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Abstract

National Statistical Agencies routinely release large amounts of tabular information. Prior to dissemination, tabular
data needs to be processed to avoid the disclosure of individual confidential information. One widely used class of meth-
ods is based on the modification of the table cells values. However, previous approaches were not able to preserve the
values of the marginal cells and the additivity relations for a general table of any dimension, size and structure. This
void was recently filled by the controlled tabular adjustment and one of its variants, the quadratic minimum-distance
controlled perturbation method. Although independently developed, both approaches rely on the same strategy: given a
set of tables to be protected, they find the minimum-distance values to the original cells that make the released infor-
mation safe. Controlled tabular adjustment uses the L1 distance; the quadratic minimum-distance variant considers L2.
This work presents both approaches within an unified framework, and includes a new variant based on L1. Among
other benefits, the unified framework permits the simple comparison of the three distances, and a single general result
about their disclosure risk. The three distances are evaluated with the unique standard library for tabular data protec-
tion currently available. Some of the complex instances were contributed by National Statistical Agencies, and, there-
fore, are good representatives of theirs real needs. Unlike alternative methods, the three distances were able to solve all
the instances, requiring only few seconds for each of them on a personal computer using a general purpose solver. The
results show that this class of methods are an effective and promising tool for the protection of large volumes of tabular
data. All the linear and quadratic problems solved in the paper are delivered to the optimization community in MPS
format.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The safe dissemination of data is one of the
main concerns of National Statistical Agencies.
The released data can be classified as disaggre-
gated or aggregated. Disaggregated data (a.k.a.
microdata or microfiles) consists of files of records,
each record providing the values for a set of vari-
ables of an individual. Aggregated data (a.k.a. tab-
ular data) is obtained from microdata crossing two
or more variables, which results in sets of tables
with a likely large number of cells. It must be guar-
anteed, for both types of data, that no individual
information can be derived from the released
information. The available methods for this pur-
pose belong to the field of statistical disclosure
control. Good introductions to the state-of-the-
art in this field can be found in the monographs
Willenborg and de Waal (2000) and Domingo-
Ferrer (2002).

In this paper we focus on tabular data protec-
tion. Although each cell of the table shows aggre-
gated information for several individuals, there is a
risk of disclosing individual data. This is clearly
shown in the example of Fig. 1. Table (a) of that
figure gives the average salary for age interval
and ZIP code, while table (b) shows the number
of individuals for the same variables. If there was
only one individual in ZIP code z2 and age interval
51–55, then any external attacker would know the
salary of this single person is 40,000€. For two
individuals, any of them could deduce the salary
of the other, becoming an internal attacker. Usu-
ally, cells showing information about few individ-
uals are considered sensitive, although other rules
(a) (b)

Fig. 1. Example of disclosure in tabular data: (a) average salary
per age and ZIP code, (b) number of individuals per age and
ZIP code. If there is only one individual in ZIP code z2 and age
interval 51–55, then any external attacker knows the salary of
this single person is 40,000€. For two individuals, any of them
can deduce the salary of the other, becoming an internal
attacker.
can be used in practice. Methods for detecting sen-
sitive cells are out of the scope of this work. A re-
cent discussion about sensitivity rules can be found
in Domingo-Ferrer and Torra (2002), and Robert-
son and Ethier (2002).

Fig. 1 shows a two-dimensional example. This
can be considered the simplest case. However, in
practice we must deal with more complex situa-
tions, including multidimensional, hierarchical
and linked tables. Multidimensional tables are ob-
tained crossing more than two variables, and they
can be individually protected. Hierarchical tables
are sets of tables whose variables have a hierarchi-
cal relation (e.g., ZIP code and city). In that case,
the total or marginal cells of some tables are inter-
nal ones for the others. They have to be protected
together, to avoid the disclosure of sensitive data.
Finally, linked tables are a generalization of the
previous situation, where several tables are made
from the same microdata, thus sharing informa-
tion or cells, either hierarchical or not. Again, they
have to be protected together. Linked tables can
deal with any table dimension, size and structure,
and thus include the other situations. Dealing with
linked tables is a desired feature of any tabular
protection method. Eventually, the final goal
would be the protection of the whole set of linked
tables that can be produced from some microfiles
(e.g., a population census). Clearly, the number
of cells involved in that case might be of several
millions, an impractical size for most current tab-
ular protection techniques. The family of protec-
tion methods considered in this work deal with
linked tables, and, as shown in the computational
results, can solve real-world large instances in few
seconds. All the above situations can both refer to
frequency tables (i.e., cell values are integer and
are usually associated to the number of individuals
in that cell) or magnitude tables (i.e., cell values
are real, and, for instance, they show the mean
for some other variable of all the individuals in
that cell). In this work we focus on tables of magn-
itudes. For tables of frequencies the procedures
here described can also be applied followed by
some heuristic post-process.

Current methods for tabular data protection
can be classified as perturbative (they change the
cell values) or nonperturbative (no change is per-
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formed). The most widely used nonperturbative
method is cell suppression, where some secondary

cells are removed to avoid the disclosure of some
sensitive primary cells (which are removed as well).
That results in a difficult combinatorial optimiza-
tion problem, which finds the pattern of secondary
suppressions that makes the table safe with a min-
imum number of cells or information loss. Some
heuristics for two and three-dimensional tables
(Kelly et al., 1992; Carvalho et al., 1994; Cox,
1995; Dellaert and Luijten, 1999; Castro, 2002b,
2004a) and exact methods for two-dimensional
and general linked tables (Fischetti and Salazar,
1999, 2001) have been suggested for the cell sup-
pression problem. The main inconvenience of this
approach is that, due to its combinatorial nature,
the solution of very large instances (with possibly
millions of cells) can result in impractical execu-
tion times.

