ’ 

subject to (2), (3), 
K 

c xk f S f l’e = T, (19) 
k=l 

Lk&+t+l+~, (20) 
k=l 



42 J. Castro, N. Nabona/European Journal of Operational Research 92 (1996) 37-53 

O<t<U--L, o<s, 

06e, o<.f, 

where both matrices 1” E Wnxn and lf E E!YxP in 
( 19) and (20) are diagonal and defined as follows: 

1 -1, ifiE t-, 
(lf>jj= i-l, if i E t+, 

0, otherwise. 

It can be noticed that the objective function ( 18) at 
phase 1 is nothing but the sum of the infeasibilities of 
the mutual capacity and side constraints. Therefore, 
the MCNFC2 problem defined in ( 16) will be feasible 
if, at phase 1, the value of ( 18) at the optimizer is 0. 

Dividing the process of finding a feasible starting 
point for problem MCNFC2 into two stages (phases 
0 and 1) has proved to be very efficient in number of 
iterations with respect to methods that starting from 
any given point consider the sum of infeasibilities for 
all constraints. 

4.3. Phase 2 

Once a feasible point has been obtained, phase 2 at- 
tempts to achieve the optimizer of the objective func- 
tion. The primal partitioning method, as presented in 
Ref. [ 201, was intended for linear objective functions. 
In this case PPRN works as a specialized simplex al- 
gorithm based on primal partitioning, where the main 
implementation detail is based on the pivot operations 
described later. 

However, when optimizing nonlinear functions, pri- 
mal partitioning can be applied together with Murtagh 
and Saunders’ strategy - described in Ref. [ 221 - of 
dividing the set of variables into basic, superbasic and 
nonbasic variables: 

a = [B 1 s 1 iv] , 

A being the matrix of constraints (2), (4) and (5). 
The efficiency in managing the working matrix Q with 
respect to the whole basis B is preserved in the nonlin- 
ear case. Furthermore, the structure of network, mu- 
tual capacity and side constraints, can be exploited, 
improving the computation time with respect to gen- 

eral methods of optimization where these constraints 
are treated in a general way. 

Suppose that at iteration i we have (the subscript i 
is omitted in almost all cases to simplify the notation) : 
??xi, h( xi) : the current feasible point and the value of 
the objective function at this point. 
??B, S, N: the sets of basic, superbasic and nonbasic 
variables. B is represented by just K spanning trees 
and an LU decomposition of the working matrix Q. 
??g(Xi): where g(xi) = Vh(xi) divided into g(xi) = 
[gB 1 gs 1 g,v] for basic, superbasic and nonbasic 
variables. 
??Z: a representation matrix of the null subspace of the 
constraint matrix A defined in (4.3). The expression 
for Z is 

-B-IS 
z= 1 . 

[ 1 0 

It can easily be observed that AZ = 0. 
??g, , es: : the current reduced gradient g, = ZTg( Xi), 
and a tolerance to estimate when its norm is small 
enough. 
??x a vector satisfying rTB = gs. 
Then the algorithm of phase 2 can be expressed as 
the following succession of steps (steps where one 
can take advantage of the particular structure of the 
constraints are marked with (*) ) : 

Step 1. Optimality test in the current subspace. 
(i) If l]gz]l b ??g: go to Step 3. 

Step 2. Price nonbasic variables. 
(i) Compute Lagrange multipliers A = g,v - NTr. 

(*) 
(ii) Choose a suitable A, and the associated column 

N,. If no multiplier can be chosen go to Step 8. 
(iii) Update data structures: remove N, from N and 

add it to S; add A, as a new component of g, . 

Step 3. Find descent direction PT = [PB 1 PS ) OIT for 
basic and superbasic variables. 

(i) Solve ZTHiZPs = -g,, where Hi = V*h(xi). 
(*) 

(ii) Solve BPE = -SPs. 
Step 4. Ratio test. 

c*> 

(i) Find urnax > 0 such that xi + crmaxP is feasible. 
(ii) If amax = 0 go to Step 7. 

Step 5. Line search. 
(i) Find LY* such that 
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h(Xi+CY*P) =,<~I h(Xi+CfP) 
\\- 

(ii) Update the new point xi+1 = xi+ of P, and com- 
pute h(xi+i) and gi+i. 

Step 6. Update reduced gradient g, . 
(i) Solve vrTB = gi. 

(ii) Perform g, = gs - ST,rr. ;:; 

(iii) If cy < amax go to Step 1. 
Step 7. A basic or a superbasic variable becomes non- 
basic (it reaches its lower or upper bound). 

(i) If a superbasic variable S, hits its bound then: 
- Remove the component of g, associated with 

the column S,, from S. 
- Remove S,, from S and add it to N. 

(ii) If a basic variable B, hits its bound then: 
- Find a superbasic variable S, to replace B, in 

B preserving the nonsingularity of the basis. 

(*) 
- Remove B, from B and add it to N. Remove 

S, from S and add it to B (pivot operation). 
This involves updating the working matrix Q 
since a change in the basis B has been made. 

- Update rr. 
- Perform gz = gs - ST,rr. 

(iii) Go to Step 1. 
Step 8. Optimal solution found. 

