
NONLINEAR MULTICOMMODITY NETWORK FLOWS THROUGH
PRIMAL PARTITIONING AND COMPARISON

WITH ALTERNATIVE METHODS

Jordi Castro & Narćıs Nabona
Statistics and Operations Research Dept., Universitat Politècnica de Catalunya

c. Pau Gargallo 5, 08071 Barcelona
e-mail: jcastrop@eio.upc.es

Abstract : This paper presents a specialized code for solving the linear and non-
linear multicommodity network flow problem with linear side constraints using primal
partitioning techniques. The computational performance of the program developed is
reported and compared with that of another specialized code for the same problem
—based on price-directive decomposition— and also compared to the performance of
a general purpose nonlinear optimization package. Test problems of many sizes corre-
sponding to real cases of nonlinear multicommodity network flows have been employed.

Keywords: Linear and Nonlinear Network Flows, Multicommodity Network Flows,
Network Simplex Methods, Nonlinear Optimization, Side Constraints.

1. Introduction.

Primal partitioning is described and used in [5] to solve the linear multicommodity
network flow problem(LMP). An specialization of the simplex method using primal
partitioning has been developed for linear problems. Furthermore, this methodology
has been extended to minimize a continuous nonlinear objective function (1) and to
include linear side constraints (5). The formulation studied considers a mutual capacity
constraint at each arc of the network and a certain number of side constraints. The
nonlinear multicommodity problem (NMP) can be formulated as:

min
X1,X2,...,XK

h(X1, X2, . . . , XK) (1)

subj. to AXk = Rk k = 1, . . . , K (2)
0 ≤ Xk ≤ Xk k = 1, . . . , K (3)

K∑

k=1

Xk ≤ T (4)

L ≤
K∑

k=1

LkXk ≤ U (5)

where Xk ∈ IRm, (m: number of arcs) is the vector of flows of commodity k (k =
1, . . . , K), and h being a IRK×m → IR1 real valued function. A ∈ IRn×m (n: number
of nodes) is a network matrix. Constraints (3) are simple bounds with X

k ∈ IRm, k =
1, . . . , K being upper limits and constraints (4) are the mutual capacity constraints with

T ∈ IRm and (5) are the linear side-constraints defined by matrices Lk: Lk ∈ IRp×m, k =
1, . . . , K with elements of any type, and L, U ∈ IRp (p: number of side constraints).

Every basis using the primal partitioning method can be written as:

B =

L1 R1 0

L2 R2 0

L3 R3 1l

being L1, R2 and 1l square matrices, and where: L1 refers to the network constraints
and arcs of the K spanning trees. The topology of this matrix is:

L1 =




B1

B2

. . .
BK




being each Bk a nonsingular matrix associated with the kth spanning tree. L1 can be
represented at every iteration by K spanning trees following the methodology described
in [2]. R1 refers to the network constraints and complementary arcs of the K commodi-
ties. Complementary arcs are required to preserve the nonsingularity of the basis. L2

refers to saturated mutual capacity and side constraints, for the arcs of the spanning
trees. R2 refers to saturated mutual capacity and side constraints, for the complemen-
tary arcs. L3 refers to unsaturated mutual capacity and side constraints, for the arcs
of the spanning trees. R3 refers to unsaturated mutual capacity and side constraints,
for the complementary arcs. 1l refers to the slacks of the unsaturated mutual capacity
and side constraints. (It has to be noticed that constraints whose slacks are in matrix
1l are treated as unsaturated constraints, even though the values of slacks are zero).

2. Influence of the side constraints.

To perform the required operations with the basis B (compute the Lagrange mul-
tipliers πtB = ct, determine the descent direction of basic variables BpB = b) it is
only necessary to store and use a nonsingular working matrix, that we will denote by
Q. The expression of this matrix is Q = R2 − L2L

−1
1 R1. This result can be obtained

directly solving the previous systems —considering the partition of the basis exposed
before— and doing some algebraic manipulations (a detailed explanation can be found
in [5]). The fact of inverting Q instead of the whole basis B improves substantially the
efficiency of the method.

