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Abstract Multicommodity flows belong to the class of primal block-angular prob-
lems. An efficient interior-point method has already been developed for linear and
quadratic network optimization problems. It solved normal equations, using sparse
Cholesky factorizations for diagonal blocks, and a preconditioned conjugate gradi-
ent for linking constraints. In this work we extend this procedure, showing that the
preconditioner initially developed for multicommodity flows applies to any primal
block-angular problem, although its efficiency depends on each particular linking
constraints structure. We discuss the conditions under which the preconditioner is ef-
fective. The procedure is implemented in a user-friendly package in the MATLAB
environment. Computational results are reported for four primal block-angular prob-
lems: multicommodity flows, nonoriented multicommodity flows, minimum-distance
controlled tabular adjustment for statistical data protection, and the minimum conges-
tion problem. The results show that this procedure holds great potential for solving
large primal-block angular problems efficiently.

Keywords Interior-point methods - Structured problems - Normal equations -
Preconditioned conjugate gradient - Large-scale optimization
1 Introduction

Multicommodity flows are challenging linear programming problems and some sets
of instances, such as PDS, have been widely used in the past for the evaluation of
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196 J. Castro

general solvers [7, 8]. Interior-point methods were not considered an efficient choice
for this kind of problem until the specialized method of [9]. This approach was recog-
nized as being the most efficient interior-point method for general multicommodity
problems [6]. Although some of the multicommodity models that were formerly con-
sidered to be difficult are today solved in seconds with extremely efficient simplex
implementations [6, 19], specialized interior-point algorithms still perform better for
some recent multicommodity instances [10, 12].

The purpose of this work is to expand on the specialized multicommodity interior-
point method of [9] for general primal block-angular problems. As in the case of
multicommodity flows, normal equations will be solved using a method that com-
bines Cholesky factorizations for the diagonal blocks, and a preconditioned conjugate
gradient (PCG) for the linking constraints. It will be shown that the preconditioner
initially developed for multicommodity flows can be applied to any primal block-
angular problem. However, unlike multicommodity flows, the existence of a good
diagonal preconditioner cannot be guaranteed for general block-angular problems:
it depends on the particular structure of linking constraints. In general this will not
be a significant drawback, because for most problems linking constraints are sparse,
which results in sparse, efficient preconditioners.

Specialized interior-point methods have been applied in the past to block-angular
and more general block-bordered structures. The most significant attempt is the
OOPS system [16, 18]. This approach, tailored for parallel processing, exploits the
nested structure of the matrix constraints through a tree representation, and solves
the linear systems of equations at nodes of the tree by Cholesky factorizations. The
procedure described here could be used at the nodes associated with primal block-
angular structures.

Although the procedure applied in this work makes use of the PCG, it is sig-
nificantly different from other interior-point algorithms based on iterative solvers.
Iterative approaches solve the full set of rows and columns of both the normal equa-
tions (see [15, 25] and references therein) and the augmented system (see [3, 15, 21]
and references therein) through the PCG, whereas our method only applies the PCG
for the rows and columns in normal equations associated with linking constraints. It
aims to eliminate the complicating constraints from normal equations. It can thus be
viewed as a decomposition approach.

The augmented system offers more freedom for direct and iterative solvers [2],
both solving general quadratic and nonlinear problems and for designing precondi-
tioners. This was the choice made, for instance, in the iterative approaches of [3] and
[21]. Specifically, the latter states that iterative solvers should be used for the aug-
mented system. However, our method is, firstly, not merely based on the PCG, but
also uses Cholesky factorizations; and, secondly, its purpose is to eliminate the com-
plicating linking constraints, making the problem block separable rather than solving
the full system using an iterative solver. For instance, an indirect comparison between
the approaches of [21] and [9] for some PDS problems is presented in Table 1. The
results of [9] are divided into two since they were obtained from a machine twice as
slow. Clearly, however, although our procedure uses normal equations, it seems to be
a more efficient alternative for solving block-angular problems.

An additional argument for using normal equations in our approach is that for lin-
ear and separable quadratic problems, which are dealt with in this work, they are more
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Table 1 Comparison of the

approaches of [21] and [9] for Instance CPU of [21] CPU of [9]
some PDS problems
PDS10 1316 44
PDS15 4285 118
PDS20 8371 193
PDS50 60215 2083
PDS60 89651 3380

efficient than the augmented system formulation, if solved through direct methods in
the absence of dense columns [26, Chap. 11]. As far as we know, normal equations
are still used in state-of-the-art commercial codes such as CPLEX. Our method uses
Cholesky factorizations for the diagonal blocks; if they do not contain dense columns,
normal equations are a sensible choice. Should a dense column appear in the linking
constraints submatrix, variable splitting techniques can be used to reduce the fill-in
of the preconditioner. An example of such procedure will be shown in Subsection 6.3
for the minimum congestion problem.

The structure of the paper is as follows. Section 2 presents the formulation of the
primal block-angular problem. Section 3 shows the structure of normal equations for
this problem. Section 4 describes the specialized procedure for the solution of normal
equations, combining sparse Cholesky factorizations and the PCG. This section also
discusses the conditions under which the preconditioner will be effective. Section 5
gives details of the implementation developed in the MATLAB environment. Finally,
Sect. 6 compares the specialized approach with the standard one based on Cholesky
factorizations of normal equations and with alternative preconditioners, using four
sets of instances: multicommodity flows, nonoriented multicommodity flows, con-
trolled tabular adjustment in statistical data protection, and the minimum congestion
problem.

2 The primal block-angular problem

The primal block-angular formulation considered in this work is

k+1 , ’
min Z(c’ xt+x! Qix’)

i=1

N x! b!
N> x2 b?
subject to = , 1)
N xk b*
Ly Ly ... Lp IJLx*! prtl

o<xi<u', i=1,....k+1.

Matrices N; € R™i*% and L; e R j =1,... k, respectiv_ely define the block
and linking constraints, k£ being the number of blocks. Vectors x' e R",i =1,...,k,
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are the variables for each block. x**! € R/ are the slacks of the linking constraints.
b eR"™ i=1,...,kis the right-hand-side vector for each block of constraints,
whereas b**! € R/ is for the linking constraints. The upper bounds for each group of
variables are defined by u',i=1,...,k+ 1. Note that this formulation considers the
general form of linking constraints b*+! — u**1 < Y% ,x7 < p*+1 Equality con-
straints are not considered to simplify the exposition, although the procedure to be
developed is equally valid for problems with both types of linking constraints. Equal-
ity constraints can be defined by imposing zero (or almost zero) upper bounds on
the slacks. ¢/ € R% and Q; e R%*" j=1,...,k, are the linear and quadratic costs
for each group of variables. We also consider linear and quadratic costs ¢! e R/
and Qy41 € R/ for the slacks. Since the procedure to be developed uses normal
equations, for the sake of efficiency it has been restricted to the separable case where
Q;,i=1,...,k+ 1, are positive semidefinite diagonal matrices, although the under-
lying method is valid for any positive semidefinite matrix. Note that any quadratic
problem can be transformed into a separable equivalent one, through the addition
of extra variables and constraints. This can significantly reduce the solution time in
some instances [24, Chap. 23]. (1) is an optimization problem with m = Zle m; +1
constraints and n = Zle n; + 1 variables. We assume that, for some i, m; is allowed
to be 0, i.e., problem (1) includes more general situations where a group of vari-
ables only appears in the linking constraints. For instance, if such group of variables
corresponds to block k, the matrix structure is

Ny
Ny

(@)

Ni—1
Ly L ... Lyg1 Ly 1

This matches the primal block-angular formulation of, for instance, [18].

