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Abstract-Optimizing the thermal production of 
electricity in the long term, once the maintenance 
schedules have been decided, means optimizing 
both the fuel procurement policies and the use of 
fuels for generation in each thermal unit 
throughout the time period under study. A 
fundamental constraint to be satisfied at each 
interval into which the long time period is 
subdivided is the covering of its load duration 
curve with thermal and the stochastic hydro- 
generation. A new procedure to optimize this 
problem is proposed. It is based on the use of a 
power-energy function for each interval, which 
changes with the deterministic and stochastic 
hydrogeneration and with thermal generation. 
Through this function the generation duration 
curves that come from the load duration curves of 
all intervals, are matched. 

Keywords-Hydrothermal Scheduling, Long-Tern Operating 
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Optimization 

I. INTRODUCTION 

The solution to the long-term hydrothermal coordination 
indicates how to distribute the hydroelectric generation (cost- 
free) in each reservoir of the reservoir system over a long 
period of time (e.g. one year) , so that the fuel expenditure 
during the period is minimized. When some thermal unitq can 
use more than one fuel or share the same fuel contract with 
other units, and there are fuel limits for one or more units over 
the whole period or parts of it, fuel acquisition and usage must 
also be optimized in coordination with hydrogeneration, which 
leads to a bigger problem. As usual, the long time period or 
horizon under consideration (e.g. one year) will he subdivided 
into several time intervals of shorter duration (e.g. one month) 
for which optimal values of decision variables are to be found. 

The fundamental difference between long term and short 
term hydrothermal optimization, aside from the length of the 
time period studied, lies in the fact that the availability of 
thermal plant, the demand for electricity and the water inflows 
in the reservoirs are not deterministic, but only known as 
probability density functions . 

The literature on long-term hydrothermal coordination is 
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rich. However, only a few papers on this subject describe 
methods that deal with stochastic inflows and that balance 
thermal and hydro-generation through the load duration curve 
(1.d.c.) and not just with the peak load or through the total 
energy demand of the interval. Sherkat et al. [lo] consider at 
each interval a staircase 1.d.c. with a few load segments. These 
1.d.c’s are peak shaved with the expected values of the 
generations corresponding to the releases of all reservoirs but 
one in turn, and optimize with dynamic programming the 
releases of the remaining reservoir, considering the thermal 
cost curves of the load segments of the 1.d.c. for a series of 
river inflow sequences. Contaxis and Kavatza [4] optimize the 
stored volumes of the reservoirs with dynamic programming, 
obtaining for each reservoir in each interval a probability 
distribution function of hydrogeneration from the stochastic 
water inflows (while satisfying the reservoir balance equations 
with expected values of inflows and outflows) and convolve 
[l 11 the probability distribution functions of hydrogeneration, 
replacing the most expensive thermal units to cover the 1.d.c. 
of each interval. Neither the method of Sherkat et a1 1101 nor 
that of Contaxis and Kavatza [4] deals with fuel limits. 

Ranjit Kumar et al. [9] optimize the long-term fuel 
procurement and use with fuel limits. They use probabilistic 
production costing methods EL111 with a given priority 
(loading order) list to determine the maximum limits on the 
energies generated by each unit in each interval, and then a 
network flow solution [SI for the entire period is used to 
generate a new priority list for each interval, correcting 
priorities according to capacity factors in the network solution. 
System and unit fuel limits are modified to correct the 
mismatches between generation and the 1.d.c. This method 
does not consider hydrogeneration. 

The work presented here describes a new model for long- 
term hydrothermal coordination with fuel limits. This model is 
to be u.sed in hydro scheduling and fuel budgeting to minimize 
the cost of fuels acquired plus that of unsupplied energy over a 
long time period (e.g. one or two years), optimizing for each 
interval, 

the expected fuel supply requirements of each possible type 
the emergency energy imports to cover the uncovered load 
the quantities of fuel used for generation by each thermal unit 

and stold 
the volumes of water stored and discharged for generation at 

each reservoir (in terms of water inflow availability). 
The constraints to be satisfied include the balances of fuels 

acquired and spent, and those of water inflows and discharges, 
and covering the 1.d.c of each interval. The computational 
results described include the solution details of a real case. 