Among the perturbative approaches, one of the
techniques that received more attention was round-
ing. This method rounds cell values to a multiple
of a fixed integer rounding base. Controlled round-

ing is a variant where the additivity of the table is
preserved (i.e., rounded marginal values are the
sum of the corresponding slice of internal rounded
cells). Initially introduced in Bacharach (1966),
efficient methods could only be developed for
two-dimensional tables (Cox and Ernst, 1982),
possibly with subtotals (Cox and George, 1989).
For three-dimensional tables controlled rounding
is a NP-hard problem (Kelly et al., 1990a). Several
heuristics (Kelly et al., 1990b) and exact ap-
proaches (Kelly et al., 1990c) were devised, but
were only applied to small size tables. The NP-
hardness of the approach makes it impractical
for large tables, as the real-world ones tested in
this work. Moreover, in practice it can be neces-
sary to maintain some (possibly all) of the original
total cells, instead of rounding them.

To avoid the above lacks of rounding, Dande-
kar and Cox (2002) first introduced the controlled
tabular adjustment method (CTA). Extensions to
CTA have been recently considered for univariate
and multivariate statistics (Cox et al., 2004). Inde-
pendently, Castro (2002a) suggested a similar con-
trolled perturbation method with a quadratic
objective function. The resulting quadratic optimi-
zation problem is efficiently solved by an interior-
point method in Castro (2004b). Both approaches
find the minimum-distance (or closest) tables to
those to be protected, preserving marginal values,
if required, as well as any set of additional linear
constraints. That means we try to minimize the
information loss when delivering the perturbed
values. CTA and the quadratic minimum-distance
controlled perturbation are essentially the same
method. The main difference is the distance consid-
ered in the objective function: CTA uses L1 while
the quadratic minimum-distance controlled per-
turbation method uses L2. The main contribution
of the paper is that it presents both distances with-
in an unified framework, and includes a new vari-
ant based on L1. Some of the benefits of
presenting those distances under an unified frame-
work are: (1) They can be easily compared, as done
in the paper. (2) A single general result about the
disclosure risk of the distances can be developed
independently of the objective function of the final
formulation; this is also done in the paper. (3) It is
possible to combine the different distances in one
single objective function (Castro, 2004c).

The main features of CTA or minimum-
distance controlled perturbation methods are:

• Efficient: we will show that real-world large
instances can be solved in few seconds using
current linear and quadratic programming
technology.

• Versatile: they deal with any table or set of
tables, and with any additional linear constraint
(e.g., preserving the value of total cells).

• Safe: as it will be shown, even with partial infor-
mation, an attacker is not able to reproduce the
original data.

• Simple: they have a straightforward derivation
and formulation. That is a very appreciated fea-
ture by National Statistical Agencies� staff,
which tend to avoid methods based on sophisti-
cated procedures (Dandekar, 2003b).

Alternative approaches for tabular data protection
have flaws in some of the above features.

The present work deals with methods for
achieving controlled perturbation while optimiz-
ing specific measures of data quality (namely,
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minimum distance or change from the original
table as measured by particular Lp norms). Other
approaches (Cox et al., 2004) deal with achieving
controlled tabular adjustment while controlling
change to statistical properties of the original table
(means, variances, etc.) and between tables (covar-
iances, correlations, regression). Both notions of
data quality are important and appropriate in
various contexts.

Recently, Dandekar (2003a) introduced an
alternative perturbation approach, computation-
ally more efficient that the family of methods here
considered. However, such approach cannot pre-
serve the value of total cells, which is a desirable
property in practice (rather, total cells suffer the
largest perturbations).

The structure of the document is as follows.
Section 2 describes the CTA or minimum-distance

controlled perturbation framework. Sections 2.1,
2.2 and 2.3 detail the variants associated to L1,
L2 and L1, respectively. Section 3 compares the
optimization problems derived from these three
particular distances. Section 4 analyzes the disclo-
sure risk of the method, showing it is safe. Finally,
Section 5 presents some computational results in
the solution of some real-world large instances.
These computational results show the effectiveness
of the approach.
2. The CTA or minimum-distance controlled

perturbation framework

This section describes the general model, and
the particular formulations for the L1, L2 and
L1 distances. More details can be found in
Dandekar and Cox (2002), and Cox et al. (2004).

Any table or list of tables, of any dimension,
size and structure, can be represented as an array
of cells ai, i = 1, . . .,n, that satisfy a set of m linear
relations

Ma ¼ b; ð1Þ

a 2 Rn being the vector of ai�s, b 2 Rm the right-
hand-side term of the linear relations, and
M 2 Rm�n the cell relations matrix. In practice most
tables have positive cell values, and constraints
a P 0 ð2Þ
must be added to (1).

Given a setP of indices of sensitive or confiden-
tial cells, the controlled tabular adjustment or mini-

mum-distance controlled perturbation method finds,
according to some metric, the closest values xi to ai,
i = 1, . . .,n, that satisfy the table relations (1) and, if
needed, (2), such that xi; i 2 P—the values of the
sensitive cells—are safe (safety is discussed below).
This model can be applied to any kind of table or
set of tables, since it does not constraint the struc-
ture of the cell relations Ma = b. Any other set of
linear relations can also be included to this model.