Note that more general structures, such as block-bordered structures, can also be
attempted with the procedure described in this work if they are previously trans-
formed to a primal block-angular form. This can be done, for instance, by replicating
the linking columns for each block and imposing extra linking constraints that impose
the same value on the replicated variables. A similar strategy is used in stochastic op-
timization with first-stage variables and nonanticipativity constraints.

3 Structure of normal equations

Problem (1) can be written in standard form as

min  ¢x+ %xTQx
Ax =b,
X+s=u,
x,s>0

3
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where x,s,u € R", A e R"™*" Q € R"*" and b € R™. The dual of (3) is

max by — %xTQx —wlu

ATy —QOx+z—w=c, 4)
Z,w>0

where y € R™ and z, w € R”". For problem (1), vectors c, x, s, u, y, z, w and matrix
Q are made up of k + 1 blocks.

Replacing inequalities in (3) by a logarithmic barrier with parameter u, the first or-
der optimality conditions for the barrier problem, after manipulating and eliminating
the constraints x + s = u, are

vy =pne —XZe=0,

Few = e —SWe =0,

rp=b—Ax =0, 5)
re=c—(ATy — Ox +z—w)=0,

(x,s,z, w) = 0;

e € R" is a vector of 1’s, and matrices X, Z, S, W € R"*" are diagonal matrices made
up of vectors x, z, s, w. The set of unique solutions of (5) for each u value is known
as the central path, and when p — 0 these solutions converge superlinearly to those
of (3) and (4). The nonlinear system (5) is usually solved by a sequence of damped
Newton’s directions (i.e., with step length reduction to preserve the nonnegativity of
variables), reducing the . parameter at each iteration. This procedure is known as the
path-following interior-point algorithm. An excellent discussion about the theoretical
properties of this and other interior-point algorithms can be found in [26].

The linearization of (5), based on the implicit assumption that s = u — x, results
in a linear system of variables Ax, Ay, Az and Aw. After eliminating Aw and Az,
as follows:

Az=X'ro, — X 'ZAx, (6)
Aw = S""rg, + STIWAX, (7

we obtain the augmented system form

EN MRS

where @ and r are defined as
O=0+S'w+x12, r=re+ 8 rgw — X rys. )

If, in addition, we eliminate Ax from the last group of equations of (8), the normal
equations form is obtained:

(AOATYAy =rp+ AO, (10)
Ax =O(AT Ay — ). (11)
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The Newton direction is computed using (6), (7), (10) and (11).

For linear and separable quadratic problems, @ is a diagonal matrix, thus (11) is
easily computed. Exploiting the structure of A and ® of the primal block-angular
problem (1), the matrix of system (10) can be recast as

[NiO|N] NiOLT

| LiON] ... LkN] |01 + X0 Lio; LT |

S (12

B e RV (7 =Y"*_ n;), CeR™ and D € R'*! being the blocks of A@ AT, and
®;,i=1,...,k+ 1, the submatrices of @ associated with the k 4+ 1 groups of vari-
ablesin (1),i.e., ®; = (Q; + Sl-_1 Wi+ Xl._lZ,-)_l. Denoting by g the right-hand side
of (10), and appropriately partitioning g and Ay, the normal equations can be written

as
B CllAyi|_|&
& olan]=a] a3

4 Solving the normal equations

By eliminating Ay; from the first group of equations of (13), we obtain

(D—CTB™'C)Ay, = (8o — CT B lg)) (14)
BAy; = (g1 — CAy2). (15)

System (15) is solved by performing a Cholesky factorization for each diagonal block
N;©;NT i=1,... k, of B. The system with matrix D — CT B~!C, the Schur com-
plement of (13), is solved by a PCG. The dimension of this system is /, which is
the number of linking constraints. The preconditioner obtained in [9] for multicom-
modity flows, a special class of primal block-angular problems, can be applied to any
primal block-angular problem, as shown by following result. Proof of this is upheld
by Theorem 1, and Propositions 3 and 4 of [9].

Proposition 1 If D — CT B='C is symmetric positive definite and D + CTB~'C is
positive definite, then the inverse of (D — CT B~1C) can be computed as

(D-CcTB 'Oy ' = (Z(D_I(CTB_IC))i)D_l. (16)
i=0
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The hypotheses of Proposition 1 are satisfied by any primal block-angular prob-
lem. Note that the above preconditioner is also valid if Q;,i =1, ..., k are not diag-
onal, although in practice it would be prohibitive because @; is no longer diagonal in
systems with matrix B.

The preconditioner M ~!, an approximation of (D —CT B~1C)~!, is thus obtained
by truncating the infinite power series (16) at some term 4. Since the preconditioner
is used at each iteration of the PCG for the solution of system Mz = r (for some vec-
tors z and r), increasing & by one means solving an additional system with matrix B
at each PCG iteration. The more the terms included, the better the preconditioner will
be, at the expense of increasing the execution time for Mz = r. The value of & that
optimizes the tradeoff between a good and an efficient preconditioner is problem de-
pendent. However, in general, few terms from the power series should be considered.
h =0 or h =1 are reasonable choices, which in practice yield

M~1=p! ifh=0,
M- '=u+DY(cTB'C)D™! ifh=1.

h = 0 has been used for all the computational results in this paper. As will be shown
in Sects. 6.1, 6.2 and 6.3, which report the overall number of PCG iterations for
each instance, the PCG converges in few iterations for 2 = 0. However, the number
of PCG iterations is not evenly distributed for all the interior-point iterations: very
few PCQG iterations are required for the first interior-point iterations, and the number
usually increases only when the relative duality gap (defined as the relative difference
between the primal and dual objective functions) is less than 107!