This work is an extension of a former one on long-term 
hydrogeneration optimization [8], in which thermal generation 
and load covering with hydro was simplified through 
precalcdated functions of variation of expected thermal 
production cost with hydrogeneration, and no fuel limits were 
considered. The hydro model used here is the same as in [8] 
regarding stochastic water inflow and stochastic hydro- 
generation representation, and not much detail will be given 
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here on this aspect, as these topics are fully described in [8]. 
It is not easy to carry out a comparison between the 

performances of the method proposed and thd of other existing 
methods mentioned, due to their different characteristics. 
Evaluating and comparing long-term policies, obtained with 
different procedures, over a long-term period with stochastic 
events is an open problem, out of the scope of this work. The 
method proposed is more accurate than existing methods in the 
consideration of the long-term stochasticity of hydrogeneration 
and in the covering of the load duration curve of the intervals, 
without requiring excessive computational resources. Thus it 
can be assumed, though it cannot be proved, that the results 
obtained are closer to the real optimum of the long-term 
hydrothermal coordination than with other existing methods. 

II. THE L.D.C. AND THE G.D.C. OF EACH INTERVAL 

There are well known procedures [1,11] to build up the 
probabilistic generation duration curve (g.d.c.) from the 1.d.c. 
when only thermal units -with unlimited fuel supply- are 
employed. The generating capability, the forced outage rate of 
each unit, and a loading order list are required. From the g.d.c. 
we get the expected energies Ej Q=l ,  ..., Nu, Nu being the 
number of units) that the jth unit will most probably generate 
when contributing to cover the load. We also get the non 
negligeable -and expensive- emergency energy Ex that will 
have to be imported (see figs. la) and lb), where Nu=&). 

Given that the long term time period (e.g. one year) will be 
subdivided into shorter time intervals (e.g. one month) and we 
will have a predicted 1.d.c. for each interval "i", we can obtain 
through the g.d.c.'s the energies Eji (i=l, ..., Nj , Ni being the 
number of intervals) that the jt*' unit will most probably 

generate over the i* interval. Thus C i  Eji will represent the 
expected energy to be generated over the long term period by 
the j* unit. 

Should the available fuel for the jth unit be less than that 
Ni . 

necessary to generate X i  Ejl MWh, the g.d.c. of one or several 
intervals ought to be modified. The modification of the g.d.c. 
of one such interval "i" can take either of two forms: 

a change in the loading order list of one or several intervals 
so that the j* unit is further down in the list and generates less 
P I ,  or 

a reduction in the power output Pji of the jth unit below its 
rated capability pj, over one or several intervals "i". 

Fuel limits occur naturally even when there are no fuel 
restrictions, but there are different contracts affecting limited 
amounts of the same fuel. Deciding how much to buy of each 
fuel under which contract (together with the use of hydropower) 
and allocating limited amounts of such fuel to differetlt 
intervals is an optimization problem where the fuel limits 
described will have to be considered. Thus, in order to duly 
account for interval load, one of the types of g.d.c. 
modification will have to be used. The second one, that of the 
power level reduction, has been adopted here. 

Optimizing hydrogeneration over the long term period 
means allocating hydroenergies to each interval helping to 
cover its 1.d.c.s. The g.d.c. of each interval will thus include 
an "optimized" amount of hydrogeneration (together with an 
"optimized" amount of fuel-limited thermal generation). 