(*) 

Some comments should be made about the finer 
points of this algorithm: 

(a) Computing the descent direction. The current im- 
plementation of the program makes it possible to solve 
the system ZTi?ZiZPs = -g, in Step 3 (i) by two meth- 
ods: through a truncated-Newton algorithm [ 121, or 
using a quasi-Newton approximation of the projected 
Hessian ZTHiZ [22]. In neither case is an analyti- 
cal expression for the Hessian of the objective func- 
tion ( 1) required. Thus the PPRN code only needs the 
evaluation of the objective function and its gradient. 

The algorithmic details on this implementation can 
be found in Ref. [ IO]. 

(6) Optimal@ test in the current subspace. At each 
iteration it must be tested whether the optimum point 
of the current subspace has already been reached 
(Step 1 (i) of the algorithm). However, the test per- 
formed is much more exhaustive than simply ascer- 

mining whether 1 lg, 11 2 Ed_. Actually, the code dis- 
cerns between two situations: when we have still not 
reached the optimum active constraint set (thus being 
far from the optimizer) and when we are already in 
the optimum active constraint set and merely a final, 
more accurate subspace minimization is required. The 
variable cs tells us which is the current situation, and 
it can take the values “far” or “near” depending on 
whether we are in the first or the second case. The 
code uses six logical variables ( Ti) to decide whether 
or not the optimum point has been achieved in the 
current subspace. Each Ti is defined as follows. 

Tl := (~*II~sIl, < ( &“;‘-I- d&&l + Il4Id) 3 
T2:=(IAhl 6 (EC~S+EMU)(I + IhI)), 

T3 := (Ildx GT,:) 9 
T4 := (llszllm < max{T,r/10,~g~(lI~ll~)})3 
T5 := ((Tj is active) and (cs = “far”) and 

(nsame 6 MAXsame)) , 

T6 := (ncurrent 6 MAXcurrent) . 

The first test, TI , controls whether the l-norm of the 
current movement in the superbasic variables cy* ) ) PSI I 1 
is significant with respect to the l-norm of the super- 
basic components of the current iterate I Ix,~I 11, using 
for such comparison the machine precision EM and 
the value E? which depends on the variable cs (if 
cs= “near” this value will be much smaller than when 
cs= “far”, requiring a smaller movement to satisfy the 
test). 

The second test, T2, will be true when the variation 
in the objective function /AhI is not significant with 
respect to the absolute value of h at the current iterate 
( I hi ) . The value aCfS used in the comparison depends 
also on the variable cs, and, as in the previous case, 

9 
““ear” << eF”. 

At test T3 the tolerance TRz has been previously com- 
puted as TRL = ~~Jlg~llm9 where gf was the reduced 
gradient vector at the first point of the current sub- 
space, and vif E [0, 11 is a value that can be chosen 
by the user. Thus, this test attempts to control when a 
sufficient reduction in the reduced gradient has been 
made since the minimization in the current subspace 
started. When cs =“near” it is desirable to require a 
greater reduction in the projected gradient, so, as in 
previous cases, vif”“” < vfi, . 
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The next test, T4, will be true when the reduced gra- 
dient is so small that the current point can be consid- 
ered to be the optimum one of the current subspace. 
In this case the value eR does not depend on how far 
we are from the optimum active constraints set (vari- 
able cs), and ~(ll~ll~)} is a function that depends on 
the 7r vector computed in Step 6 (i) of the phase 2 al- 
gorithm. In the current implementation of the PPRN 
code E( I~T~II) has been defined as 

(21) 

where m was the number of nodes, K the number of 
commodities, II the number of arcs and p the number 
of side constraints. The coefficient JmK + n + p is an 
attempt at scaling the optimality tolerances depending 
on problem size. 

The last two tests have been included for highly non- 
smooth functions where the four previous tests could 
mean very slow convergence. The first of these two 
tests ( Ts) is inactive by default (the user can decide 
to activate it if he/she so desires) and can only be ap- 
plied when we are far from the optimum. T5 will be- 
come true if the first three tests, Tl , T2 and T3, gave the 
same result during MAXsame consecutive iterations 
in the current subspace (where the value MAXsame 
can be chosen by the user). The second one (T6) con- 
trols whether the number of iterations in the current 
subspace ncurrent is greater than a maximum allow- 
able value MAXcurrent. 

Once the six logical tests have been made, the code 
will consider that the optimum in the current subspace 
has been reached if the logical variable T is true, where 
T is defined as 

T:=(T,andT2andT3)orTqorTgorTg. (22) 

Thus, in Step 1 (i) , the condition that is really verified 
as the criterion for going to Step 3 is “if T is true” 
instead of If I lg,( I > egZ . 

(c) Choosing a nonbasic variable to become superba- 
sic. In Step 2 (ii) the process of choosing a nonba- 
sic variable to enter the superbasic set was reduced to 

choose a suitable A, and the associated column Nq . 
In fact, the PPRN code implements a more elaborated 
algorithm for this point, which is most crucial since a 

bad choice or poor tolerances may mean slow conver- 
gence when finding the optimum active constraint set. 

The following algorithm is the very sequence of 
steps in which point 2 (ii) is expanded in the PPRN 
code. The algorithm uses a tolerance Tn, for choos- 
ing a good multiplier h,. At the beginning of phase 2 
this tolerance is initialized with an arbitrary high value 
cq. The variable cs for knowing how far we are from 
the optimal active constraints set is also consulted and 
updated in this algorithm. The function E( ) ITI 11) was 
defined in (2 1) , and the tolerance Ts: - to detect a suf- 
ficient reduction in the norm of the reduced gradient 
I lg, I loo - was already introduced in the previous sub- 
section. The value eopt, chosen by the user, is the op- 
timality precision required at the optimum point (by 
default Eopt = 10w6). 