Up to now, the above preconditioner has only been (successfully) applied to linear
and quadratic multicommodity problems [9—11]. Although the expected performance
for a general primal block-angular matrix is problem dependent, the effectiveness of
the preconditioner is governed by the following criteria:

e The spectral radius of D~'(C”T B~!C)), which is always in [0, 1) (Theorem 1
of [9]). The farther away from 1, the closer M~ listo (D—-CcTB'O)~L. Al
though the particular behaviour of the spectral radius value is problem dependent,
in general, it comes closer to 1 as we approach the optimal solution, because of the
ill-conditioning of the & matrix.

e The structure of matrix D. At each PCG iteration, & + 1 systems with matrix
D must be solved. For multicommodity flows, this is an inexpensive step, since
Li=1,i=1,...,k, and, therefore, D is diagonal. For general problems, D de-
pends on the structure of side constraints, and we have to use a sparse Cholesky
factorization (including row and column permutation, and symbolic factorization
stages). If the fill-in in the factors of D is large, the preconditioner can be com-
putationally expensive. Procedures devised to avoid fill-in for A@ AT [2] can also
be applied for D to improve the efficiency of the preconditioner. An example of
linking constraints with a dense column is presented in Sect. 6.3 for the minimum
congestion problem; in this case a dense D matrix is avoided by variable splitting.

e The structure of matrices N; @iNiT, i=1,...,k, of B. By using ¢ to denote
the number of PCG iterations, the solution for (14) and (15) requires 2 + ¢ (1 + h)
back-solves with matrix B. Although the numerical factorization is performed only
once, the large number of back-solve steps can be very expensive if the fill-in is
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significant. Again, this is problem dependent, and general procedures devised for
AO®AT can be applied to N; @iNiT.

e Products Cv; and CT vy, for some vectors v; and vy. If we denote the number of
PCG iterations with ¢, the number of such products is 24 (14 &). From (12), these
operations involve matrix—vector products with N;, Nl.T, L; and Ll.T, i=1,...,k.
In general, they can be highly tuned for each particular problem, exploiting the
matrix structure. This is done, for instance, for multicommodity flows, in which
N; are node—arc incidence matrices, and L; = I. The use of generic programming
and virtual functions, which are common tools in object-oriented programming
languages such as C++, can be highly effective for implementing these operations.
Therefore, the execution time spent in these computations should not be significant,
compared to the time needed for systems with B and D. However, this rule does
not hold in our MATLAB implementation, in which the Cholesky factorizations
for B and D are performed through precompiled routines, and operations Cv; and
CT v, are done within the MATLAB interpreted language. As discussed below, this
is the reason we only use the time spent in precompiled Cholesky routines for the
computational results.

5 Implementation details

The specialized interior-point algorithm described in the previous sections has been
implemented in the MATLAB environment. The code has been designed as a generic
solver, named PRBLOCK_IP, which can be hooked to a front-end for each particular
primal block-angular problem to be solved. The generic solver receives the following
from the front-end:

c € R": the linear cost vector.

Q € R": the quadratic cost matrix.

u € R": the upper bounds vector.

b € R™: the right-hand-side vector.

N': using the overloading capabilities of MATLAB, N can be a list of matrices
N; e R i =1,...,k, or a single matrix; in the latter case, N; = N for all i,
and a single row ordering and symbolic factorization is required.

e L: as in the above case, L is an overloaded parameter, which can be a list of ma-
trices L; e RI*"i j=1,... k,ora single matrix (and thus L; = L for all 7).

PRBLOCK_IP implements a standard infeasible path-following algorithm, which
solves normal equations either through a Cholesky factorization, or through the spe-
cialized procedure. For reasons of efficiency, Cholesky factorizations are performed
through external precompiled routines. Specifically, the code uses the Ng—Peyton
sparse Cholesky package [20], hooked to MATLAB for the LIPSOL package [27].
Ng-Peyton Cholesky package implements the minimum degree ordering heuristic
for the row and columns permutations of normal equations, and exploits the mem-
ory hierarchy through the use of supernodes. PRBLOCK_IP is about 2300 lines,
aside from the precompiled Ng—Peyton Cholesky package and front-ends for each
particular problem. It can be obtained for research purposes from http: //www-
elo.upc.es/ “jcastro/prblock_ip.html. The distribution also includes
a SCILAB version, a free MATLAB-like environment.
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An interior-point approach for primal block-angular problems 203

Although a MATLAB implementation is far less efficient than an equivalent
C/C++ one, it provides a user-friendly environment for testing the suitability of the
specialized algorithm for any primal block-angular problem. Front-ends are easily
developed within MATLAB. Looking at the CPU time of precompiled Cholesky rou-
tines, which is automatically provided by PRBLOCK_IP, we can forecast the perfor-
mance of the specialized block-angular interior-point algorithm compared to a stan-
dard one (see Sect. 6 for details). If the results are satisfactory, it is worth spending
time on an ad-hoc implementation for these kinds of problems. Up to now, such an
ad-hoc code is only available for multicommodity flows [9]. The development of
a generic C++ class, with virtual functions that exploit the structure of any block-
angular problem does not fall within the scope of this paper, and remains among
other pending tasks to be undertaken.

Some additional features of the package are:

1. The path-following algorithm implemented does not compute Mehrotra’s predictor-
corrector or higher-order directions. As observed in [9], in the particular case of
multicommodity flows, the reduction in the number of iterations is not worthwhile,
due to the increase in execution time per iteration as the PCG has to be applied
twice. However, in the computational results, we also compare the specialized
procedure with the native MATLAB interior-point solver, which is based on LIP-
SOL, and with CPLEX 9.1; both codes make use of higher-order directions. As
will be shown in Sect. 6, the specialized procedure is competitive with Cholesky
based procedures, whether they rely on Newton or higher-order directions.

2. As we approach an optimal point, system (14) becomes more ill-conditioned,
and the PCG may give inaccurate solutions. When this happens, PRBLOCK_IP
switches to the solution of normal equations (13) using a Cholesky factoriza-
tion. This is done when we are close enough to the optimal point, and gap’ =
|p' —d'|/(1 4 |p'|) increases from one iteration to the next—p’ and d’ being the
primal and dual objective functions at iteration i respectively. This rule is imple-
mented as

(gap’ <1/2) and (gap’ > 1.05gap' ™). (17)

The tables of computational results in Sect. 6 provide both the overall number of
interior-point iterations and the number of iterations performed before the satis-
faction of rule (17). In general, the rule was only applied for the last iterations for
some instances in Sect. 6.1; it was never used for those in Sect. 6.2; and it was re-
quired for the last iterations of all the instances in Sect. 6.3. It is worth noting that
any other effective procedure can be selected for computing the directions, once
condition (17) is satisfied. For instance, the solution of the augmented system by
the PCG and the preconditioner of [21] would suitably complement our approach,
since it proved to be very effective for the last interior-point iterations. Combining
the two procedures is one of the further pending tasks.