Ni 

Fig. 1 a) Original load-duration curve (1.d.c.) 
b) Generation-duration curve (g.d.c.) and 1.d.c. (dotted) 
c )  L.d.c. peak-shaved with deterministic hydro- 
generation HO 
d) G.d.c. corresponding to peak-shaved 1.d.c.. including 
stochastic hydrogeneration HD 

aI. HYDROGENERATION CONTRIBUTION TO EACH G.D.C. 

As developed in [8] the hydrogeneration to be optimized at 
each long term interval can be described by a block probability 
distribution such as that in fig. 2b) if a multicommodity long 
term hydro optimization model of a multireservoir system is 
used. The block probability areas p1, p2, .... PK. (see fig. 2) 
are fixed beforehand. (K being the number of probability 
blocks with which the stochastic water inflows (see fig. 2a)) 
are approximated [8], (K=3 in fig. 2). The hydrogenerations 
Ho, H I ,  ..., HK for each reservoir and each interval are part of 
the optimization results. Its probability distribution suggests 
that there are two basic types of hydrogeneration: the 
deterministic hydrogeneration Ho MWh (with 100% 
availability) and an stochastic hydrogeneration HA MWh - 
whose availability is less than 100%- which comes from HI, 
H2 ,..., HK and p1, p2 ,..., PK. The values of Hki (k=0,1, ..., K 
and i=l, ..., Ni) for each reservoir will be optimized together 
with fuel and thermal generation. 

prob. density t o f  hy d.qeneration 
prob. density 
o f  inflow t I ..... . .  I in b) 

Fig. 2 a) Probability density function of inflow in a reservoir 
over a given interval and approximation by 3 blocks 
b) Resulting approximated probability density function 
of hydrogeneration in a reservoir over a given interval 
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When an elaborated long-term hydrogeneration model - 
such as the multicommodity one- is available, there is no 
need to take the simplifying assumption that all 
hydrogeneration in a given interval is loaded on its g.d.c. as a 
single thermal unit. The deterministic hydroenergy Ho and the 
stochastic hydroenergy HA must influence the covering of the 
1.d.c. in different ways. The deterministic part Ho is used to 
peak-shave the l.d.c., whereas the stochastic HA contributes to 
the covering of the 1.d.c. just as any other thermal unit, whose 
availability is less than 100%. Thus for each interval "2' fast 
its l.d.c., whose area is E', is peak-shaved with Hoi (see fig. 
IC)) and then thermal units plus the stochastic hydrogeneration 
part  HA^ cover the peak-shaved 1.d.c. (see fig. Id)). 
For the stochastic hydrogeneration to behave as a thermal unit 
in the g.d.c. we would need to know about it the same 
parameters that characterize thermal units in the g.d.c., i.e. 
power output, forced outage rate and position in loading order 
list. None of these is determined, and instead we have that the 
area (energy) in the g.d.c. of interval "i" corresponding to the 
expected stochastic hydrogeneration should be: 

A. 

K 

k= 1 
HAi= qkHki (1) 

where qk is the availability rate corresponding to a pseudo unit 
that could generate at most Hki M W ~  over interval 'Y (see fig. 
2b)). It is simple to prove that for a multiblock probability 
density function such as that in fig. 2b), the availability rate qk 
is: 

K 

j=k+l 

- Pk %--+X P' J 

The integration of the stochastic hydroenergy into the g.d.c. 
will be made under the following assumptions: 

The area (expected energy) in the g.d.c. will be  HA^ (see fig. 
Id)) 
Instead of considering that the stochastic hydroenergy comes 

from a single pseudo-unit, it will be assumed that it comes 
from Nu pseudo-units, each one generating HAjl and placed in 
the loading order list just after each of the Nu thermal units 
(see fig. Id)). 

The power output of the ensemble of stochastic hydro 
pseudo-units must be such that together with the mean power 
output of the deterministic hydro production (Ho' MWh) it is 
less than or equal to the maximum rated hydro-power 
capability &. Since the mean deterministic hydropower is 
clearly H&Ti (Ti being the interval's duration), we will have 
that the total power corresponding to stochastic hydro-energy 
PL\' and the power of the jth pseudo-unit PA: will satisfy at the 
i* interval: 

(3) 
j=1 T' 

PA' changes with HA' . Its value depends on the relative values 
of HA: u=l  ,...,NU), as these energies are placed in different 
positions in the loading order list. 