(0) 

(1) 
(2) 

(3) 
(4) 

(5) 

(6) 

At the beginning of phase 2 set T+ = e<, and 
cs = “far”. 

TA, = max{TA4, 1.12. Ilgzllm). 
Find the first A4 such that /AsI 2 TAG or, if there 
is none, the greatest I&J. 
If (I&l > TAG) go to (7). 
No multiplier satisfies the current tolerance T,+,, . 
If (IA91 2 •opt41~lll)) then 
(i) TAG =m~~l~,l/lO,~opt~(~I~TT(I~)}. 

(ii) Go to (7). 
No multiplier is greater than the optimality tol- 
erance EoptE( ll~ll1). We are near the optimum. 
If ( (cs = “near”) or (I lg, I loo 6 ~opt4/ ITI I I 1) > 
then go to (8). 
No multiplier is greater than the optimality toler- 
ance and the point does not satisfy the optimality 
conditions. We adjust the tolerances for a more 
accurate optimization - probably the last - in the 
current subspace. 
Ci) 7. _ ~ww Il~Zll~~ g: - rn . 

(ii> If (Tg2 < ~opt41141~) then 
- cs= “near”. 

- TR: = +,ptE(II~II1). 
[iii) Continue with Step 3 of the phase 2 algo- 

rithm. 
(7) A suitable A, has been found: 

(i) Update Ilgzllm = m~Wq17 llgzllm~~ 
(ii> Update T,: = v~flIgzlla,. 

(iii) If (cs = “near”) then cs= “far”. 
(iv) Continue with Step 2( iii) of the phase 2 al- 
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gorithm. 
(8) The current point satisfies the optimality condi- 

tions. STOP: optimal solution found. 

The main idea of this algorithm is to use initially 
an arbitrary high tolerance TA, and to reduce it when 
no multiplier can be found greater than this tolerance. 
This value is reduced until it reaches the optimality 
tolerance ~,r+( 11~11,). When that happens it can be 
considered that the optimum constraints set has been 
found, and the tolerance Tgz is adjusted for a final, 
more accurate optimization in the current optimum 
active constraints set. It must be noted that at Step 
1 we always choose the greater value between 1.12 . 

Ilg~llcc and TA, for finding a good A,, following the 
recommendation in Ref. [ 221. This is done because 
the chosen h, will be added as a component of the new 
reduced gradient, which means that this value will be 
significant with respect to the rest of components of 
the current gZ. 

(d) Pivot operation. In case of a nonlinear objective 
function ( 1 ), when a basic variable hits its bound in 
Step 7( ii), a column of the basis B is removed and 
replaced by a column of the superbasic set S. If the 
objective function is linear a column of the basis is 
replaced by a nonbasic column. In both cases the new 
basis (denoted by B,) could be expressed as B, = Bq 
being ~7 a convenient eta-matrix. However, the algo- 
rithm does not work with the whole basis B. For our 
purposes it is necessary to reflect how this change in 
the basis affects the K spannings trees and the working 
matrix Q. During the pivotal operations the dimension 
of matrix Q can be modified, since dim(Q) = (Al 
(where Id( is the number of active mutual capacity 
and side constraints). Considering that the variables 
of the problem can be arcs or slacks (and the arcs of 
the basis B can be subdivided into arcs of the K span- 
ning trees or complementary arcs), then, depending 
on the type of variable entering and leaving the basis, 
the following six cases can be observed (denoting by 
“E: -” the case of an entering variable and by “L: -” 
the case of a leaving variable) : 
??E: slack-l: slack. The row of Q associated with the 
entering slack is removed and replaced by a new row 
for the leaving slack. dim(Q) is not modified. 
??E: slack-l: complementary arc. The row and column 
of Q associated with the entering slack and leaving 

complementary arc respectively are removed. dim(Q) 
must be updated as dim(Q) - 1. 
??E: slack-l: aTc of kth tree. A complementary arc of 
the kth commodity, e.g. the jth complementary arc, 
having the leaving arc in its path Pi, must be found 
to replace the leaving arc in the kth tree. This com- 
plementary arc will always exist (otherwise the basis 
would become singular). The row and column of Q 
associated with the entering slack and the jth comple- 
mentary arc are removed. dim(Q) must be updated as 
dim(Q) - 1. 
??E: arc-L: slack. A new row associated with the leav- 
ing slack is added to Q. To maintain the nonsingularity 
of Q a new column for theentering arc - which will be- 
come a complementary arc - is also added to the work- 
ing matrix. dim(Q) must be updated as dim(Q) + 1. 
a E: arc-L: complementary arc. The column of Q as- 
sociated with the leaving complementary arc is re- 
moved, and replaced by a column corresponding to 
the entering arc, which will become a complementary 
arc. dim(Q) is not modified. 
??E: arc-L: arc of kth tree. A complementary arc of 
the kth commodity, e.g. the jth complementary arc, 
having the leaving arc in its path Pi, is sought. If this 
arc is found, it will replace the leaving arc in the kth 
tree, and the entering arc will become a complemen- 
tary arc. If no complementary arc is found, then the 
entering arc will replace the leaving arc in the kth tree. 
One of the two possibilities described will always hap- 
pen, otherwise the basis would become nonsingular. 
dim(Q) is not modified. 