3. The angle criteria of [22] is used as stopping rule for the PCG. At iteration i of
the interior-point method, we consider that the jth PCG iterate Ay‘zl solves (14)
if the angle of (D — CTB~!'C)Ay; and g — CT B~ gy is close to 0. This rule is
implemented as:

1 —cos((D—CTB'C)AY], 82— CTB 'g1) <, (18)
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€; being the PCG tolerance parameter. This tolerance is dynamically updated as
€; = max{0.95¢;_1, min,} 19)

which guarantees better Ay, directions as we get closer to the solution. By default,
PRBLOCK_IP uses an initial tolerance of €y = 1072 and € = 1073 for, respec-
tively, linear and quadratic problems, and a minimum tolerance of min, = 1078,
A tighter value is considered for quadratic instances because the preconditioner
was shown to be more effective for them [11]. These tolerances are looser and
tighter than those of [22] and [3], respectively. In principle, the initial tolerance
and the updating factor could be fine-tuned for specific problems. For instance,
Table 20 in Sect. 6.3 reports results with €g = 10~* for some instances. These re-
sults are significantly better than those obtained with the default tolerance. On the
other hand, good results are obtained with default tolerances for the instances in
Sects. 6.1 and 6.2. We decided to test the algorithm with standard values for all
the problems, in order to demonstrate the robustness of the approach.

4. The initial dimension of system (14) is /, the number of linking constraints.
Early detection of inactive linking constraints, initially suggested in [17], may
significantly reduce the number of PCG iterations, and was very effective in
practice for multicommodity flows [9]. The constraint elimination procedure of
PRBLOCK_IP is only performed when gap’ < 1. The linking constraint i is con-

sidered inactive if (i) its slack xf“ is far enough from the upper bound; (ii) its

slack xf‘H does not intervene in the objective function; (iii) the upper bound of
the slack uf“ is far enough from 0O (to avoid the removal of active constraints);
and (iv) its Lagrange multiplier y;“H
() 9/10uf ™! > xF1 > 1/10uf T
(i) (/™' =0) A (Qir1,, =0)
(iii) u¥t' > 1/10
(iv) [yF < 1/100.
Note that, unlike in general Cholesky solvers, the removal of linking constraints
does not imply any additional symbolic refactorization with the PCG.
5. In addition to the preconditioner discussed in Sect. 4, PRBLOCK_IP includes
three others:

is close to 0. This is implemented as:

e Incomplete Cholesky factorization of A@ AT, for the solution of normal equa-
tions by PCG without exploiting its block structure. The angle criteria (18) and
the update formula (19) for the PCG were also used. The initial and minimum
tolerances were set to €g = 10~ and min, = 107°, respectively.

e Incomplete Cholesky factorization of matrix D, instead of its Cholesky factor-
ization, which was the choice in Sect. 4. Formulae (18) and (19), and the same
tolerances as the Cholesky factorization of D were used.

e Incomplete Cholesky factorization of matrix D — C” diag(B)~'C. This precon-
ditioner is similar to that suggested in [3] for the augmented system. Again, the
same criteria (18) and (19), and tolerances described for the Cholesky factor-
ization of D were used.

For the incomplete Cholesky factorization, an initial drop tolerance of 1073 was
considered. It was reduced at each interior-point iteration by a factor of 0.8, in
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an attempt to obtain more accurate preconditioners and to avoid instabilities as
we approached the optimal solution. The built-in MATLAB incomplete Cholesky
factorization was used.

6. The code does not consider standard optimality and feasibility tolerances in the
range [107%, 1076], since they are difficult to achieve using an iterative solver. By
default, PRBLOCK_IP stops when gap’ < 10~*. Primal and dual infeasibilities
are not checked, although, for most instances tested, they were between 1073 and
10~° when rule (17) was not used. When this rule was applied, i.e., when the last
iterations were performed using Cholesky for normal equations, the infeasibilities
were reduced to less than 1078 in few iterations. Solutions with smaller infeasi-
bilities and relative duality gaps can be obtained by improving the tolerance of the
PCG, at the expense of increasing the number of PCG iterations. A different ap-
proach is to use a loose tolerance for the PCG, rapidly obtaining a “quasi-optimal”
solution. From this solution, very few interior-point iterations with a direct solver
are required to reduce the infeasibilities and the duality gap. Another alternative
is to detect the optimal face from the quasi-optimal solution (such a strategy has
been used for minimum cost network flow problems [22]). Whatever option is
considered, the suggested procedure is efficient for computing, at the very least, a
point close to the optimal solution.

6 Computational evaluation

We tested the specialized algorithm with four classes of primal block-angular prob-
lems: multicommodity problems, nonoriented multicommodity problems, minimum-
distance controlled tabular adjustment, and the minimum congestion problem. For
some of the above problems there are more efficient algorithms than our specialized
approach, but our aim is to compare the specialized algorithm with a general interior-
point one. Minimum-distance controlled tabular adjustment instances are quadratic
problems; the remaining instances are linear ones. They are presented in the follow-
ing subsections.

For each instance we provide results obtained with PRBLOCK_IP for solving
normal equations (13) with a Cholesky factorization and with the PCG using an in-
complete Cholesky factorization. Results are also given for the specialized procedure
using the Cholesky factorization of D (the first term of the power series (16)), the in-
complete Cholesky factorization of D, and the incomplete Cholesky factorization of
D — CTdiag(B)~'C. For the linear instances we also provide results with LINPROG,
the linear optimization solver of MATLAB, which is based on LIPSOL [27] and com-
putes Mehrotra’s predictor—corrector directions through Cholesky factorizations. Re-
sults with the barrier algorithm of CPLEX 9.1 are also reported for all the instances.
(We updated a free for research purposes MATLAB-CPLEX interface, available
from http://www-eio.upc.es/ jcastro/software.html). It is worth
noting that the implementations of PRBLOCK_IP and LINPROG are comparable,
whereas CPLEX 9.1 is a state-of-the-art code with highly optimized routines. There-
fore, the comparison between the procedures for computing Ay of PRBLOCK_IP
and CPLEX 9.1 is biased due to the quality of the implementation. All runs were
carried out on an HP-LC2000 server under the Linux operating system, with 2 Intel

@ Springer



206 J. Castro

Table 2 Percentage of overall

execution time spent on the Instance koom; i % Ay % Cholesky

computation of Ay (including

Cholesky and the PCG), and in PDS10 11 1398 4792 84.3 74.3

Cholesky-related procedures PDS20 112856 10858 894 796
Mnetgen 64-64 64 63 511 65.3 413
Mnetgen 128-64 64 127 1171 83.2 59.6

Xeon 933 MHz processors, and 2 GB of main memory. They were performed on a
single processor, without exploiting parallelism capabilities.