If we denote the set of saturated mutual capacity constraints by Smc, the set of
saturated side constraints by Ssc and the number of elements of a set S by |S| then the
dimension of the matrix Q (dim(Q)) can be expressed as dim(Q) = |Smc|+ |Ssc|. Since
Q has full rank it follows than the number of complementary arcs in the basis must
be equal to |Smc| + |Ssc|. We can consider this matrix divided into two submatrices

Q =
[

Qmc

Qsc

]
where Qmc is the submatrix whose rows refer to constraints ∈ Smc , and

Qsc is the submatrix whose rows are associated with constraints ∈ Ssc.
The expression for computing Q involves the calculation of L−1

1 R1. Since L1 is
a block diagonal matrix where the kth block is a minimum spanning tree for the kth
commodity, and R1 expresses for each complementary arc of the kth commodity its
connection to the kth minimum spanning tree, then solving L−1

1 R1 is equivalent to
having the paths (denoted by Pj , j = 1 . . . dim(Q)) of complementary arcs in their
associated spanning trees. Given an arc a ∈ Pj , we will say than a has normal orientation
if it points to the origin node of the complementary arc j; otherwise, it has reverse
orientation.

If we denote by:
• aj the arc associated with the jth column of Q, j = 1 . . . dim(Q).
• mci the mutual capacity constraint of the ith row of Q, i = 1 . . . |Smc| (this capacity
constraint refers to the arc mci).
• sci the side constraint of the ith row of Q, i = |Smc|+ 1 . . . dim(Q).
• B(a, n) a logical function than returns true if the arc a appears in the side constraint
n, and false otherwise.
• ca,n the coefficient of the arc a in the side constraint n.

Then we can compute directly the matrix Q as follows:

Submatrix Qmc:

Qij

i=1...|Smc|
j=1...dim(Q)

=





+1, if aj = mci

+1, if mci ∈ Pj with normal orientation
−1, if mci ∈ Pj with reverse orientation
0, otherwise

Submatrix Qsc:

Qij

i=|Smc|+1...dim(Q)
j=1...dim(Q)

=





Following next 4 steps:
1) Set Qij = 0
2) if B(aj , sci) then Qij = caj ,sci

for each a ∈ Pj , do next 2 steps
3) if B(a, sci) and a has normal orientation then

Qij = Qij + ca,sci

4) if B(a, sci) and a has reverse orientation then
Qij = Qij − ca,sci

It is clear from this procedure than the information of the mutual capacity con-
straints is not stored and is implicitly assumed in the construction of the Qmc subma-
trix. However when computing submatrix Qsc a function such as the logical function
B(a, sci) employed before, is required. In this implementation, information about the
side constraints is stored in sparse form by columns (that is, for each arc we have the
side constraints where it appears), and sorted by the number of side constraint. Thus
the boolean function B(a, sci) is reduced to a binary search.

3. The Algorithm

The algorithm presented has three different phases called phase 0, 1 and 2. In phases
0 and 1 the algorithm finds a feasible starting point, while phase 2 tries to achieve the
optimizer without leaving the feasible region. Phases 0 and 1 are common to the linear
and nonlinear problem. We will describe each phase in next three subsections. When
referring to phase 2, only that of the nonlinear problem will be adressed.

For computational purposes the inequality constraints (4) and (5) in the original
NMP problem are substituted by equality constraints by adding slacks variables.

K∑

k=1

Xk + s = T ; 0 ≤ s (6)

K∑

k=1

LkXk + t = U ; 0 ≤ t ≤ U − L (7)

where s ∈ IRm and t ∈ IRp. In this formulation equations (6) and (7) substitute original
equations (4) and (5). Then the formulation of the problem considered by the algorithm
(that will be referred to as NMP2) is the minimization of (1) subject to (2), (3), (6)
and (7)

3.1. Phase 0.
In phase 0 the algorithm considers only the network constraints and bounds of

the varibles of the problem. Without any constraint linking the flows of differents
commodities, it solves for each commodity k, k = 1 . . .K the linear network problem

min
Xk

Ct
kXk

subj. to AXk = Rk

0 ≤ Xk ≤ Xk

where the vector costs Ck can be introduced by the user. This can be useful to guide
the algorithm towards good initial feasible points, if information about the model is
known before the execution of the program. Once phase 0 has finished, the algorithm
has a minimum spanning tree for each commodity.