It has not been made explicit, but it must be noticed 
that, when rows of the matrix 

Q=[F] 
SC 

are removed or added, depending on the type of asso- 
ciated slack (whether it is a slack of mutual capacity 
or side constraints) the operations will affect the sub- 
matrix Qmc or/and Q,,. 

5. Updating the working matrix 

The way in which the working matrix is handled 
is instrumental in ensuring the efficiency of the al- 
gorithm, since it is the only matrix to be factorized 
(together with matrix R that has been presented in 
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the former section). Several tests have shown that the 
sparsity of Q is, in general, high (Q has less than 
10% nonzero elements). The current implementation 
of code PPRN performs a sparse LU decomposition 
of Q with partial pivoting allowing a choice between 
two ways of pre-reordering the matrix: applying either 
the P3 algorithm developed by Hellerman and Rarick 
[ 161 or a pre-reorder which attempts to put all the 
spikes at the end of the matrix. The latter pre-reorder 
is taken as default. 

An initial description of how to update this matrix 
was made by Kennington and Helgason in [ 201. Two 
importants remarks should be made on the approach 
described there: 

(i) 

(ii) 

It only considers the updating of the Q matrix 
with mutual capacity constraints. As mentioned 
above, the updating of Q in code PPRN has been 
extended to include side constraints. 
It considers an updating of Q-’ instead of Q. The 
difficulty of the variable dimension of Q at each 
iteration means that updating Q-’ is a costly op- 
eration if it is stored as a sparse matrix, since it is 
necessary to add or remove columns in a sparse 
structure. On the other hand, it seems inappropri- 
ate to store Q-’ as a dense matrix, given its high 
sparsity. This led one of the authors to develop 
an ad hoc and very efficient update of Q, instead 
of its inverse [6]. 

It is beyond the scope of this paper to describe all 
the formulae required in the updating process, as they 
were developed in a previous work [ 61, Nevertheless, 
a brief outline will be given here. 

Let us consider that at iteration p the working ma- 
trix Q, is recomputed (not merely updated), with di- 
mension dim( Qp) = np, and that it will not be newly 
recomputed until after i iterations (that is, until itera- 
tion p + i), where its dimension will be dim( Q,+i) = 
n,,+;. Since the dimension of Q can only increase at 
most by a row and column at each iteration, it follows 
that n.i < nt, + i, V j p < j < p + i, p + i being the 
maximum dimension of Qj between iterations p and 
p + i. Thus the proposed procedure would be to work 
with an extended matrix Qj at iterations j, p < j < 
p + i, where ~j is defined as 

tij lj 

Dimensions n,i and 1.i of matrices Qj and identity 1 
satisfy nj + lj = np + i, i.e. the extended matrix Qj 
has at every step the maximum dimension that Q,i can 
achieve between iterations p and p + i. 

Thus the structure that will be updated will be that 
of the extended matrices Dj, even though the systems 
to be solved are systems Qjxj = bj and xTQ,i = b;. 
In fact these systems can be directly computed from 
ei, using Fj and gj, which are extensions of x.i and 
bjs such that 

Then 

{ 

ffj = 0 
- [ejx, 

the marked expression being the desired result. Anal- 
ogously XTQ,i = b; can be solved in the same way. 

The increase (decrease) in the number of 
rows/columns in Qj can now be treated through 
direct pre and post-multiplications by eta and permu- 
tation matrices, implying that nj will become n,i + 1 
(nj - 1) and_ the identity submatrix in the bottom 
right part of Q, will lose (gain) a unit in dimension. 

Therefore, it is clear than gi+] can be updated from 
~j through ~j+l = EjQj Fj, where Ej and <i are 
made up of eta and permutation matrices. Recursively 
it is possible to write Dj+l = EjEj-loj-1 Fj-1 Fj, 
and so on, until reaching iteration p where the work- 
ing matrix was recomputed. Thus it can be written 
in a general form V j, p < j < p + i, Dj = EapF, 
where E = n{ip Ej-1 and F = IT{:” E,+l_l. So 
the solution to system CjYj = EGpF Ifi = qi can be 
computed as follows: 

DpFIifj = E-‘Zj, 

Qpzj = E-‘bj, where zj = F Tj , 

zj = a-‘E-‘E. P J 

and finally 
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Ifi = F-'z,i . 

Since Q,, has been factorized when recomputed, to 
solve the required systems E and F must simply be 
inverted at each iteration. Nevertheless, the inverses of 
E and F are directly computed, since they are nothing 
but products of eta and permutation matrices. In fact, 
code PPRN directly stores the inverses of E and F, 
which continue to be products of eta and permutation 
matrices. 

6. Computational results 

This section will present the results obtained on a 
set of linear and nonlinear test problems, comparing 
PPRN with other available codes. PPRN is mainly 
written in Fortran-77, with the routines for the dy- 
namic memory assignment coded in ANSI-C. All runs 
were carried out on a Sun Spare lo/41 (one CPU), 
having a rise-based architecture, with a 40 MHz clock, 
about 100 Mips and about 20 Mflops CPU, and 64 
Mbytes of main memory (32 real and 32 mapped in 
disk). 