As it is an interpreted language, the overall execution time required by MATLAB
is meaningless. We only consider the execution time spent in the external precompiled
Ng—Peyton Cholesky routines (including minimum degree ordering, symbolic factor-
ization, numerical factorization, and numerical solution). For the runs with CPLEX
9.1 and LINPROG we provide the overall execution time. We observed that in solv-
ing the normal equations by a Cholesky factorization, the relative difference between
the time spent on Cholesky factorizations and the overall execution time is less than a
1% for large instances. However, in solving (13) by the specialized procedure, the ex-
ecution time was occasionally many times greater (e.g., 60 times for large instances)
than the time spent on all Cholesky factorizations (including those required for the
PCG). This behaviour is due to the interpreted nature of the MATLAB language. In
a C/C++ implementation, the time spent on the solution of (14) by PCG (excluding
Cholesky factorizations) is a small fraction of the overall time, and much less than
the time required by Cholesky factorizations. For instance, the results obtained with
the C implementation of the specialized procedure for multicommodity flows of [9]
are presented in Table 2. For four of the instances in the following subsections, the
table provides the dimensions (number of blocks k, number of rows m; and columns
n; in all blocks), the percentage of the overall execution time spent on the compu-
tation of Ay (which includes both the PCG and Cholesky), and the percentage of
the overall execution time spent on Cholesky-related procedures. These two figures
would be closer for larger instances. They would also approach 100%. Therefore,
the time spent on Cholesky procedures can be used to forecast the overall execution
time of the specialized algorithm. From Table 2 we can see that, even for the small-
est instances, the overall execution time would be, at the very most, about twice that
needed for the Cholesky procedure.

6.1 Oriented and nonoriented multicommodity problems

Multicommodity flows are a standard source of difficult and large linear program-
ming instances. The purpose of these problems is to route a set of commodities
at a minimum cost over a capacitated oriented or nonoriented network. Oriented
multicommodity flows match the general primal block-angular formulation (1) with
Ni=Nand L;=1foralli=1,...,k. N € R™*"" s a node—arc incidence ma-
trix, of m’ + 1 nodes (one node is removed to guarantee full row-rank) and n’ arcs.
Blocks are denoted as commodities in this problem. Vectors bi,i=1,...,k, are the
supply—demand at the nodes for each commodity, and b**! is the mutual capacity of
the arcs. I, the number of linking constraints, is n’. Note that D, defined in (12), is
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diagonal, since L; are diagonal matrices. The code of [9] is a particularly efficient C
implementation of PRBLOCK_IP for linear multicommodity flows.

We considered a subset of the PDS [8] and Mnetgen [1] instances. These
are standard multicommodity problems, widely used in the literature. They can
be retrieved from http://www.di.unipi.it/di/groups/optimize/-
Data/MMCF.html. Table 3 shows the dimensions of these instances: number of
blocks (k), constraints and variables for each block (m’ and n’), and overall num-
ber of constraints and variables of the linear problem (m and n, oriented columns).
Preprocessing removed inactive linking constraints; this explains why [ < n’, m <
km' +n’ and n < (k + 1)n’ in Table 3.

Nonoriented multicommodity problems allow flow in both directions, and need
two variables for each arc of the network. They are also primal block-angular prob-
lems with N; =[N — N]and L; =[I I]foralli =1,...,k. As before, N € R xn’
is a node—arc incidence matrix of m’ + 1 nodes and n’ arcs. Note that, as in the
oriented case, D is a diagonal matrix, since L,-LiT = NI 17 =21 is diag-
onal. A description of other specialized algorithms for this problem can be found
in [14]. Since, as far as we know, there is no standard set of nonoriented multicom-
modity problems, we generated them from the previous multicommodity instances.
The overall number of constraints and variables is reported in the last two columns
of Table 3.

The results obtained with PRBLOCK_IP, LINPROG (a.k.a. LIPSOL) and CPLEX
for oriented and nonoriented multicommodity problems are presented in Tables 4
and 5, respectively. The columns show the number of interior-point iterations (“Iter”)
and CPU time (“CPU”) for PRBLOCK_IP with the specialized procedure (“PCG
+ Chol”) and with the standard one based on the Cholesky factorization of normal
equations (“Chol”), for LINPROG and for CPLEX. The numbers in brackets in the
first column “Iter” show the number of interior-point iterations with normal equations
solved by the combined PCG and Cholesky approach, i.e., before the satisfaction of
rule (17). Column “PCG” reflects the overall number of PCG iterations for option
“PCG + Chol”. For LINPROG and CPLEX we provide the overall execution time;
for options “PCG + Chol” and “Chol” we provide the CPU time spent on Cholesky
routines. Although in an efficient C/C++ implementation the overall execution time

Table 3 Dimensions of multicommodity instances

Oriented Nonoriented

Instance k m’ n' m n m n

PDS1 11 125 372 1450 4167 1462 8271
PDS5 11 685 2325 7938 25978 8088 51703
PDS10 11 1398 4792 16192 53526 16547 106593
PDS15 11 2124 7756 24634 86586 25176 172444
M32-32 32 31 486 1353 15913 1353 31465
M64-64 64 63 511 4403 33075 4419 65795
M128-64 64 127 1171 8988 75804 9024 150784
M128-128 128 127 1204 17188 155044 17215 309183
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Table 4 Results for oriented multicommodity instances

PRBLOCK_IP LINPROG CPLEX 9.1
PCG + Chol Chol
Instance Iter CcPU? PCG  Tter CPU? Iter CPU Tter CPU

PDS1 34 2.5 160 34 0.6 23 44 14 0.7
PDS5 51 22 337 48 64 40 264 32 26
PDS10 68 75 495 62 790 46 2021 50 115
PDS15 76 188 492 81 4624 54 6365 34 344
M32-32 44 7.6 164 29 44 21 184 12 10
M64-64 54 22 643 39 1744 27 2762 15 30
MI128-64 58 55 1584 47 31397 31 38869 17 231
MI128-128 74 111 1688 60 247044 36 188640 22 1072

4CPU time spent on Cholesky routines

Table 5 Results for nonoriented multicommodity instances

PRBLOCK_IP LINPROG CPLEX 9.1

PCG + Chol Chol
Instance  Iter CPU? PCG  Iter CPU?  Tter CPU Iter CPU
PDS1 31 (28) 1.2 101 26 0.5 24 9 19 2.2
PDS5 47 (41) 17 147 39 66 43 309 23 69
PDS10 56 (51) 92 214 47 651 60 2852 23 449
PDS15 83 (66) 1034 538 53 2813 61 6994 26 1262
M32-32 64 (43) 39 729 31 49 23 189 23 225
Mo64-64 62 33 1210 40 1914 27 1643 17 77
M128-64 71 105 2600 49 31294 32 35704 21 848
M128-128 74 130 1312 61 227612 39 168633 24 3522

4CPU time spent on Cholesky routines

of option “PCG + Chol” could take about twice the CPU time shown in these tables
(mainly for the Mnetgen instances, as discussed above), the specialized procedure is
much more efficient than the standard LINPROG procedure. Compared to CPLEX,
option “PCG + Chol” is also remarkably more efficient for the largest instances when
rule (17) was not applied. Note that both for oriented and nonoriented multicommod-
ity problems, the structure of matrix D is diagonal, and thus computations with the
preconditioner are inexpensive.