3.2. Phase 1.
The K points obtained in phase 0 will not satisfy in general the mutual capacity

and side constraints, thus having a pseudo-feasible point. That implies than some slack
variables s for the mutual capacity constraints or t for the side constraints will be out of
bounds. Let X̂k, k = 1 . . . K be the pseudo feasible point obtained, then, the following
index sets are defined:

• s− =
{
i :

(K∑

k=1

X̂k

)
i
> Ti ⇔ si < 0

}
.

• t− =
{
i :

(K∑

k=1

LkX̂k

)
i
> Ui ⇔ ti < 0

}
.

• t+ =
{
i :

(K∑

k=1

LkX̂k

)
i
< Li ⇔ ti > (U − L)i

}

Introducing new artificial variables e and f , and fixing initial values for s and t such
that:

• (K∑

k=1

X̂k

)
i
+ si − ei = Ti ; si = 0 ; ∀i ∈ s−

• (K∑

k=1

LkX̂k

)
i
+ ti − fi = Ui ; ti = 0 ; ∀i ∈ t−

• (K∑

k=1

LkX̂k

)
i
+ ti + fi = Ui ; ti = (U − L)i ; ∀i ∈ t+

The problem solved in phase 1 is:

min
X1,X2,...,XK ,s,t,e,f

∑

i∈s−
ei +

∑

i∈t−
fi +

∑

i∈t+

fi (8)

subj. to (1) and (2)
K∑

k=1

Xk + s + 1lee = T (9)

K∑

k=1

LkXk + t + 1lff = U (10)

0 ≤ t ≤ U − L ; 0 ≤ s ; 0 ≤ e ; 0 ≤ f

Where both matrices 1le ∈ IRm×m and 1lf ∈ IRp×p in (9) and (10) are diagonal and
defined as follows:

(1le)ii =
{−1 if i ∈ s−

0 otherwise
(1lf)ii =

{−1 if i ∈ t−

+1 if i ∈ t+

0 otherwise
Problem NMP2 will be feasible if, at phase 1, a point where the value of (8) is 0,

is achieved.

3.3. Phase 2
Once a feasible point has been obtained, phase 2 tries to achieve the optimizer of

the nonlinear function (1). The primal partitioning method, as presented in [5], was
thought for linear objective functions. However, when optimizing nonlinear functions,
primal partitioning can be applied together with the Murtagh and Saunders’ strategy
—described in [6]— of dividing the set of variables in Basic, Superbasic and Nonbasic
variables: Â =

[
B|S|N]

, being Â the matrix of constraints (2), (3), (6) and (7). The

efficiency in managing the working matrix Q with respect the whole basis B is pre-
served in the nonlinear case. Also the structure of either network, mutual capacity and
side constraints can be exploited improving the computation time with respect general
methods of optimization where this constraints are treated in a general way.

Consider that at iteration k we have (the subindex k is avoided in almost all cases
to simplify the notation):
•xk, h(xk): the current feasible point and the value of the objective function at this

point.
•B, S, N : the sets of basic, superbasic and nonbasic variables. Having B is means

having just K spanning trees and a LU decomposition of the working matrix Q.
•g(xk): where g(xk) = ∇h(xk) divided into g(xk) =

[
gB |gS |gN

]
for basic, superbasic

and nonbasic variables.
•Z: a way to perform the operations Z ′x and Zy, being Z a matrix of the null subspace
of the current set of active constraints.
•gz, εgz : the current reduced gradient gz = ZgS , and a tolerance to stimate when its

norm is considered sufficiently small.
•π: a vector satisfying πtB = gt

B .
Then the algorithm of phase 2 can be expressed as the following succession of steps
(steps where profit can be taken of the particular form of constraints are marked with
(∗)):

STEP (1): Optimality test in the current subspace.
i) If ||gz|| ≥ εgz go to step (3).