6.1. Tests of linear problems 

Two types of linear problems have been employed 
to test the performance of the code. The first type 
was obtained from five network generators, while the 
second one arises from the field of long and short-term 
hydrothermal coordination of electricity generation. 

The first four network generators employed (Rm- 
fgen [ 141, Grid-on-torus, Gridgen and Gridgraph) 
were taken from the suite of generators distributed 
for the First DIMACS International Algorithm Imple- 
mentation Challenge [ 131. They are freely distributed 
and have been obtained via anonymous ftp from di- 
mawrutgetxedu at directory/pub/net$ow. These net- 
work generators do not consider the case of multicom- 
modity flows, and the output network had to be con- 
verted to a multicommodity one. The conversion algo- 
rithm is described in Ref. [ 91. Besides, although code 
PPRN can deal with side constraints, the generators 
produce networks without them. Thus all test problems 
obtained through generators have no side constraints. 
Eight particular instances have been created with each 
of these four generators. These eight instances can be 

classified into two groups of four instances. The first 
group is made up of problems with few commodi- 
ties and medium-sized networks, whereas the second 
group is composed of small networks with many com- 
modities. The input parameters for each generator are 
fully detailed in Ref. [ 91. Each test problem will be 
denotedasLi(.i),i=l ,..., S,j=l,..., 4,jdenoting 
the generator employed ( 1 for Rmfgen, 2 for Grid-on- 
torus, 3 for Gridgen and 4 for Gridgraph). 

The fifth generator used is Mnetgen [2], a mul- 
ticommodity generator without side constraints. Six 
tests have been performed with this generator; they 
will be denoted as Lies), i = 1 .‘, 

The second type of problems 
6. 

was obtained as in- 
stances of long and short-term hydrothermal schedul- 
ing of electricity generation according to the models 
proposed in Refs. [ 24,171 (where a comprehensive 
explanation of the models can be found). The orig- 
inal nonlinear objective function has been linearized 
so that it can be solved as a linear problem. The long- 
term model produces multicommodity tests (that will 
be denoted as Lic6), i = 1,. . . ,5), whereas the short- 
term model gives rise to single-commodity problems 
with side constraints (that will be denoted as Lic7), i = 
192). 

Table 1 shows the characteristics of the linear prob- 
lems. The first column, “test”, is the name given to the 
test instance. Column K denotes the number of com- 
modities considered in the test. The column “#s.c.” 
gives the number of side constraints considered in 
the problem. Columns “nodes” and “arcs” give the 
number of nodes and arcs of the single commodity 
network. Columns “rows A” and “columns A” give 
the dimensions of the constraint matrix of the stan- 
dard form of the multicommodity network problem 
to be solved (that is, with inequality constraints con- 
verted into equalities by adding slacks). It can be 
observed that “rows a”= K.“nodes”+“arcs”+“#s.c.“, 
and “columns A”= K~“arcs”+“arcs”+“#s.c.” (these 
last two terms correspond to the slack variables asso- 
ciated to constraints (4) and (5) ). The last column 
shows the optima1 objective function value. 

PPRN has been compared with the general-purpose 
package MINOS 5.3 [23], the MCNF85 code [ 191 
(a specialized code for linear multicommodity prob- 
lems - it does not support side constraints) and the 
LoQo package [ 271 (a state of the art primal-dual in- 
terior point implementation). The default values were 
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Table I 
Linear test problems 

Test K #s.c. Nodes Arcs Rows d Columns A Optimal value 

1 0 2048 9472 2048 9472 375675.1 
4 0 2048 9412 17664 47360 2027285.0 
8 0 2048 9472 25856 85248 4506263.3 

16 0 2048 9472 42240 161024 9870432.7 
50 0 128 496 6896 25296 11839382.1 

100 0 128 496 13296 50096 27150952.5 
150 0 128 496 19696 74896 39835825.1 
200 0 128 496 26096 99696 54343948.3 

1 0 1500 9000 1500 9000 36896.8 
4 0 1500 9000 15000 45000 187962.0 
8 0 1500 9000 21000 81000 1197048.7 

16 0 1500 9000 33000 153000 5876840.3 
50 0 100 600 5600 30600 5207622.6 

100 0 100 600 10600 60600 12922703.9 
150 0 100 600 15600 90600 22663204.5 
200 0 100 600 20600 120600 36829147.5 

1 0 2502 5000 2502 5000 94212753.2 
4 0 2502 5000 15008 25000 355884986.5 
8 0 2502 5000 25016 45000 128743093.6 

16 0 2502 5000 45032 85000 253615755.8 
50 0 227 450 11800 22950 27853327.9 

100 0 227 450 23150 45450 65 144564.0 

150 0 227 450 34500 67950 27066715.2 
200 0 227 450 45850 90450 37964963.7 

1 0 976 7808 976 7808 5541980.3 
4 0 976 7808 11712 39040 23223474.9 
8 0 976 7808 15616 70272 61792270.7 

16 0 976 7808 23424 132736 165808232.3 
50 0 101 606 5656 30906 1409470.3 

100 0 101 606 10706 61206 2940217.3 
150 0 101 606 15756 91506 4614971.4 

200 0 101 606 20806 121806 6440385.5 

4 0 50 104 304 520 378009.3 
8 0 300 671 3071 6039 9890447.9 

16 0 300 681 5481 11577 18700864.0 

16 0 400 821 7221 13957 23697345.2 
31 0 300 613 9973 21536 36907046.0 
48 0 300 683 15083 33467 54636652.8 