This general model can be formulated as

ðP1Þ
min

x
kx� akL ð3Þ

subject to Mx ¼ b; ð4Þ
lx 6 x 6 ux; ð5Þ

x 2 Rn being the vector of perturbed cell values. L
in (3) denotes the distance to be used, which can be
affected by any positive semidefinite diagonal met-
ric matrix W = diag(w1, . . .,wn). In the computa-
tional results of Section 5 we used wi = 1/ai, if
ai 5 0, otherwise wi = 1. The three more reasona-
ble choices for L are L1, L2 and L1. They are dis-
cussed in the following sections. (4) guarantees x is
a well-formed table. The bounds (5) are used to
deal with the level of knowledge any attacker has
about the cell values, and to guarantee the safety
of the perturbed table, as follows:

• We assume any attacker knows a lower and
upper bound, respectively ai and ai, for each cell
ai, i = 1, . . .,n. If no previous knowledge is
assumed for cell i, we simply set ai = 0
(ai = �1 if bounds (2) were omitted) and
ai ¼ þ1. (5) includes bounds ai 6 xi 6 ai.

• The protection of each sensitive cell i 2 P is
achieved through a lower and upper protection
levels, respectively lpli and upli, such that the
released value should be greater or equal than
ai + upli or less or equal than ai � lpli. These
protection levels are provided by the user (e.g.,
the National Statistical Agency), and they are
usually a fraction of the cell value ai. We assume
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that the user fixes in advance the sense of the
protection for each sensitive cell, i.e., if the cell
will be protected by its upper or its lower pro-
tection level. Therefore, (5) includes one of the
bounds xi P ai + upli or xi 6 ai � lpli.

If the values of a large number of cells want to
be preserved, problem (P1) can be infeasible. This
can happen, e.g., for small instances if marginal
cells are maintained in the perturbed table. For
large tables, infeasibility should rarely occur.
However, if needed, we can replace in (5) the
bounds ai 6 xi 6 ai of the cells fixed to the original
value by the penalization Pkxi � aikL in the objec-
tive function, P being a large penalty parameter.

If, instead of being a user decision, we want the
mathematical programming problem (P1) to
choose the best sense for sensitive cells, either
xi P ai + upli or xi 6 ai � lpli, we need a binary
variable and two extra constraints for each of them:

xi P �Sð1� yiÞ þ ðai þ upliÞyi; i 2 P;

xi 6 Syi þ ðai � lpliÞð1� yiÞ; i 2 P;

yi 2 f0; 1g; i 2 P:

ð6Þ

S in (6) is a large value (e.g., S ¼
Pn

i¼1ai). When
yi = 1, constraints (6) imply S P xi P (ai + upli).
When yi = 0 we have �S 6 xi 6 (ai � lpli). That
results in a large combinatorial optimization prob-
lem, which would constraint the effectiveness of
the approach to small and medium sized problems.
Moreover, in practice tabular data protection is
the last stage of the ‘‘data cycle’’, and, in an at-
tempt to meet publication deadlines, National Sta-
tistical Agencies require fast solutions to large and
complex tables (Dandekar, 2003b). Therefore, in-
stead of solving the combinatorial optimization
problem, we can heuristically decide in advance
the sense for each sensitive cell (yi = 1 or yi = 0)
and then solving the optimization problem (P1).
That solution will be an upper bound for the com-
binatorial optimization problem. Some straight-
forward heuristics were suggested in Dandekar
and Cox (2002), but, from the reported computa-
tional experience, they provided similar results.
The particular choice of yi values do not affect
the safety of the released perturbed table, but
only the deviations from the original cell values.
The general problem (P1) can also be formu-
lated in terms of deviations or perturbations from
the current cell values. Indeed, defining

xi ¼ ai þ zi; i ¼ 1; . . . ; n; ð7Þ
the optimization problem (P1) can be transformed
to

ðP2Þ
min

z
kzkL ð8Þ

subject to Mz ¼ 0; ð9Þ
lz 6 z 6 uz; ð10Þ

where z 2 Rn is the vector of deviations, and

lz ¼ lx � a; uz ¼ ux � a: ð11Þ

Two benefits of the formulation in terms of
deviations are:

• The cell values ai of the real table are not needed
to solve the optimization problem (P2). Only
the cell relations and deviations bounds, repre-
sented by matrix M and vectors lz and uz, are
required. Therefore, the solution of the above
optimization problem can be performed by an
external entity (e.g., if some nonavailable soft-
ware or hardware was required) without deliv-
ering the original cell values.

• Two tables with the same cell relations and
bounds, that only differ in the cell values (e.g.,
corresponding to data of two different years or
census), are protected with the same perturba-
tions. Therefore, the optimization problem
(P2) only needs to be solved once.

Next three subsections specialize the general
model for the L1, L2, and L1 distances, using
the formulation in terms of deviations.

2.1. The L1 objective

Using the L1 distance, problem (P2) becomes

ðP3Þ

min
z

Xn

i¼1

wijzij

subject to (9), (10):

ð12Þ
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To transform the above into an equivalent linear
programming problem, we replace each zi by the
difference of two nonnegative variables, zþi and
z�i , associated respectively with the positive and
negative deviations:

zi ¼ zþi � z�i ; i ¼ 1; . . . ; n: ð13Þ
The resulting linear programming problem is

ðP4Þ

min
zþ;z�

Xn

i¼1

wiðzþi þ z�i Þ ð14Þ

subject to Mðzþ � z�Þ ¼ 0; ð15Þ
lz 6 zþ � z� 6 uz; ð16Þ
zþ P 0; z� P 0; ð17Þ

zþ 2 Rn and z� 2 Rn being respectively the vectors
of positive and negative deviations.