The availability of pseudyunits could be approximated by: 
I7 

2 qkHki/f Hki 
k= 1 k= 1 

(4) 

ZPj+ 
1 

power 
(MW) 

e >  

,ewer 
(MW) 

HA 

Fig. 3 a) Generation-duration curve with stochastic hydro 
b) Smothed generation-duration curve (s.6.d.c.) 
showing modified stochastic hydro HA 
c) S.6.d.c 

For the it'' interval the emergency import Exi, associated to 
the g.d.c., changes with Hoi, with  HA^ and with the differences 

Simulations made with several g.d.c. 

changing Hoi,  HA^ and P: show that this variation can be 
approximated by an expression such as: 

(pj - pji). 

ai ( Y y  Ex' = - + C' 
bi -hi  

with 

where the parameters ai, bi and ci must be estimated for the 
1.d.c. of each interval 

The maximum shortage duration T d  with unsupplied energy 
is a function of the same type and of the same variables as 
those of the emergency energy, and in the ith interval could be 
estimated with an expression of the type ( 5 )  with different 
parameters: 

(7) Tx' = - w)2 + p  
&'-e'  

where di, 4 and fi must also be estimated for each interval 

fig. Id). 
The g.d.c. of the ith interval could look like that shown in 

w. APPROXIMATING THE GENERATION DURATION CURVE 

The covering of the g.d.c. of each interval by the 
contributions of thermal and hygro generation are constraints 
that must be taken into account by the long term coordination 
optimization, but in order to make optimization possible and 
computationally efficient, the discontinuities in the g.d.c. must 
be smoothed out. 

Figs. 3b) and 3c) show a smoothed g.d.c. 6.g.d.c.) 
equivalent to the g.d.c. of a given interval. The main 
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The PE function of each interval thus changes with Ho'. 
HAi and E; (j=l, ..., Nu) and will be used when optimizing the 
long term hydrothermal coordination to ensure that the 
generations of each interval conform to their s.g.d.c.s. 

v. REpRESE"G THE S.G.D.C. OF THE INTERVALS 

E 

1 
F l h  

Fig. 4 a) Inverted smoothed generation duration curve 
b) Power-energy function ( PE(.) ) 
c) Approximation of PE(.) function by a straight 
segment connected to a four point B6zier curve 

difference is in the shape of the slices corresponding to 
stochastic hydrogeneration of pseudo-units. The availability of 
these pseudo-units is much less than that of a normal thermal 
unit (e.g.: from expressions (2) and (4), taking the simplifying 
assumption that H1=H2= ...= HK and that p1=p2= ...=PK= 1/K 
one gets that the availability rate would be 0.5). This brings 
about indentations in the g.d.c. Smoothing out these 
indentations while keeping the expected hydrogeneration area is 
equivalent to increasing the availability of these units to that 
of a thermal unit (i.e. increasing the duration of its generation 
-see fig. 3b)-) while reducing the power output of the 
stochastic hydrogeneration, which is not an unrealistic practice. 

By integrating the s.g.d.c. (see fig. 4a)) along the power 
axis up to the power at which the emergency energy steps in, 
we obtain the energy corresponding to each power level, so 
that we could plot, as in fig. 4b), the power level w.r.t. energy 
for a given s.g.d.c.. This function will be referred to as Power- 
Energy (PE) function, and it is important to point out that 
there is a bijective correspondence between the PE function and 
the s.g.d.c. from which it has been obtained. The PE function 
of a given interval "i" (see fig. 4b)) has several interesting 
features: 