2 37 117 267 587 - 1282480.0 
12 37 153 313 777 -57 1304.7 
18 25 98 216 508 -400688.8 
3 99 315 714 1578 -995067.1 

3 685 2141 4884 10708 7 1115082.6 

36 85 348 121 384 - 16.9344 
504 1177 4872 1681 5376 -54.43203 
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Table 2 
Results for the linear test problems 

49 

Test h.0 

PPRN MINOS MCNF85 LQQO 

It. 1 1t.2 CPU set It.1 1t.2 CPU set It. CPU set It. CPU set 

5689 
12103 
24486 
48928 

7962 
I5924 
23129 
32188 

6746 
IS464 
31241 
60086 

7348 
1 so53 
22345 
29930 

4178 
16590 
26161 
51537 

8735 
17425 
25693 
53524 

7576 
33544 
69242 

131.543 
15113 
30825 
44646 
59639 

310 
4094 

11019 
14190 
21559 
34521 

184 
162 
219 
646 

5200 

228 
3750 

0 0 
13 818 

389 4510 
6317 21024 
2219 5861 6669 22071 2639.4 
5856 32175 20829 123619 29665.3 
8879 60974 b 

11219 88548 

0 74 12 8007 160.3 
556 8320 312 68429 10594.5 10358 684.3 

3840 40630 b 43226 4833.0’ 
12080 170041 182343 34383.0* 

1313 3660 3163 12932 1402.8 9777 466.9 
509 1 19170 38924 15696 18085.3 26345 3135.8 

12590 59436 144062 253256 105082.5 74806 15836.2 
31574 127657 246426 81903.5 

0 0 820 2874 97.5 d 

2544 9429 12561 44814 10225.6 22280 1370.7 
2500 8620 b 25426 2134.1 

12221 49034 91939 14709.9 
1645 5497 3869 16580 3172.8 12533 533.9 
6549 33218 b 42553 5381.2 
6052 22811 a 37013 6142.8 

10392 43132 a 59798 19458.0 

0 0 193 4246 70.4 d 

625 5845 7330 68026 9017.3 e 

3011 35263 57801 870882 205836.0 e 

11892 248422 c e 

110 592 1617 9779 918.2 e 

498 2046 5336 31486 6147.6 e 

831 2999 8862 46991 15236.6 e 

1528 7504 E e 

19 21 145 162 1.6 400 4.0 
288 1190 3125 4173 212.8 5450 112 
299 1514 547 1 6697 733.4 8743 266.2 
497 2386 5473 7666 1108.3 10240 371.0 
525 5413 9570 13547 2141.2 17671 788.0 
695 5930 13961 18887 7140.4 23440 1707.6 

71 82 238 79 2.5 I 

79 86 154 230 3.1 f 

276 343 222 218 2.3 f 

434 1508 542 796 13.7 f 

3665 10933 2312 8333 1110.3 f 

106 40 128 159 2.8 f 

1921 446 2171 1812 252.3 f 

6.5’ 
98.7’ 

137.9’ 
6838.7 

275.1’ 
2747.0’ 
8069.0* 

15415.3* 
6.9’ 

537.9* 
4962.2 

37470.5 
169.2* 

1625.4’ 
7605.5* 

22218.4* 
4.4* 

807.7’ 
1409.2’ 

14139.s* 
364.9* 

4264. I * 
4480.5* 

11736.8* 

5.1’ 
334.5’ 

3424.1. 
40974.1* 

39.4* 
192.2* 
415g* 

1273.4’ 

0.3’ 
21.7’ 
46.5’ 
95.0* 

293.2’ 
526.0’ 

0.5’ 
0.6’ 
0.9’ 
6.8 

348.5 

0.5* 
46.0 

0 
5 
9 

4084 
19864 
47769 

112.6 
3628.5 

15147.7 

d 

7809 588.5 
16452 1778.2 
31178 5652’ 

8719 398.6 
36717 4305.5 
55817 11319.0 
82306 26479.9 

20 

36 

25 

49 

32 
31 

39 

22 

14 
20 
19 
22 
22 

14 
13 
23 
18 
24 

17 
21 

499.65 
E 
I 
s 

3402.8 
I 
s 

s 

410.4 
s 
8 
E 

5211.1 
f 
I 
f 

29.8 
874.1 

E 
f 

3180.4 
E 
E 
I 

362.1 
e 
s 
E 
s 
I 
s 
P 

0.8 
119.9 
763.1 

1909.5 
2058.6 

E 

1.0 
1.1 

2 
4.1% 

111.6’ 

1 .o 
30.68* 

d Too many constraints. 
h Error during execution. 
’ Not executed (the execution would be too long). 
d Not executed (single commodity problems were not executed 
with MCNWS). 

e Feasibility error. 
f MCNFSS cannot solve problems with side constraints. 
s Not enough memory to run this problem. 
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used for all the adjustable parameters of the codes 
(only PPRN has been tuned to find the optimal solu- 
tionof(17)atphaseOattestsLi(.“,i=1,...,8,j= 
1, . . ,4, instead of finding just a feasible one, which is 
the default option). In all the executions all the codes 
reached the same optimal objective function value (in 
fact there were some differences but none significant). 
Table 2 shows the results obtained with all the codes. 
For PPRN the information disclosed includes columns 
“It.0” (number of iterations at phase 0) , “It. 1” (num- 
ber of iterations at phase l), “It.2”(number of itera- 
tions at phase 2) and “CPU sec.“( CPU seconds spent 
by the execution). For MINOS the same information 
is given excluding column “It.0”. For MCNF85 and 
LoQo, besides the “CPU sec.” column, column “It.” 
gives the total number of iterations required. For each 
test the fastest execution (of those successfully fin- 
ished) is marked with an asterisk (*) in the “CPU 
sec.” column. 