Eqs. (16) and (17) can be simplified. For a non-
sensitive cell i, lzi and uzi , as defined in (11), will
respectively be negative and positive. Then, for
nonsensitive cells, Eqs. (16) and (17) reduce to

0 6 zþi 6 uxi � ai; i 62 P;

0 6 z�i 6 ai � lxi ; i 62 P:
ð18Þ

For a sensitive cell i, the equations to be used
depend on the sense of the protection considered,
defined in (6) by the binary variable yi. If the sense
is ‘‘upper’’ (i.e., yi = 1) then we must impose

upli 6 zþi 6 uxi � ai; i 2 P; yi ¼ 1;

z�i ¼ 0; i 2 P; yi ¼ 1:
ð19Þ

If the sense is ‘‘lower’’ (i.e., yi = 0) then we need

zþi ¼ 0; i 2 P; yi ¼ 0;

lpli 6 z�i 6 ai � lxi ; i 2 P; yi ¼ 0:
ð20Þ

The final linear programming problem to be
solved is

ðP5Þ
min
zþ ;z�

(14)

subject to (15), (18), (19), (20):

ð21Þ

Using wi = 1/ai if ai50, as in the computational
results of Section 5, the objective function to be
minimized is the total relative deviation between
the original and the perturbed data. Problem
(P5) is basically the same model as that of Dande-
kar and Cox (2002), there obtained with a different
derivation.

2.2. The L2 objective

Using the L2 distance, and removing the square
root of the objective, problem (P2) becomes

ðP6Þ

min
z

Xn

i¼1

wiz2i

subject to (9), (10):

ð22Þ

Using wi = 1/ai if ai50, as in the computational
results of Section 5, the objective function corre-
sponds to the v2 distance between the original
and the perturbed data (Cox, 2003).

2.3. The L1 objective

In this case, problem (P2) is

ðP7Þ
min

z
max
i¼1...n

fwijzijg

subject to (9), (10):

To remove absolute values, we proceed as in
Section 2.1, replacing each variable by the differ-
ence of two positive variables. Moreover, it seems
reasonable to consider separately the deviations
for the sensitive and nonsensitive cells, since the
former are forced to be greater than zero whereas
the latter should be as close as possible to zero.
The problem to be solved is thus

ðP8Þ

min
zþ;z�

max
i2P

fwiðzþi þ z�i Þgþmax
i62P

fwiðzþi þ z�i Þg
� �

subject to (15), (18), (19), (20):

To transform the above into a linear programming
problem we add two extra variables, z2P and z 62P,
which will store the maximum deviation for,
respectively, the sensitive and nonsensitive cells.
The equivalent linear programming problem can
be written as
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ðP9Þ
min

zþ;z� ;z2P;z 62P
z2P þ z 62P

subject to (15), (18), (19), (20);

z2P P wiðzþi þ z�i Þ; i 2 P;

z62P P wiðzþi þ z�i Þ; i 62 P:

ð23Þ
3. Comparison of the three optimization problems

The distances of Sections 2.1–2.3 gave rise to
three different optimization problems, whose
main features are shown in Table 1. Only the
most efficient solution algorithms for the type of
problem are reported. The L2 objective provides
the smallest problem, but it can only be efficiently
solved by an interior-point algorithm (Wright,
1997). For the other two problems we can either
use an interior-point algorithm or the simplex
method (Dantzig, 1963). The efficiency of those
methods depends on the particular structure of
the problem (Bixby, 2002), and, as it will shown
in Section 5, it is difficult to know in advance
which will be the fastest option for a particular
instance. A theoretical advantage of interior-
point algorithms is that they have a polynomial
complexity, both for linear and quadratic optimi-
zation problems. On the other hand, although it
is a nonpolynomial algorithm, recent develop-
ments in the dual simplex made it a very effective
approach (Bixby, 2002). It is worth to note that
the computational cost for the quadratic problem
(P6), solved through an interior-point algorithm,
is the same as if it was linear, because it has a
separable objective function (i.e., there are no
products of two different variables) (Wright,
1997). Moreover, in the tabular data protection
Table 1
Properties of the three optimization problems

L1, problem (P5)

Number of variables 2n
Number of constraints m

Type of problem Linear
Solution algorithms Simplex and interior-point
context, interior-point algorithms can be special-
ized to efficiently solve very large instances
(Castro, 2000, 2004b).

In some cases, for the L2 distance, we can ob-
tain a closed-form solution. For instance, if we
fix the deviations of sensitive cells (i.e., zi = upli
or zi = � lpli) and remove the inequality con-
straints (i.e., either we assume they are inactive
or we can accept negative values in the perturbed
table), problem (P6) can be rewritten as

ðP10Þ

min
z

Xn

i¼1

zTWz

subject to Az ¼ b;

ð24Þ

where Az = b include the original constraints
Mz = 0 and those that fix the values of the devia-
tions of sensitive cells. The solution of problem
(P10) has the following closed form:

z� ¼ W �1ATðAW �1ATÞ�1b: ð25Þ
The computational effort of (25) and that of an
iteration of a quadratic interior-point algorithm
are the same (Wright, 1997). That means that, if
inequalities are inactive at the optimum, the inte-
rior-point algorithm will perform several itera-
tions, when the solution of (25) would suffice.
This wasted effort can be avoided by computing
the initial values of the interior-point algorithm
through (25). If that initial point satisfies the ine-
qualities, then we already have the solution. Other-
wise we start the iterative steps. That simple
strategy permits to accommodate the interior-
point algorithm with no extra effort to both in-
stances with and without active constraints.