STEP (2): Price nonbasic variables.
i) Compute lagrange multipliers λ = gN −N tπ. (∗)
ii) Choose a suitable λq and the associated column Nq. If no multiplier

can be chosen go to step (8)
iii) Update data structures: remove Nq from N and add it to S; add λq

as a new component of gz.
STEP (3): Find descent direction P t =

[
PB |PS |0

]t for basic and superbasic variables.
i) Solve ZtHkZPS = gz, where Hk = ∇2h(xk). (∗)
ii) Solve BPB = −SPS . (∗)

STEP (4): Ratio test.
i) Find αmax ≥ 0 such that xk + αmaxP is feasible.
ii) if αmax = 0 go to step (7).

STEP (5): Linesearch.
i) Find α∗ such that h(xk + α∗P) = min

0≤α≤αmax

h(xk + αP)

ii) Update new point xk+1 = xk + α∗P , and compute h(xk+1) and gk+1.
STEP (6): Update reduced gradient gz.

i) Solve πtB = gt
B . (∗)

ii) Perform gz = gS − Stπ. (∗)
ii) if α < αmax go to step (1).

STEP (7): A basic or a superbasic variable becomes nonbasic (it reaches its lower or
upper bound).
i) If a superbasic variable Sp hits its bound then:

- Remove the component of gz associated with the column Sp

from S.
- Remove Sp from S and add it to N .

ii) If a basic variable Bp hits its bound then:
- Find a superbasic variable Sq to replace Bp in B preserving

the nonsingularity of the basis. (∗)
- Remove Bp from B and add it to N . Remove Sq from S

and add it to B (pivot operation). This implies updating
the working matrix Q since a change in the basis B has been
made.

- Update π.
- Perform gz = gS − Stπ. (∗)

iii) Go to step (1)
STEP (8): Optimal solution found.

Some remarks have to be made about fine points of this algorithm:

3.3.1 Computing the descent direction.
The current implementation of the program solves the system ZtHkZPS = gz by

using a truncated-newton algorithm, following the description in [3]. This is based on
the conjugate gradient method for solving linear systems of equations Ax = b being
A symmetric and positive definite. One of the next tasks to do would be testing the
behaviour of the program with a quasi-newton update of ZtHkZ as described in [6].

3.3.2 Linesearch.
Routine GETPTC of the Minos.5.3 package [7] has been employed to find the

optimum step α∗. The good performance of this routine against others than have been
tested justify the choice.

3.3.3 Pivot operation.
When a basic variable hits its bound in step (7) ii), a column of the basis B is

removed and replaced by a column of the superbasic set S. The new basis (denoted
by Bn) could be expressed as Bn = Bη being η a convenient eta-matrix. However the
algorithm does not work with the whole basis B. For our purposes it is necessary to
reflect how this change in the basis affects to the K spannings trees and the working
matrix Q. Given that the dim(Q) is equal to the number of saturated mutual capacity
and side constraints it is clear than dim(Q) can increase or decrease at each iteration (In
this context “saturated constraint” means “constraint whose associated slack is not in
the basis B”. Of course, in the original formulation of the primal partitioning when an
slack was not in the basis it was a nonbasic variable at value 0. In the nonlinear extension
with side constraints, when an slack is not basic it can be superbasic or nonbasic at its
upper bound, having a non-zero value. Then it is not correct talking about “saturated
constraints”, but this expression has to be understadood as “constraints whose slacks
are not basic”, as a reminiscence of the linear problem). Considering that the variables
of the problem can be arcs or slacks (and the arcs of the basis B can be subdivided into
arcs of the K spanning trees or complementary arcs), then, depending of the type of
the variable entering and leaving the basis, the following 6 cases must be observed with

the related operations (denoting by “E:–” the type of entering variable and by “L:–”
the type of leaving variable):