In Table 2 it can be observed that there were some 
problems in the execution of some tests (these are 
mentioned in the legend at the bottom of the table). 
Minos could not solve problems with more than 32767 
constraints, since it stores the number of rows in a 
two-bytes signed integer. MCNF85 stopped some ex- 
ecutions with a message of “feasibility error”, mean- 
ing that it had difficulty in finding a feasible point. It 
can also be seen that the interior point code LoQo re- 
quired a large amount of memory to solve this kind of 
problems. Thus, where it would have been possible to 
take advantage of the interior point methodology, the 
big examples could not be executed. 

6.2. Tests of nonlinear problems 

Two sets of problems were employed to test the 
performance of the code for the nonlinear case. The 
first set are expensive (in computation time) artifi- 
cial problems, while the second arise from the fields 
of long- and short-term hydrothermal coordination of 
electricity generation and traffic assignment. 

Three different artificial objective functions were 
tested. The first two are simple convex functions de- 
fined by 

h(2)(XI,X2,..., XK> 
k=l i=I 

Xk; being the flow of the ith arc and kth commodity. 
The third objective function is derived from that de- 
scribed in Ref. [ 261, and is defined as 

h’3’(X, x2 , ,..., &) = 2 Fk(xk) , 
k=l 

Fkcxk)=-$:, 
r=l 

1+ x;i + (xki - xk,i+I I2 

+ -++&L)ixki)4] (23) 
i=l 

ct , ~2, c3 E R (in the executions performed ct = 1000, 
c2=1000andc3= 1200). Despite their simplicity, 
these three objective functions have solutions with a 
high number of superbasic variables, which increases 
the execution time considerably. Three networks were 
used with these artificial objective functions, which are 
real ones and were obtained from long-term hydrother- 
mal scheduling problems that will be introduced later. 
We will refer to these tests as Ni(j), i = 1,. . . ,3, j = 
1 .., 3, where the subscript i identifies the network 
t&d and the superscript (j), j = 1, . . . ,3 refers to 
the artificial objective function ( (6.2)) (6.2) or (6.2), 
respectively). 

As in the linear case, the second set of problems 
was obtained as instances of real problems. These can 
be divided into two types of models. The first type are 
long and short-term hydrothermal scheduling prob- 
lems of electricity generation according to the models 
proposed in Refs. [24,17] (where a comprehensive 
explanation of the objective functions can be found). 
These models are the same as those used in the linear 
case, but consider the real function instead of a lin- 
earized one. The long-term problems will be denoted 
asNic4),i=1,... ,3, whereas the short-term ones will 
be denoted as Nic5), i = 1,. . . ,4. The second type of 
problems arise from the field of static user equilibrium 
traffic assignment problems with inelastic demand and 
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Table 3 
Nonlinear test problems 

Test K #SC. Nodes Arcs Rows .i Columns fi 

N,‘,) a 4 12 37 153 313 777 
N*(j) a 4 3 99 315 714 1578 
N?(j) a 4 3 685 2141 4884 10708 

NI’~’ I 528 1345 4416 1873 4944 
N2t5) 1 840 1975 6048 2815 6888 
NT’~’ I 840 2479 8064 3319 8904 
Nj’5) 1 1848 4741 15600 2289 17448 

N,ch) 16 0 182 309 3221 5253 

“.j= I ,,,., 4. 

separable link cost functions [4]. This problem has 
been formulated as a multicommodity problem, con- 
sidering that each commodity kij is the traffic flow 

leaving from origin i and arriving at destination j. A 
more detailed description of the model and the ob- 
jective function employed can be found in Ref. [ lo]. 
Only one test problem was used with this objective 
function, This problem corresponds to a subnetwork 
of the city of Barcelona (thus being a real case net- 
work), and will be denoted as Nt (@. Table 3 shows the 
characteristics of the nonlinear tests employed. The 
meaning of the columns is the same as in Table 1. 

For the nonlinear tests PPRN has been compared 
only with the general-purpose package MINOS 5.3 
[23], since no other specialized code for nonlinear 
multicommodity flows with side constraints is known. 
Table 4 shows the results obtained with both codes. 
The information disclosed is the same as in the Table 
2, considering an additional column “!I( x*)” with the 
optimal objective value found with each code. The 
fastest execution is also marked with an asterisk (*) 
in the “CPU set” column. 