Fig. 2 shows the consequences of the three dis-
tances on a small example. The original data a to
L2, problem (P6) L1, problem (P9)

n 2n + 2
m m + n

Quadratic Linear
Interior-point Simplex and interior-point



(a) (b)

(c) (d)

Fig. 2. Behaviour of the three objective functions on a small
example table (a) original data a to be protected. Sensitive cells
are in boldface, and upper protection levels are given in
brackets. The upper protection sense was considered for the
four sensitive cells. (b), (c), (d) respectively, optimal perturbed
data xL1 , xL2 and xL1 obtained with each objective. For the
three objectives we used weights wi = 1/ai, inactive bounds
ai = 0 and ai ¼ 1 for all the internal cells, and marginal cells
were fixed.
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be protected are in Panel (a). Sensitive cells appear
in boldface, and their upper protection levels upli
are given in brackets. The upper protection sense
was considered for all the sensitive cells. Panels
(b), (c) and (d) of Fig. 2 show the optimal per-
turbed tables obtained for respectively the L1, L2

and L1 distances. For the three distances the mar-
ginal cells were fixed, and weights wi = 1/ai and
bounds ai = 0 and ai ¼ 1 were considered for
all the internal cells. The average percentage rela-
tive deviation between the perturbed and the orig-
inal data is 15.06%, 15.13% and 21.25% for
respectively L1, L2 and L1. The 2-norm distance
between the perturbed and the original data is
12.25, 12.14 and 14.96 for respectively L1, L2

and L1. The maximum relative percentage devia-
tion between the perturbed and the original data is
54.5%, 54.5% and 54.5% for respectively L1, L2

and L1 (associated to cell (1,3) in the three cases).
In that example, the above indicators are similar
for L1 and L2, while L1 provides worse results.
L1 even does not provide a better maximum rela-
tive deviation, which is the objective function it
considers. A similar behaviour will be observed
in the computational results of Section 5. It is
noteworthy that L1 provided a perturbed integer
table. Although the optimization problem (P5)
does not guarantee an integer solution, we ob-
served that in most cases such property is satisfied.
For frequency tables, that can be an advantage of
L1 compared to L2.
4. Disclosure risk of the method

To retrieve the original cell values ai from the
released ones xi, an attacker needs the applied
deviations zi. Those deviations are the solution of
the optimization problem (P2). Detailing the
expression for the bounds (10), the attacker should
then solve

ðP11Þ
min

z
kzkL ð26Þ

subject to Mz ¼ 0; ð27Þ
zi P ai � ai; i ¼ 1; . . . ; n; ð28Þ
zi 6 ai � ai; i ¼ 1; . . . ; n; ð29Þ
zi 6 �lpli or zi P upli; i 2 P:

ð30Þ

The information required for the solution of prob-
lem (P11) is:

• The particular distance L used in (26) to com-
pute the deviations. Without this information
the attacker should try to solve the problems
for L1, L2 and L1, considering that one of the
three solutions gives the required deviations.

• The weights wi, i = 1, . . .,n, used in (26). If
wi = 1/ai, the weights are clearly unknown to
the attacker.

• The constraints matrix M of (27). The attacker
knows it from the cell relations of the released
table.

• The lower and upper bounds ai � ai and ai � ai,
i = 1, . . .,n, of (28) and (29), respectively. ai and
ai are the cell value bounds that were assumed
known by the attacker when protecting the orig-
inal table. It can be a strong assumption to con-
sider the attacker knows those exact values.
Moreover, the original cell values ai are clearly
unknown to the attacker. However, to correctly
solve problem (P11) the attacker only needs the
same values for the active bounds. For nonactive
bounds it is enough to use values that provide a
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feasible region larger or equal than for the orig-
inal problem. For instance, if the attacker
guesses that all the bounds resulted inactive
when protecting the table, constraints (28) and
(29) can be removed. That would be the case if
large bounds ai and ai are used by default when
protecting tables (e.g., ai = 0 and ai ¼ þ1).

• The set P of sensitive cells of (30). Unlike other
protection methods––as cell suppression––, the
released table gives no information about which
cells are sensitive, or candidates to be sensitive.
Therefore, the attacker is forced to deduce
sensitive cells from his/her own knowledge.

• The lower and upper protection levels lpli and
upli, i 2 P, and the sense (‘‘upper’’ or ‘‘lower’’)
used in (30) for each sensitive cell when protect-
ing the original table. In practice, that informa-
tion will not be distributed with the released
table. Protection levels are usually a percentage
of the cell values ai, which are unknown to the
attacker. The number of variations for the pro-
tection senses is 2jPj. If the senses were, for
instance, randomly chosen, the attacker would
be unable to reproduce them.

Except for the constraints matrix M, the rest of
required terms are unknown or uncertain to the at-
tacker. Therefore, problem (P11) cannot be solved,
and the released table will be safe. However, we
will analyze two unfavorable situations, where
the attacker has respectively partial and complete
information about the problem. Although fairly
improbable in practice, they are considered to
stress the low disclosure risk of the method.