The results obtained with two of the three alternative preconditioners discussed
in Sect. 5 are presented in Tables 6 and 7: incomplete Cholesky factorizations
of normal equations (columns “IC NE”) and of D — CTdiag(B)_IC (columns
“IC D — CTdiag(B)~'C”). The third option, an incomplete Cholesky factoriza-
tion of D, was not tested since D is diagonal. It is observed that option “IC NE”
is never competitive. “IC D — CTdiag(B)~'C” is also less effective than “PCG +
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Table 6 Results for oriented multicommodity instances and alternative preconditioners

ICNE IC D — CTdiag(B)~'C
Instance Iter CPU? PCG Iter CPU? PCG
PDS1 56 5 207 32 2.2 472
PDS5 100b 509 1236 49 (46) 48 2191
PDS10 100b 2844 2333 64 283 6303
PDS15 100b 7781 1714 82 1260 15215
M32-32 38 24 142 51 15 1330
M64-64 62 418 260 63 55 2303
M128-64 100b 8755 389 69 153 3444
M128-128 100b 35396 379 86 392 4217
4CPU time spent on Cholesky and incomplete Cholesky routines
YMaximum number of iterations reached without a solution
Table 7 Results for nonoriented multicommodity instances and alternative preconditioners

IC NE IC D — cTdiag(B)~!C
Instance Iter CPU? PCG Iter CpU? PCG
PDS1 43 6 344 31(27) 1 78
PDS5 43 221 33747 48(42) 22 247
PDS10 ¢ — — 55 58 649
PDS15 53 4327 127912 76(67) 747 1862
M32-32 39 36 54 66(57) 32 2541
M64-64 100b 1306 240 98(82) 800 5233
M128-64 100b 12729 296 98 568 9720
M128-128 100b 54647 358 100P 685 5571

4CPU time spent on Cholesky and incomplete Cholesky routines

YMaximum number of iterations reached without a solution

“Execution aborted: the PCG did not converge

Chol”, but for the nonoriented PDS10 and PDS15 instances. For these two instances
“IC D — CTdiag(B)~!'C” reduced the number of iterations performed after the sat-
isfaction of rule (17). This means that the PCG found better solutions with this pre-
conditioner than with the power series preconditioner, i.e., the Cholesky factorization
of D.

Finally, to evaluate PRBLOCK_IP in problems with different N; matrices, we
generated variants of the oriented instances in Table 3 with different networks for
each commodity (denoted as “vPDS*” and “vM*-*” in Table 8). We added 10% of
new links to the network of each commodity, with random low costs, random high
capacities for each commodity, and random source and target nodes (loops were not
permitted). Mutual capacity constraints of the new links were considered inactive.
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Table 8 Results for oriented multicommodity instances with different N; matrices

PRBLOCK_IP LINPROG CPLEX 9.1

PCG + Chol
Instance Iter CPU? PCG Iter CPU Iter CPU
vPDS1 44 1.2 160 29 7.4 23 2
vPDS5 75 25 337 49 425 35 82
vPDS10 88 62 495 54 3951 33 385
vPDS15 92 151 492 69 17398 35 1107
vM32-32 38 1.7 164 23 133 12 16
vM64-64 57(48) 17 643 29 534 16 47
vM128-64 71 74 1584 35 4525 19 342
vM128-128 86 168 1688 41 14285 25 1419

4CPU time spent on Cholesky routines

This generator is included in the distribution of the code discussed in Sect. 5. The
results obtained are reported in Table 8. The meaning of the columns is the same
as in previous tables. Results for PRBLOCK_IP with the “Chol” option were not
computed to avoid excessive execution time. Comparing the results in Table 8 with
those in Tables 4 and 5, it can be concluded that the behaviour of the specialized
approach is independent, regardless of whether N; matrices are the same.

6.2 Minimum-distance controlled tabular adjustment problems

Minimum-distance controlled tabular adjustment (CTA for short) is a recent tech-
nique for the protection of statistical tabular data [12, 13]. This is a major concern
for National Statistical Institutes, which must guarantee that individual information
cannot be disclosed from released data. Tabular data is obtained by crossing two or
more variables in a file of microdata, e.g., city, age, and profession. The Cartesian
product of values for these variables provides a set of cells. For each cell, the table
reveals the number of individuals (frequency tables), or information about another
variable, e.g., average salary (magnitude tables).

Cell values a = (a;),i =1, ..., n, n being the number of cells, must verify several
linear relations Aa = b. For instance, for a three-dimensional table of » + 1, ¢+ 1 and
k + 1 categories for the first, second and third variable respectively (the last category
corresponds to marginal values), the linear relations are

,
Zai1i2i3 =de4isiy, 2=1,...,¢,i3=1,...,k, (20)
i1=1

C

> i =aierniy, i1=1....r iy=1,....k, Q1)
ir=1
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k
Zmnm =aiik+1), =1,...,r,i2=1,...,c. (22)

iz=1

Given a subset of cells P C {1, ..., n} to be protected, and the lower and upper pro-
tection levels Ipl; and upl; for i € P, the purpose of the CTA is to find the closest
safe values x = (x;),i =1, ..., n, according to a certain L distance, which make the
released table safe, and that satisfy the linear relations Ax = b. This involves the
solution of the following optimization problem

miny |lx —allL
subjectto Ax =b,

_ . 2
a, <x;i<aj, i=1,...,n, 23)
xi<a;—Ipl; or x;>a+upl;, ieP,
a; and a; being the lower and upper bounds for each cell i =1, ..., n, which are con-
sidered to be known by any data-attacker. In practice norms |.||; and ||.||2 are used,

obtaining either a linear or a quadratic optimization problem. The results reported
in this subsection correspond to |.||2. More details about this model can be found
in [13].

Exploiting the structure of matrix A, (23) can be formulated as a primal block-
angular problem (1). The simplest case corresponds to the linear relations (20-22)
of a three-dimensional table, whose primal block-angular structure is obtained as
follows. Firstly, variables x; iy, i1 =1,...,7, i2=1,...,¢c, i3=1,...,k are re-

ordered according to i3, i.e., x = (x] ool ii=1,...,r ib=1,...,c

iripgl? 2 iy

Each group for a particular i3 contains n’ = rc¢ variables. Secondly, constraints
(20-21) are set first, and ordered according to i3. Each group for a particular i3 con-
tains m’ = r + ¢ constraints. The remaining rc constraints (22) are moved to end

positions. The resulting constraint matrix structure is

Xitipl  Xiyin2 -+ Xijigk

N (20-21) foriz =1,
N (20-21) for iz =2,

: (24)
N (20-21) for i3 =k,
I I ... 1| @)

N € R"*"" denotes the structure of constraints (20-21). I e R™*¢ are identity ma-
trices related to constraints (22). (24) matches the constraint matrix structure of (1),
for NN=Nand L; =1,i =1,...,k. The number of linking constraints is [ = rc.
Note that, since the L; matrices are diagonal, D is also diagonal. Additional details
can be found in [12].