• E: slack–L: slack. The row of Q associated with the entering slack is removed and
substituted by a new row for the leaving slack. Dim(Q) is not modified.
• E: slack–L: complementary arc. The row and column of Q associated with the entering
slack and leaving complementary arc respectively are removed. Update dim(Q) =
dim(Q)− 1.
• E: slack–L: arc of kth tree. A complementary arc of the kth commodity, e.g. the jth
complementary arc, having the leaving arc in its path Pj , must be found to replace the
leaving arc in the kth tree. This complementary arc will always exist (otherwise the
basis would become singular). The row an column of Q associated with the entering
slack and the jth complementary arc are removed. Update dim(Q) = dim(Q)− 1.
• E: arc–L: slack. A new row associated with the leaving slack is added to Q. To

maintain the nonsingularity of Q a new column for the entering arc —which will become
complementary arc— is also added to the working matrix. Update dim(Q) = dim(Q)+
1.
• E: arc–L: complementary arc. The column of Q associated with the leaving comple-
mentary arc is removed, and substituted for a column for the entering arc, which will
become complementary arc. Dim(Q) is not modified.
• E: arc–L: arc of kth tree. A complementary arc of the kth commodity, e.g. the

jth complementary arc, having the leaving arc in its path Pj , is searched for. If this
arc is found, it will replace the leaving arc in the kth tree, and the entering arc will
become complementary arc. If no complementary arc is found, then the entering arc
will substitute the leaving arc in the kth tree. One of the two last cases must be always
possible to preserve the nonsigularity of the basis. Dim(Q) is not modified.

It has not been explicited, but it must be noticed that, when rows of matrix Q =[
Qmc

Qsc

]
are removed of added, depending on the kind of the associated slack (if it is an

slack of mutual capacity or side constraints) the operations will afect submatrix Qmc

or/and Qsc.

4. Updating matrix Q.

The efficiency of the method is directly related to the efficiency of the routines
than manage matrix Q. Obviously the first step is having a way of updating matrix Q
instead of recalculate it at each iteration. It is not the purpose of this work to prove
all the formulae required to obtain the expressions for updating Qk+1 from Qk (where
the subindex k refers to the current iteration). An approach of how to obtain it can be
found in [5]. Two important remarks have to be made on this approach:
• It only considers the updating of the Q matrix with mutual capacity constraints. The
updating used by the algorithm here presented is extended to include side constraints.
• It considers an updating of Q−1 instead of Q. The difficulty of the variable dimension
of Q at each iteration makes that updating Q−1 is a costly operation if it is stored as
a sparse matrix. On the other hand, it seems not appropiate to store Q−1 as a dense
matrix (tests made with problems of many sizes showed that the number of nonzero

elements of Q−1 was always less than 10%). This led us to work with an update of Q,
and not with its inverse.

Consider that at iteration k we recalculate the working matrix Qk, which has
dimension dim(Qk) = nk, and that it will be recalculated after i iterations (that is,
at iteration k + i), where it will have dimension nk+i. Once the working matrix is
recalculated, a LU decomposition of the same is performed. The LU routine developed
tries to exploit the sparse structure of Q by using either the P3 Hellerman-Rarick
algorithm [4] or an adhoc variant of the same. Given that at each iteration the dimension
of the working matrix can, at most, increase only in one column and row, then it follows
than nj ≤ nk + i, k ≤ j ≤ k + i. The method proposed consists in working with an
extended matrix Qj at each iteration j, k ≤ j ≤ k + i, where Qj is defined as:

Qj =
(nj lj

nj Qj 0
lj 0 1l

)

Where the dimensions nj and lj of matrices Qj and identity 1l satisfy nj + lj = nk +
i. That is, the extended matrix has the maximum dimension that can achieve the
working matrix at iteration k + i, in the worst case of increasing one column and
row at each iteration j. This form of the extendend matrix must be preserved as an
invariant condition at each iteration when the working matrix is updated (pre and post
multiplying by eta an permutation matrices). This permets us working with the original
LU decomposition when the working basis was recalculated, even when its dimension
is modified. It must be noticed than solving the systems Qjx = b and xtQj = bt is
equivalent to solving Qjx = b and xtQj = bt (only must be increased the dimension of
the independent term b adding lj zeros and, once solved the system, considering only
the first nj components of the solution vector x).