4.1. Attacker with partial information

First, consider the attacker knows L, wi, that
bounds (28) and (29) are inactive––thus can be re-
moved––, the set P of sensitive cells, and the sense
(‘‘upper’’ or ‘‘lower’’) of each sensitive cell. With-
out loss of generality, and to simplify the exposi-
tion, assume all the senses are ‘‘upper’’. With
that information, the safety of the deviations relies
on the protection levels upli of the sensitive cells. If
the attacker can obtain approximate values
upl0i ¼ upli þ ei, ei 2 R, i 2 P, the problem to be
solved to disclose the deviations is
ðP12Þ
min
z0

kz0kL
subject to Mz0 ¼ 0;

z0i P upli þ ei; i 2 P:

ð31Þ

If ei = 0 for all i 2 P, the solution of problem
(P12) can provide the deviations used to protect
the table. The safety of the table thus depends on
how sensitive the solution z 0* is to possible small
ei values. The relation between both terms is given
by the Lagrange multipliers of the inequality con-
straints of problem (P12):

Proposition 1. If z0�ðeÞ 2 Rn is the solution of
problem (P12) for a particular vector of

e ¼ ðe1; . . . ; ejPjÞ values, and l 2 RjPj is the

Lagrange multipliers vector of the inequality con-

straints of problem (P12) for e = 0 (i.e., the multi-

pliers obtained when protecting the table), then

rekz0�ðeÞkLje¼0 ¼ l: ð32Þ

Proof. This is an immediate result of the sensitivity

theorem of optimization (see, e.g, Luenberger
(1989, pp. 312–318)). h

Although not made explicit, the above proposi-
tion applies to problem (P12) once formulated as
one of the optimization problems (P5), (P6) or
(P9). In problems (P5) and (P9) the variables were
z+ and z�. In that case, since we are assuming an
upper sense for all the sensitive cells, only the La-
grange multipliers of the bounds zþi P upli should
be considered. Moreover, for, respectively, the L1

and L1 distances, problems (P5) and (P9) were
linear, and, for small enough vectors e ¼
ðe1; . . . ; ejPjÞ, it is well-known that the relation
(32) can be recast as

kz0�ðeÞkL � kz�kL ¼
X
i2P

liei; ð33Þ

z* being the deviations used to protect the table. If
the attacker does not know the set P of sensitive
cells, and uses and approximate one P0, the multi-
pliers of cells i 2 P0 nP will also intervene in (32),
decreasing even more the disclosure risk. Proposi-
tion 1 gives an indicator of the quality of the pro-
tection: tables with nonsmall Lagrange multipliers
for the bounds of deviations are unlikely to be



48 J. Castro / European Journal of Operational Research 171 (2006) 39–52
disclosed, even if the attacker has a good knowl-
edge about the original data.

4.2. Attacker with complete information

The attacker may not be able to reproduce the
right perturbations through problem (P11) even
with complete information:

Proposition 2. Assume the attacker knows all the
terms of problem (P11). If the L2 distance is used,

the solution of that problem will provide the

deviations used to protect the table. However, for

L1 or L1, the attacker can obtain alternative

deviations.

Proof. The objective function of problem (P6), for
the L2 distance, is strictly convex, and thus has a
unique minimizer on the feasible region. For L1

and L1, the objective functions of problems (P5)
and (P9) are linear, and different algorithms or
implementations can provide alternative
solutions. h

Indeed, we observed that, in practice, two
implementations of the simplex method provided
very different deviations patterns for L1.

With the above information and that of Section
3 we can discuss the theoretical benefits and disad-
vantages of the three distances before the compu-
tational experience of next section. As shown
before, the minimum-distance controlled perturba-
tion method has a low disclosure risk with any of
the three distances. Proposition 2 shows that L1

and L1 are a bit safer when the attacker knows
all the terms of problem (P11), which, in practice,
is equivalent to (and as unlikely as) that the attack-
er knows the original data. Therefore, it can be
concluded that, in practice, the three distances
have the same low disclosure risk. About the per-
formance in the solution of the optimization prob-
lems, L2 is a priori the most efficient choice,
followed by L1, and finally L1. That results from
the dimension of the optimization problems to be
solved, reported in Table 1. About the quality of
the solution obtained, L1 will provide the best
average relative percentage deviation between the
original and perturbed table; L2 the best distance
(2-norm); and L1 the best maximum relative per-
centage deviation. This is an immediate conse-
quence of the objective functions considered. In
the example at the end of Section 3, L1 and L2

were quite similar, and outperformed L1. The
computational results of next section show that
this behaviour is also observed for large instances.
5. Computational results

We implemented and solved the three models
described in Sections 2.1–2.3 using the AMPL
modelling language (Fourer et al., 1993) and
CPLEX 8.0 (ILOG CPLEX, 2002). We applied
them to the CSPLIB test suite, the unique cur-
rently available set of instances for tabular data
protection (Fischetti and Salazar, 2001). CSPLIB
can be freely obtained from http://web-
pages.ull.es/users/casc/#CSPlib:. Although these
instances were originally produced for the cell sup-
pression problem, the information provided is the
same that for the minimum-distance approach.
CSPLIB contains both low-dimensional artificially
generated problems, and real-world highly-struc-
tured ones. Some of the complex instances were
contributed by National Statistical Agencies—as,
e.g., Centraal Bureau voor de Statistiek (Nether-
lands), Energy Information Administration of
the Department of Energy (US), Office for Na-
tional Statistics (United Kingdom) and Statis-
tisches Bumdesant (Germany)––, and therefore
are good representatives of theirs real needs. In
all the executions a value of at least ai + upli for
all i 2 P was imposed (i.e., sense ‘‘upper protec-
tion’’ was considered for the sensitive cells), and
cell values were weighted by wi = 1/ai in the objec-
tive function. All runs were carried on a notebook
with a Pentium Mobile 4 at 1.8GHz and 512Mb
of RAM. The problems solved in this section can
be obtained in MPS format from http://www-eio.
upc.es/~jcastro/data.html. They are delivered to
the optimization community as an additional test
for linear and quadratic programming solvers.