its left part is a straight line of slope l / T ~ l  through the 
origin, where T G ~  is the expected base generation duration of 
the s.g.d.c.. The value of TG; depends on Ti and the forced 
outage rates of the first units in the loading order list, and can 
be estimated without difficulty 

the point at which the straight part of the PE function star? 
an upward bend has power PG' and its energy is obviously PG' 
T G ~  . P G ~  corresponds approximately to the base power of the 
1.d.c. of the interval with corrections that depend on the 
capacities and forced outage rates of the first thermal units in 
the loading order list 

the durations of the s.g.d.c. are the inverse of the derivative of 
the PE function: t = l/(dPEYdE) 

the upper right part of the function has slope 1/Txi, where 
Tx' is the maximum shortage duration (with emergency energy 
imports) in the s.g.d.c.; it can be calculated with (7) 

the coordinates of its extreme upper-right point are 
4l 

(PA; + 7 ~ j '  , El - H$ - Ex' (8) 
1=1 

One way of including the s.g.d.c. covering constraint in the 
optimization process is through an analytic expression of the 
PE function. The analytic expression proposed for the PE 
function has two distinct parts as in a former work by the 
authors 171: 

a straight line segment (BO,B1) through the origin and with 
slope l rn~;  up to the point (P&,P& T&), and 

a Btzier curve [2] generated with four points: B 1, B;?, B3 and 
B4 (see fig. 4)). 

The line uniting B3 and B4 has slope 1!Txi and its final 
point B4 has the coordinates (8). Points Bo,B1 and B2 are 
situated on the same straight line (with slope ~/TG'  ), as this 
ensures :in Btzier curves- that there is continuity in the 
first derivative of the curve at the linking point B 1. 

Point B2 is placed at a fixed proportion of the distance 
between B1 and the intersection point of the straight lines from 
the origin with slope I/TG' and from B4 with slope l/Txi. 
The same is true for point B3 between B4 and the same 
intersection point. 

Assuming that the coordinates (power and energy) of points 
Bm, m=l, ..., 4, in fig. 5.b) are (pBm ,EBm) m=l, ..., 4, the PE 
curve can be expressed as follows: for energies between 0 and 

(9) 
EB 1 

P = E/TGi 

and for energies between EB 1 and E B ~  (or power between pB 1 
and pB4) through the BCzier curve, expressed by: 

P = ~ s l ( 1 - p ) ~  + 3b2p(1-p)2 + ~ P B ~ P * ( ~ - P )  + h 4 p 3  
E = E ~ l ( 1 - p ) ~  + 3 E ~ 2 f l l - p ) ~  + 3 E ~ @ ~ ( l - p )  + E~34p~ (10) 

01 p.51 

which is a parametric curve in p. 
Finding either P or E corresponding toagiven E or P 

in curve (10) means finding a root (between 0 and 1) of a third 
degree polynomial. In the programs developed this is done 
using Cardano's method [31. 

The coordinates (PBm , E B ~ )  m=1, ..., 4, of tbe 
representation of the PE function of the s.g.d.c. of the ith 
interval, can all be expressed in terms of either: 

the parameters PH, P, Q=1, ..., Nu), px (k=l, ..., K), E' and T', 
or the predetermined constants TG~, P&, ai, bi, ci, di, e', P , 
or the optimization variables Hki(k=O,l ,..., K) and Eji 

Q=l,  ..., Nu), 
thus the PE curve (9,lO) of each interval and its derivatives can 
be employed in hydrothermal optimization. It should be 
pointed out that there is no need to have explicitely Ex' in the 
formulation as this energy will always be the balance: E'-H& 
Cj(Eji+HAii) and that the coincidence of power at point B4 
between that calculated through the PE curve and PA'+ ZiPi' 

- -  A. 

A. 

where Ex' be with expression (5 )  (see ~ i ~ .  3). can be imposed through an equality constraint as (13) 
considered later. Thus the PE curve (9,lO) self-adapts to 
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int.1 int.2 int . "i" int .Ni changes in Hki (k=O,l, ..., K) and Ej' Q=1, ..., Nu). 