We generated five three-dimensional CTA instances with a random genera-
tor of synthetic tables. It can be retrieved from http://www-eio.upc.es/-
“jcastro/CTA_3Dtables.html. Table 9 reports the dimensions of each in-
stance, which are denoted as CTA-c-r-k. The meaning of the columns is the same as
in Table 3. The results obtained with PRBLOCK_IP and CPLEX only are presented
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Table 9 Dimensions of minimum-distance tabular adjustment instances

Instance k m’ n' m n

CTA-15-15-10 10 29 225 515 2475
CTA-15-15-25 25 29 225 950 5850
CTA-25-25-25 25 49 625 1850 16250
CTA-50-25-25 25 74 1250 3100 32500
CTA-50-50-50 50 99 2500 7450 127500

Table 10 Results for minimum-distance tabular adjustment instances

PRBLOCK_IP CPLEX 9.1

PCG + Chol Chol
Instance Iter CPU? PCG Iter CPU? Tter CPU
CTA-15-15-10 7 0.2 14 7 0.2 10 0.9
CTA-15-15-25 7 0.3 14 7 4 10 2.3
CTA-25-25-25 8 0.5 16 8 42 8 17
CTA-50-25-25 7 0.8 12 8 77 9 50
CTA-50-50-50 7 2.7 9 7 2595 7 967

4CPU time spent on Cholesky routines

Table 11 Results for minimum-distance tabular adjustment instances and alternative preconditioners

IC NE IC D — cTdiag(B)~'C
Instance Iter CpU? PCG Iter CpuU? PCG
CTA-15-15-10 7 0.5 23 7 0.8 90
CTA-15-15-25 7 1.7 25 7 1.1 87
CTA-25-25-25 8 8.7 25 8 24 195
CTA-50-25-25 7 32 19 7 135 115
CTA-50-50-50 7 312 16 7 1010 271

4CPU time spent on Cholesky and incomplete Cholesky routines

in Table 10, since LINPROG cannot deal with quadratic problems. The meaning of
the columns is the same as in Tables 4 and 5. The results with alternative precon-
ditioners are presented in Table 11. The meaning of the columns is the same as in
Tables 6 and 7. The incomplete factorization of D was not tested since D is diago-
nal.

Clearly, for CTA problems, exploiting the problem structure through our proce-
dure is significantly more efficient than solving the normal equations by Cholesky
factorizations. Moreover, the specialized algorithm is far more efficient than a general
state-of-the-art solver such as CPLEX. This is mainly due to the very small number
of PCG iterations required. It is also concluded from Tables 10 and 11 that options
“IC NE” and “IC D — CTdiag(B)~'C” are less effective than the power series pre-
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conditioner, i.e., Cholesky factorization of D. It is worth noting that general interior-
point solvers have proved to be more efficient than simplex implementations for both
linear and quadratic variants of CTA [13]. Therefore, the specialized procedure is one
of the most efficient algorithms for this kind of problem.

6.3 Minimum congestion problems

The minimum congestion problem is equivalent to the maximum concurrent flow
problem. In the literature, both problems are usually seen as one, and denoted as the
maximum concurrent flow problem [5, 23]. These problems arise in practical applica-
tions on telecommunications networks. They have proved to be difficult for simplex
algorithms [4]. The maximum concurrent flow problem is usually defined on infea-
sible nonoriented multicommodity networks of k commodities, m’ + 1 nodes, and n’
arcs, i.e., the total flow to be sent from sources to destinations exceeds the arc capac-
ities. The purpose of the problem is to determine the maximum concurrent flow (or
throughput) that can be transported. Furthermore, the minimum congestion problem
finds the minimum of the maximum relative increments in arc capacities, for each arc
of the network, that makes the problem feasible, i.e., all multicommodity flows can
be sent from sources to destinations. This min—max problem can be formulated as the
following linear program

min Z
subjectto Nxi' — Nxi =bl, i=1,... k,
ZfZI(x;'_Jr +x§-7)—yjuj <0, j=1,...,n, 25)
yj —z =0, j=1,...,n/,
X x>0, i=1,...k,
yj =0, j=1,...,n,

N € R™*" being the network matrix, x! € R” andx' € R" the nonoriented flows
of commodity i for the forward and backward directions respectively, u € R" the arc
capacities (no individual commodity capacities are considered), b’ € R™ the supply—
demand for commodity i, y; the fraction of the capacity of the arc j that has to
be increased, and z an auxiliary variable to deal with the min—max nature of the
problem.

(25) is a primal block-angular problem. Its constraint matrix structure, which
matches (2), is

L R Ty
N —N
N —N
. (20)
N —N
1 1 1 1 1 1 -U 1
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Fig. 1 Sparsity pattern of D for 0 T T r T
instance M32-32 and
formulation (25)
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Table 12 Dimensions of minimum congestion instances, formulation (25)

Instance k Zf'(:l m; Zf'(:l n; m n

M32-32 34 992 31591 1964 32563
M64-64 66 4032 65920 5054 66942
M128-64 66 8128 151060 10470 153402
M128-128 130 16256 309429 18664 311837

ecR" being a vector of 1’s. Formulation (25) has a dense column in the second
group of linking constraints, due to the e vector in (26). Therefore, matrix D in (12)
will show a dense submatrix of n’ x n’ nonzero elements. For example, Fig. 1 plots
the sparsity pattern of D for instance M32-32 of Table 12. Even for & = 0, the pre-
conditioner can be expected to be computationally expensive.

A second more efficient formulation is obtained by considering z;, j =1,...,n
for each arc, and imposing n” — 1 constraints z; = z;41. This second model is

/
s

min zj
subject to Nxi" —NxiT =b, i=1,...k,
Zf:l(xf"'x;_)_)’j”j <0, j=1,...,n,
yj—z; <0, j=1....n, (27)
Zj —2zj+1=0, j=1,....,n" =1,
X x>0, i=1,....k,
yj =0, j=1,...,n.
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Fig. 2 Sparsity pattern of D for 0
instance M32-32 and
formulation (27)
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Table 13 Dimensions of minimum congestion instances, formulation (27)

Instance k Zf:l m; Z{-‘zl n; m n

M32-32 34 992 32076 2449 33533
M64-64 66 4032 66430 5564 67962
M128-64 66 8128 152230 11640 155742
M128-128 130 16256 310632 19867 314243

The constraint matrix structure of (27) is

A N N 2 T Xk g y
N —N
N —N
N =N . (28)
1 1 1 1 1 1 -U 1
—1 1 1
T 1

T e R —=Dxn' being a band matrix, with a main diagonal of 1’s, and a diagonal above
the main diagonal of —1’s. Although the dimension of linking constraints increases
by n’ — 1 compared to previous formulation, the fill-in of D is significantly reduced,
improving the performance of the overall procedure. For example, Fig. 2 plots the
sparsity pattern of D for instance M32-32 in Table 13. Compared to the matrix in
Fig. 1, the number of nonzeros decreased from 237654 to 5337.