Table 2 shows the features of the instances con-
sidered. The small CSPLIB instances were omit-
ted. Column ‘‘Name’’ shows the instance
identifier. Columns ‘‘n’’ and ‘‘jPj’’ provide, respec-
tively, the number of total cells and number of sen-

http://webpages.ull.es/users/casc/#CSPlib
http://webpages.ull.es/users/casc/#CSPlib
http://www-eio.upc.es/~jcastro/data.html
http://www-eio.upc.es/~jcastro/data.html


Table 2
Dimensions of the largest CSPLIB instances

Name n jPj m N.coef

bts4 36,570 2260 36,310 136,912
cbs 11,163 2467 244 22,326
dale 16,514 4923 405 33,028
hier13 2020 112 3313 11,929
hier13 · 13 · 13a 2197 108 3549 11,661
hier13 · 13 · 13b 2197 108 3549 11,661
hier13 · 13 · 13c 2197 108 3549 11,661
hier13 · 13 · 13d 2197 108 3549 11,661
hier13 · 13 · 13e 2197 112 3549 11,661
hier13 · 13 · 7d 1183 75 1443 5369
hier13 · 7 · 7d 637 50 525 2401
hier16 3564 224 5484 19,996
hier16 · 16 · 16a 4096 224 5376 21,504
hier16 · 16 · 16b 4096 224 5376 21,504
hier16 · 16 · 16c 4096 224 5376 21,504
hier16 · 16 · 16d 4096 224 5376 21,504
hier16 · 16 · 16e 4096 224 5376 21,504
jjtabeltest3 3025 1054 1650 7590
nine12 10,399 1178 11,362 52,624
nine5d 10,733 1661 17,295 58,135
ninenew 6546 858 7340 32,920
osorio 10,201 7 202 20,402
table1 1584 146 510 4752
table3 4992 517 2464 19,968
table4 4992 517 2464 19,968
table5 4992 517 2464 19,968
table6 1584 146 510 4752
table7 624 17 230 1872
table8 1271 3 72 2542
targus 162 13 63 360
toy3dsarah 2890 376 1649 9690
two5in6 5681 720 9629 34,310
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sitive cells. Column ‘‘m’’ shows the number of con-
straints. Column ‘‘N.coef’’ gives the number of
coefficients of the constraints matrix M. Table 3
shows the results obtained with L1, L2 and L1.
For each distance, the execution time (columns
‘‘CPU’’), average percentage deviation for all the
cells (columns ‘‘%Dev:’’), and two-norm of the
deviations vector (columns ‘‘2-norm’’) are pro-
vided. The results reported for L1 were computed
by the simplex method: the interior-point solu-
tions, although with the same objective function,
provided worse average percentage deviations
and distances for all the instances. The results for
L1 with the simplex and interior-point method
were similar, although the simplex was the most
efficient choice in most cases—but for the seven
most complex instances which are discussed below.
The results reported in the Table for L1 corre-
spond to the simplex solutions, but for the four in-
stances which are clearly marked. In three of these
four cases, the simplex method provided a wrong
solution. Tuning CPLEX 8.0 we were able to solve
them. The interior-point method could solve all
the instances with the default settings.

From Table 3 we can conclude that L1 provides
the best mean percentage deviations, since its
objective function is exactly the sum of percentage
absolute deviations. The L2 objective provides sim-
ilar mean percentage deviations but with the low-
est two-norms of the deviations vector. This is a
consequence of L2 being the only quadratic objec-
tive of the three tested. L1 is the slowest option,
and does not improve neither the mean percentage
deviations nor the 2-norms of the deviations of L1

or L2.
The seven more complex instances of CSPLIB

are bts4, hier13, hier16, nine12, nine5d, ninenew,
and two5in6. Those instances are challenging for
other approaches, as cell suppression, whereas, as
shown in Table 4, they can be solved in few sec-
onds with the minimum-distance approach. That
table reports, for these seven complex instances
and each distance, the CPU time required by both
the simplex (columns ‘‘Simplex’’) and interior-
point algorithms (columns ‘‘Int. Point’’). We see
that, for L1 and L1, the fastest solution algorithm
depends on the particular instance, and it is diffi-
cult to know in advance which will be the best
choice. It is also clear that L1 provides the slowest
executions, due to the number of extra constraints
considered in problem (P9). The L2 objective,
solved through a quadratic interior-point solver,
was always the most efficient choice (except for
the smallest instance hier13). In most instances
the solution time of the L2 objective was about
half the time of the second fastest option. This is
because, first, the complexity of solving a quad-
ratic separable optimization problem (i.e., with a
diagonal weight matrix W) is the same as that
for a linear one, if we use an interior-point algo-
rithm; and second, problem (P5) involves twice
as many variables as problem (P6). It is also worth
to note that the solution times obtained with the
interior-point algorithm, for the three objectives,