VI. POWER AND GENERATION CONSTRAINTS OF THE S.G.D.C. 

The PE curve defined in the former Section for any interval 
"i" P=PEi (E) is instrumental in ensuring that thermal 
generation, stochastic hydro-generation and power output 
conform to the s.g.d.c. of their interval. 
As shown in fig. 4c), from the PE curve we can obtain the 

expression of the power generated by the j* unit in the ith 
interval as a function of thermal and stochastic hydro- 
generation: 

j-1 

(11) 
Through (1 1) we can enforce that no thermal unit generates 

beyond its power capability: 

The power level corresponding to total thermal generation 
plus stochastic hydro-generation (see fig. 5 )  must be: 

PA' thus behaves as the power of an energy limited thermal 
unit. In terms of the energies of the Nu hydro pseudo-units, and 
taking into acount (1) and (2) HA' is: 

w. HYDRO-CONSTRAINTS AND HYDRO-GENERATION 

Hoi and H,' (k=l, ..., K) of (14) are not directly optimized as 
they are intermediate variables. The hydro-variables really 
optimized are the multicommodity stored volumes and 
discharges. The multicommodity constraints and generation 
function that relate multicommodity hydro-generation to 
multicommodity stored volumes and discharges is fully 
elaboraM. on in 181. 

Let vdl and dnk' be the stored volume and discharge of the 
nth reservoir in the ith interval-of water corresponding to 
commodity "k", and let V n  and Dn be the maximum volume 
and the maximum discharge of the n* reservoir. In the sample 
replicated hydro-network in fig. Sa), considering that the ntl1 
reservoir is downstream of the (n-lrh reservoir, the balance 
equations for the n* reservoir in the i* interval would be: 
k k k k .  

Vnji- '  + C d(n-llji = C vnj' + C dnj' k=O,1, ..., K (15) 
j=O j=O j=O j=O 

and the bounds and mutual capacity constraints for stored 
volumes and discharges are respectively: 

Fig. 5 a) Replicated multicommodity water network 
b) Replicated generalized fuels' network 

A hydrogeneration function h(.) for a reservoir computes the 
generated power in terms of the initial and final volume and the 
discharge over a given interval. The function employed will 
give the cumulative generation up to commodity "k" in terms 
of initial and final volumes, and discharges up to commodity "k": 

k k k .  k 

j=O j=O j=O 
vnji-' , vnj' , &ji) (18) 

thus, 

If there are N, reservoirs, 
N, 

Hkl = Hnk' k=O,l, ..., K 
n= 1 

to be employed in (14) and for Hoi 

VIII. FUEL-CONSTRAINTS AND THERMAL GENERATION EFFICIENCY 

The sample replicated generalized fuel-network in fig. 5b) 
shows the fuel flows from contract sources to generation 
and stockpile in successive intervals. An efficiency and units 
transformation coefficient E,] has been introduced for the jth 
thermal unit and the l* fuel. Through this coefficient the fuel 
remainder Fjf in fuel units (e.g. tons of coal) at the end of the 
itll interval in unit "j" stockpile or tank, and the possible fuel 
suply fj{ over the ith interval can be related to its thermal 
generation E$ (in MWh) in the balance equations: 
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j=l, ..., Nu 

(21) 

The bounds and mutual capacity constraints for stored fuels 
i= 1 ,.... Ni 

Fjli-’ + fjf = Fjt + EjlEjt 

and energies generated are respectively: 

. -  
0 I Fjl’ I Fj 3 0 I Ejf I Ej 

i=1, ..., Ni 
j=l, ..., Nu 

i=1, ..., Ni (23) 

Nf Nf 
Fjl‘ 5 Fj , Ej’ = 

1=1 1= 1 
Ejf 5 Ej’ 

where F, is the stockpile or tank capacity at the jth substation 
and is the maximum energy that the j* unit can generate 
over the i* interval, whose length may be different from that 
of other intervals. 