5. Computational results.

Problems of Long-Term Hydro-Thermal Coordination of Electicity Generation,
modeled as nonlinear multicommodity network flow problems with side constraints have
been used as test (a complete description of the objective function can be shown in [8]
and constraints). For these problems 4 commodities are normally used although a
higher number of commodities could have also been envisaged. There are two impor-
tant features relative to the nonlinear multicommodity flow problem derived from the
hydro-thermal model:
• X

k
= T , k = 1, . . . , K, which means that, for each arc of the network, each single

commodity can saturate the mutual capacity limit and, as a consequence, there are as
many potentially active mutual capacity constraints as there are arcs
• the nonlinearity of the objective function is high.

Four models of different sizes have been used. Each model has been tried with
three objective functions: a linear function, a convex nonlinear function and a highly
nonlinear (and possibly nonconvex) function (this last is the nonlinear function of the
Electricity Generation problem). The description of the models (that will be referred
to as M1, M2, M3 and M4) is displayed in table 1, where for each model the number of

nodes, arcs, commodities and side constraints is given, together with the total number
of variables and constraints.

Table 1. Definition of the models.

nodes # arcs # comm. # SC # var. # cons.

M1 37 117 4 2 468 267
M2 37 153 4 12 612 313
M3 99 315 4 3 1260 714
M4 685 2141 4 3 8564 4884

Results obtained for each objective function with the algorithm proposed have been
compared with those obtained with the Minos.5.3 general purpose optimization pack-
age. The executions have been made on a SUN Sparc-10/41 machine. Table 2 shows
the CPU time in seconds, number of iterations at phase 1, number of iterations at phase
2, optimal value of the objective function (h(x∗)), dimension of matrix Q at the opti-
mizer (dim(Q)), number of superbasics variables (# SB VAR.) and number of objective
function evaluations (# O.F.EVAL) for Primal Partitioning algorithm (referred to as
PP) and Minos.5.3 package (referred to as MI) for each objective function.

As it can be appreciated, for the linear objective function the gain of CPU time
of the PP algorithm with respect to the general optimization package is considerable.
For the convex nonlinear function this effect is still preserved. However in the highly
nonlinear function of the Electricity Generation problem, Minos is faster than the PP
algorithm. It must be noticed than the number of evaluations of the objective function
is higher in the PP algorithm than in Minos. This could explain the low performance
of PP algorithm for the highly nonlinear function, given that it is a costly function to
compute. The fact of finding descent directions by a truncated-newton algorithm could
explain why PP algorithm requires more function evaluations than Minos (which uses
a quasi-newton method). The preparation of a revised version of the PP algorithm
employing a quasi-newton update routine is in project.

Another important point is the behaviour of primal partitioning as compared to
another specialized multicommodity network algorithms: price directive decomposi-
tion. The computational performance of multicommodity network flows through primal
partitioning and through price directive decomposition (referred to as PPD) has been
compared, for linear test problems, by Ali & al. [1]. This comparison indicates that
PPD performs much better than PP. The experience of the authors does not agree with
that of Ali & al. It appears that for nonlinear problems PP is better than the other
method. In general PPD has a very efficient phase 1 but as the number of active ver-
tices [5,9] increases in phase 2 the iterations become less effective and, after a given
number of iterations —or after an analogous number of function evaluations— PP has
reduced more the objective function than PPD Reference [9] describes the principles
and performance of a nonlinear multicommodity network flow code implementing PPD.
Although some improvements have been recently introduced by the authors in this code,
its convergence patern remains of the same type. This code follows the same stages of
phase 0, phase 1 and phase 2, as the PP algorithm of this work (the code of phase 0 is
the same in both programs). Figure 1 shows the behaviour of each code for the model

Table 2. Results using the different objective functions.

iter. iter. h(x∗) dim(Q) # SB # O.F.
sec. Phase 1 Phase 2 VAR. EVAL

Linear function
M1 (PP) 0.4 69 26 1057375.00 28
M1 (MI) 2.5 238 43 1057375.07
M2 (PP) 0.4 59 18 2.27×10−12 20
M2 (MI) 2.6 190 30 2.36×10−11

M3 (PP) 2.1 219 276 4477156.58 82
M3 (MI) 8.8 569 265 4477156.60
M4 (PP) 83.0 2081 1711 249354122. 616
M4 (MI) 745.0 12712 3009 249354124.