@ Springer



216 J. Castro

We generated minimum congestion instances from the Mnetgen instances de-
scribed in Sect. 6.1, increasing the supply and demand by a factor of two. The di-
mensions of these instances for each formulation are presented in Tables 12 and 13.
Columns Z{F:l m; and Z;{:l n; show the number of constraints and variables for
the diagonal blocks. The remaining columns have the same meaning as in previous
tables. Tables 14, 15, 16 and 17 provide the computational results. The meaning of
the columns is the same as in the tables in previous subsections. Columns “IC D”
in Tables 16 and 17 show results with the incomplete Cholesky factorization of the
preconditioner of D. It is clear that formulation (27) is much more efficient than (25)
for all the options, except for CPLEX. This is probably explained by the handling of
dense columns by CPLEX. We can also observe that the CPU time of the specialized
algorithm is not as competitive as for instances in previous subsections: CPLEX is a
more efficient choice, and the alternative preconditioners give a similar performance.
Preconditioner “IC D” in particular is as effective as the Cholesky factorization of D
(same number of PCG and interior-point iterations); the differences in CPU time
can be explained by the implementations (Ng—Peyton Cholesky package against the
built-in MATLAB incomplete Cholesky factorization routine). Unlike instances in
previous subsections, the preconditioner “IC D — CTdiag(B)~'C” provides better
execution times for the largest M128-128 instances. This is due to the lower number

Table 14 Results for minimum congestion instances, formulation (25)

PRBLOCK_IP LINPROG CPLEX 9.1
PCG + Chol Chol
Instance Iter CPU? PCG Iter CPU? Iter CPU Iter CPU
M32-32 24 (22) 29 156 22 194 45 279 9 40
Mo64-64 25 25 103 21 1682 16 1250 12 135
M128-64 27 (19) 8549 37 23 27847 20 19779 18 1326
M128-128 31 (20) 48429 27 24 116115 b — 17 4461

4CPU time spent on Cholesky routines

PNot enou gh memory

Table 15 Results for minimum congestion instances, formulation (27)

PRBLOCK_IP LINPROG CPLEX 9.1
PCG + Chol Chol
Instance Tter CPU? PCG Iter CPU? Iter CPU Iter CPU
M32-32 27 (25) 7 188 24 57 32 302 9 51
M64-64 28 (23) 67 56 24 358 23 703 12 156
M128-64 30 (23) 3481 83 25 14043 39 16016 18 1566
M128-128 34 (22) 10541 31 26 24804 b — 17 4674

4CPU time spent on Cholesky routines

bCode did not converge
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Table 16 Results for minimum congestion instances, formulation (25), and alternative preconditioners

IC NE IC D IC D — cTdiag(B)~!C
Instance Iter CPU® PCG  TIter CPU% PCG Tter CPU? PCG
M32-32 40 222 1443 24(22) 77 156 20 54 584
M64-64 50 1015 2414 25 89 103 26(20) 526 56
M128-64 L — 27(19) 8938 37 29(24) 5237 132
M128-128 b — 31(20) 50885 27 34(25) 41668 43

4CPU time spent on Cholesky and incomplete Cholesky routines

bCode got stuck

Table 17 Results for minimum congestion instances, formulation (27), and alternative preconditioners

IC NE ICD IC D — cTdiag(B)~!C
Instance Iter CPU%® PCG Iter CPU? PCG  Iter CPU? PCG
M32-32 54 80 18002 27 (25) 8 188 26 11 415
Mo64-64 61 775 23386 28 (23) 66 56 32 (23) 125 32
M128-64 85 5104 49934 30 (23) 3446 83 33 (25) 3364 81
M128-128 b — 3422 12962 31 2927 1192 9%

4CPU time spent on Cholesky and incomplete Cholesky routines

bCode got stuck

of iterations performed after rule (17) was satisfied. This is an indication that the PCG
obtained better solutions with this preconditioner and the default PCG tolerances.

Since the efficiency of the PCG with the various preconditioners is obscured by
the effect of rule (17), the CPU time spent on Cholesky factorization routines of
interior-point iterations previous to the satisfaction of this rule is presented in Ta-
bles 18 and 19. Firstly, these tables, show that the approach is very competitive com-
pared to one solely based on Cholesky factorizations, at least for rapidly computing
a point close to the optimal solution. Secondly, they reaffirm that the second formu-
lation is far more efficient than the first one for all the preconditioners. Moreover, the
CPU times in Tables 18 and 19 are better than those reported by CPLEX, although
the directions obtained were not so accurate. The main reason the preconditioner is
not so effective is because D is nondiagonal. To avoid this drawback, we solved for-
mulation (27) by setting an initial PCG tolerance €y = 10~ (instead of the default
€0 = 1072). Results are shown in Table 20 for the Cholesky factorization of the D
preconditioner. With this tighter tolerance, rule (17) was only needed for instance
M64-64. The number of PCG iterations clearly increased compared to results with
the default PCG tolerances in Table 15 (e.g., for the largest instance M 128-128, from
31 PCQG iterations in 22 interior-point iterations to 141 in 29). However, since the
PCG solutions were more accurate and rule (17) was not satisfied, the overall exe-
cution time was significantly reduced, being orders of magnitude less than for LIN-
PROG and CPLEX. These results also show that, for problems with nondiagonal D
matrices, a more accurate €( tolerance may be advisable.
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Table 18 CPU time in
Cholesky and incomplete
Cholesky routines of

Instance PCG+ Chol ICD ICD-cTdiag(B)~!C

interior-point iterations before M32-32 18 70 54
satisfaction of rule (17), for M64-64 24 89 30
formulation (25) MI28-64 204 777 1000
M128-128 237 897 1125
Table 19 CPU time in T )
Cholesky and incomplete Instance PCG + Chol ICD IC D —C"diag(B)~'C
Cholesky routines of
interior-point iterations before M32-32 3 4 11
satisfaction of rule (17), for M64-64 5 6 10
formulation (27)
M128-64 11 18 50
M128-128 16 25 73
Table 20 Results for option
“PCG+Chol”, formulation (27), PCG + Chol
using initial PCG tolerance Instance Iter CPU? PCG
e=10"%
M32-32 24 2.9 188
Mo64-64 26 (21) 66 73
4CPU time spent on Cholesky M128-64 27 15 175
and incomplete Cholesky M128-128 29 27 141
routines

7 Conclusions

From the computational results of this work it can be concluded that the specialized
interior-point algorithm initially developed for multicommodity flows is a very effi-
cient tool for the solution of general primal block-angular problems. Although the
behaviour of the preconditioner is problem dependent, the specialized algorithm was
more efficient than the Cholesky factorization of normal equations for the four classes
of instances tested. Several tasks still remain to be done. The most significant are: the
development of an efficient C/C++ replacement for the current MATLAB implemen-
tation; improving the efficiency of the PCG by adaptive selection of & and €¢; adap-
tive selection of either Newton or higher-order directions, according to the quality of
the preconditioner at each interior-point iteration; specialization of the procedure for
other classes of primal block-angular problems; the inclusion of the procedure in a
more general framework for structured problems through interior-point solvers; and
combining the suggested preconditioner with alternative PCGs for the last interior-
point iterations, in order to yield a reliable and efficient interior-point solver based on
iterative methods.
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