Some comments should be made about the results 
presented: 
??In the problem N3 (4) PPRN and MINOS obtained 
different solutions. This is due to the nonconvexity of 
the objective function for the long-term hydrothermal 
model. 
?? In all runs the optimality tolerance required was 
E0p1 = 10e6. Only for test problem N2c4) could this 
tolerance not be achieved for both codes, due to the 
nonlinearities in the long-term hydrothermal objective 
function. In this case, the PPRN code reduced E& 

more than the MINOS package ( eopt = 3.1 x 1O-3 for 
PPRN whereas MINOS achieves a point where eopt = 
1.7 x lo-*), thus reaching a best optimum point (this 
is why both codes have a different objective function 
value, rather than considering different local minima). 
??As stated previously, PPRN and MINOS were ex- 
ecuted with the default options. This meant that the 
PPRN code computed ZTHZPs = -g, using the 
quasi-Newton methodology while s < 500 (s being 
the number of superbasic variables), and changed 
to the truncated-Newton algorithm when s > 500. 
On the other hand, the MINOS package always per- 
forms a quasi-Newton update. This affects heavily 
the performance in test problems Ns( ’ ), Ns(*) and 
N3c3), where the number of superbasic variables at 
the optimum is very high. In these three cases the 
time spent by PPRN is much less than that required 
by MINOS, even though the PPRN code performs 
many more objective function evaluations since it is 
using the truncated-Newton algorithm. Thus, it can 
be concluded that the different behavior of both codes 
in these examples is mainly due to the different al- 
gorithm used for computing the superbasic descent 
direction when the number of superbasic variables is 
very high, and that the truncated-Newton algorithm 
seems to be clearly much more efficient than the 
quasi-Newton update in such cases. 

7. Conclusions 

The implementation made of primal partitioning for 
solving multicommodity network flow problems is ef- 
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Table 4 
Results for the nonlinear test problems 

Test It.0 1t.1 

N,(” 107 63 
Nz(‘) 460 226 
N3”) 4083 2896 

N,c2) 107 63 
N2t2) 460 226 
N3c2) 4083 2896 

N, (3) 175 74 
N2(% 460 226 
N3t3) 4083 2896 

N,c4) 175 74 
N2t4) 460 226 
N3t4) 4083 2813 

N,(‘, 3419 1177 
N2(-5) 5209 915 
Nj(” 7044 1216 
N4(% I1650 3341 

N,c”, 869 78 

PPRN MINOS 

1t.2 h(x*) CPU set It. 1 1t.2 h(x*) CPU set 

654 285515.68 10.4’ 163 687 285515.68 17.0 
1459 867915.88 87.2’ 617 1753 867915.87 139.7 
9458 210894646.82 3086.7* 16598 12401 210894647.06 23579.6 

845 3.9718~10’~ 10.4’ 163 1160 3.9718~10’~ 22.5 
2127 6.0465 x 1O’O 83.1’ 689 2297 6.0465 x 10” 118.4 

15463 1.9431x10’4 5823.3’ 16598 17019 1.9431 x1014 16524.7 

1640 971.69 30.9* 256 1638 97 1.69 34.4 
3539 891.69 236.0’ 689 3772 891.69 292.3 

18289 212682.61 6831.2* 16598 28314 212682.61 19398.0 

395 -3.7747 x 10’2 3.2* 261 202 -3.7747 x 10’2 3.9 
4457 I .0792 x lo* a 183.1’ 574 5092 1.2228 x 10s a 213.9 

14186 -7.9171 x 109 h 2504.1’ 16069 16569 -6.7860x lo9 h 4284.9 

1692 0.4009 110.2’ 2653 2522 0.4009 226.5 
1608 0.8715 156.7’ 7044 1216 0.8715 357.8 
1850 0.3844 217.3* 2965 2455 0.3844 485.5 
6768 1.0920 2026.0’ 12257 7507 1.0917c 3316.9 

460 288.9697 11.6* 660 526 288.9697 69.6 

a The required optimality tolerance ??opt = 10m6 could not be achieved. 
h Different local minima were reached. 
c In this execution the “feasibility tolerance” parameter of the MINOS package was increased considerably to obtain a feasible solution. 
The different value h(x*) for MINOS and PPRN may be due to this fact. 

ficient, and compares well with the alternative meth- 
ods tried. Instrumental in the efficiency of the PPRN 
code is the three-phase procedure used and the special 
variable dimension update of the factorization of the 
working matrix. 

As shown in Tables 2 and 4 in no case could the gen- 
eral purpose code MINOS emp@yed as a linearly con- 
strained optimization tool outperform the specialised 
code PPRN, which was to be expected since PPRN 
uses the same technique as MINOS for linear and for 
nonlinear objective functions but it can take advantage 
of the multicommodity network structure. 

For linear problems without side constraints PPRN 
is generally better than the specialised linear multi- 
commodity network flow code MCNF85. Whenever 
MCNF85 is better it is so by a little margin, whereas 
PPRN is many times faster than MCNF85 in many 
cases. It can be observed that MCNF85 only gets to be 
better than PPRN when the number of commodities 
is small but its performance gets worse than PPRN as 

the number of commodities increases. 
The iteration counts of PPRN and those of MINOS 

and MCNF85 are not comparable since phase 0 of 
PPRN iterates in single-commodity problems. 

The general purpose interior point code employed 
(LoQo) is in some cases better than PPRN but it 
requires a lot more of workspace. In fact, only the 
smaller problems could be solved due to memory limi- 
tations. In other cases L,oQo did similar or quite worse 
than PPRN. All the same, it would be worth special- 
ising an interior point implementation for multicom- 
modity network flows since it would reduce the mem- 
ory requirements and would make interior point itera- 
tions less time-consuming, thus comparing well with 
a primal partitioning specialised code. 
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