Convex nonlinear function
M1 (PP) 10.5 69 1203 5.42797×109 36 249 4511
M1 (MI) 20.0 256 887 5.42796×109 249 1754
M2 (PP) 12.9 59 1491 3.97185×109 34 238 5323
M2 (MI) 23.0 163 1165 3.97183×109 231 2315
M3 (PP) 89.8 219 4540 6.04754×109 96 453 16798
M3 (MI) 105.9 617 1991 6.04651×109 449 3862
M4 (PP) 4249 2081 35306 1.94319×1014 771 1292 120176
M4 (MI) 14308 17008 16498 1.94319×1014 2077 23766

Highly nonlinear function (possibly non convex)

M1 (PP) 3.5 69 364 −2.5164×1011 52 2 490
M1 (MI) 3.4 261 202 −2.5164×1011 2 211
M2 (PP) 8.1 59 630 −7.9577×1010 47 2 941
M2 (MI) 5.8 103 354 −7.9578×1010 2 365

M1 and the highly nonlinear function for phase 1 (unfeasibilities) and phase 2 (objective
function h(x)). Time in figure 1 corresponds to system time and not CPU time (flat
parts in phase 2 are due to system tasks performed periodically).

REFERENCES
[1] Ali, A., R.V. Helgason, J.L. Kennington & H. Lall. 1980. Computational compar-

ison among three multicommodity network flow algorithms. Operations Research,
v. 28, pp. 995-1000

[2] Bradley, G.H.; G.G. Brown & G.W. Graves. 1977. Design and implementation
of large scale primal transshipment algorithms. Management Science, Vol.24, N.1,
pages 1-34.

[3] Dembo, R.S. and T. Steihaug. 1983. Truncated-Newton algorithms for large-scale
unconstrained optimization. Mathematical Programming, v.26, pp. 190-212.

[4] Hellerman, E and D. Rarick. 1971. Reinversion with the preassigned pivot proce-
dure. Mathematical Programming, v. 1, pp. 195-216.

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

...

...

.....

.......

...
............

...

. . . .

....................

..........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

........

..

......................................

. . . .

....................
-2.6e+11

-2.5e+11

-2.4e+11

-2.3e+11

-2.2e+11

-2.1e+11

-2e+11

-1.9e+11

-1.8e+11

-1.7e+11

-1.6e+11

0 0.5 1 1.5 2 2.5 3 3.5

Primal Partitioning

Price Directive D.

(seconds)

h(x)

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.002 0.006 0.01 0.014

Price Directive D.

Primal Partitioning

(seconds)

Infeasibilities

Figure 1. Unfeasibilites and objective function versus time

[5] Kennington, J.L. and R.V. Helgason. 1980. Algorithms for network programming.
John Wiley & sons.

[6] Murtagh, B.A. and M.A. Saunders. 1978. Large-scale linearly constrained opti-
mization. Mathematical Programming, v. 14, pp. 41-72

[7] Murtagh, B.A. and M.A. Saunders. 1983. MINOS 5.0. User’s guide. Dpt. of
Operations Research, Stanford University, CA 9430, USA.

[8] Nabona, N. 1992. Multicommodity network flow model for long–term hydro– gen-
eration optimization. Paper 92 WM 137–O PWRS presented at the IEEE 1992
PES Winter Meeting, New York

[9] Nabona, N. and J.M. Verdejo. 1991. Numerical implementation of nonlinear mul-
ticommodity network flows with linear side constraints through price–directive de-
composition. Proccedings (to appear) of the 15th IFIP Conference on System
Modelling and Optimization, Zurich. Springer–Verlag