Table 3
Results for the largest CSPLIB instances

Name L1 L2 L1

CPU %Dev: 2-norm CPU %Dev: 2-norm CPU %Dev: 2-norm

bts4 16.5 0.7 18,243 11.5 0.8 7912 1594.7 1.1 10,997
cbs 0.0 40.6 75,986 0.1 42.9 55,732 0.1 40.6 75,986
dale 0.7 18.7 4991 0.3 20.3 1859 1.5 21.1 3086
hier13 3.3 0.8 2609 3.8 0.9 2149 5.9 1.0 3504
hier13 · 13 · 13a 1.9 0.8 3094 2.4 0.9 2162 5.9 1.0 3201
hier13 · 13 · 13b 2.0 0.8 3094 2.3 0.9 2162 5.7 1.0 3201
hier13 · 13 · 13c 1.9 0.8 3094 2.5 0.9 2162 5.7 1.0 3201
hier13 · 13 · 13d 2.5 1.6 6187 2.4 1.7 4323 2.5 2.1 7182
hier13 · 13 · 13e 2.5 1.6 6187 2.4 1.7 4323 2.6 2.1 6493
hier13 · 13 · 7d 0.2 0.8 2431 0.3 0.9 1463 0.5 1.1 2588
hier13 · 7 · 7d 0.0 0.9 1850 0.1 1.0 1075 0.1 1.1 2143
hier16 19.9 0.8 3203 17.1 0.9 2706 66.5 1.1 3098
hier16 · 16 · 16a 4.6 0.8 4868 12.0 0.9 2796 33.1 1.0 6053
hier16 · 16 · 16b 4.7 0.8 4868 12.1 0.9 2796 32.9 1.0 6053
hier16 · 16 · 16c 4.7 0.8 4868 12.0 0.9 2796 33.1 1.0 6053
hier16 · 16 · 16d 5.3 1.6 9737 12.0 1.8 5593 46.7 2.2 9337
hier16 · 16 · 16e 5.3 1.6 9737 12.0 1.8 5593 46.9 2.2 9337
jjtabeltest3 0.2 22.1 3.4e + 7 0.1 27.8 2.0e + 7 0.2 30.0 2.7e + 7
nine12 382.1 1.4 5840 18.3 1.5 4878 727.3 1.7 4988
nine5d 126.7 1.7 8316 20.4 1.9 5468 784.5 2.2 5343
ninenew 27.0 1.6 5448 11.1 1.8 4444 199.4 2.2 4708
osorio 0.1 0.03 4 0.2 0.1 3 15.8 0.06 3
table1 0.2a 0.9 5.2e + 6 0.0 1.1 2.5e + 6 0.1 1.1 5.3e + 6
table3 0.9 3.0 162,763 0.7 3.5 72,291 12.7 3.8 111,104
table4 0.9 3.0 162,763 0.7 3.5 72,291 12.6 3.8 111,104
table5 1.0 3.0 162,763 0.7 3.5 72,291 12.6 3.8 111,104
table6 0.3a 0.9 4.1e + 6 0.0 1.1 2.5e + 7 0.1 1.1 5.3e + 6
table7 0.0 5.9 50,738 0.0 7.2 32,984 0.0 7.5 50,122
table8 0.0 0.0 26 0.0 0.1 15 0.1 0.1 19
targus 0.0b 4.1 6958 0.0 4.1 4964 0.0 4.1 6961
toy3dsarah 0.1a 2.7 2.4e + 10 0.1 3.0 2.3e + 10 0.0 2.8 2.4e + 10
two5in6 13.6 1.5 4917 9 1.7 3749 83.5 2.0 4137

a Simplex provided a wrong solution; interior-point one used.
b Best results obtained with the interior-point algorithm.

Table 4
CPU time for the seven most complex instances using the simplex and interior-point algorithms

Instance L1 L2 L1

Simplex Int. Point Int. Point Simplex Int. Point

bts4 16.5 39.7 11.5 1594.7 207.0
hier13 3.2 6.9 3.8 5.9 35.2
hier16 19.9 28.4 17.2 66.5 136.9
nine12 382.1 47.4 18.3 727.3 338.8
nine5d 126.7 43.0 20.4 784.5 137.3
ninenew 27.1 24.0 11.2 199.4 120.5
two5in6 13.6 16.9 9.0 83.5 86.5

50 J. Castro / European Journal of Operational Research 171 (2006) 39–52
can even be improved using specialized solvers that
exploit the tables structure. Some work has al-
ready been done along these lines for L2 and very
large (e.g., up to one million of cells) three-dimen-
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sional tables, where the specialized interior-point
algorithm of Castro (2000) was two orders of mag-
nitude faster than CPLEX 8.0 (Castro, 2004b).
6. Conclusions

From the computational experiments of this
work, the CTA or minimum-distance controlled
perturbation framework proved to be an efficient
and promising tool for tabular data protection.
It was also proved that this class of methods has
a low disclosure risk. The three distances tested
provided different patterns of deviations, each of
them with a clear behaviour. National Statistical
Agencies would choose the best suited distance––
or some combination of them––for their data.
Among the future work to be done we find the
development of a heuristic post-process for adjust-
ing, in frequency tables, the possible fractional
solutions; and the design of highly efficient inte-
rior-point implementations, which should exploit
the problem structure. For three-dimensional
tables some work has already been done (Castro,
2004b), but it should be extended to general tables.
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