The left hand side of the equality in (23) gives the total 
generation of the jth unit over the i* interval. 

Fuel supplies of the lth fuel for different units in the same 
or different intervals can be associated through simple network 
constraints as in the left side of fig. 5b), to a specific single 
contract with a global fuel limit, Take-or-pay contracts can he 
modeled placing lower limits f$>o to fuel supplies. The same 
fuel under a different contract (including spot contracts) is 
considered as a different fuel in the formulation presented. 

It is important to point out that although many 
multicommodity and generalized network flow concepts and 
terminology [5] have been used in the description of the hydro- 
network and the fuels’ network, no specialised network code 
can be applied to the solution of this problem, as a specialised 
code that could solve multicommodity generalized network 
flows with nonlinear side constrants (11,13,18,19) does not 
exist at this time. 

IX. OBJECTIVE FUNCTION 

where 7c,t are the prices of the supply to the j* unit of the l* 
fuel over the i* interval and 7cxi is the price of emergency 
imports E$ -defined by (5,6)- in the i* interval. 

The objective function (24) must be minimized subject to 
three groups of constraints: 

g.d.c. covering constrainp for each interval expressed through 
(12-14) employing the PE’ functions defined through (5-10) 

hydro-network multicommodity constraints (15-17) and 
hydrogeneration function (18-20), and 

fuels network multicommodity generalized constraints (21- 
23). 

x. COMPUTATIONAL RESULTS AND REAL CASE EXEMPLE 

The model put forward can be solved with a general purpose 
constrained nonlinear optimization package, and many tests 
have been carried out using the Minos package version 5.3 [61. 
Some relevant points about the programs developed are: 

Subsidiary programs for preparing the predetermined 
constants of PE curves from 1.d.c.s and thermal and hydro 
parameters must be used. These programs have also been 
developed. 

A quite long subsidiary program to generate data for Minos’ 
MPS file and the user’s FUNOBJ and FUNCON routines 
implementing the hydrothermal model described, had to be 
developed. The use of a sparse Jacobian (matrix of derivatives 
of nonlinear constraints) and correct user-supplied derivatives is 
essential to ensure convergence and that program size is within . 
reasonable limits 

Provided that correct analytical derivatives (no program 
generated finite differences) are employed, convergence to the 
solution was reasonable, despite the nonlinearities in the 
constraints and objective function. 

A sample of required computation times using the Minos 
5.3 package is given in Table I. The computer used is a SUN 
Sparc 10/41 workstation. Case a) of Table I corresponds to the 
solution represented in fig. 6, which is a real life exemple. Its 
reservoir system consists of 3 cascaded reservoirs, which will 
he referred to as “upper”, “middle” and “lower” reservoir, with 

The objective function to be minimized is the 
supplied plus the payments for emergency imports: 

of fuels characteristics detailed in Table 11. The thermal system has 11 
units described in Table I11 using five fuels whose prices (in 
Spanish currency: Pts) and availability are in Table IV. Units 
#!I and #7 can use either fuel-oil or ias. Emergency energy, 
dearer than any available fuel, can be employed with no limit. 

The time period is one year starting in May 1st (beginning (24) 

TABLE I. SAMPLE OF PROBLEMS SOLVED ANI) COMPUTATIONAL RESULTS. 

TABLE n. CHARACTERISTICS OF RESERVOIRS [ head = sb + sl (volume) + sq (volume)* + sc (volu~ne)~  ] 

s9 SC 
reserv. max. min. #disch. max. effici- #spill .  Sb 

volume volume dischrg ency (m/Hm3) (m/Hm6) (m/Hm9) 
(Hm3) (Hm3) 

upper 265 26 1 140 0.9 1 166.4 0 .407  -0.0108 0.14*10-5 

lower 38 25 1 400 0.9 1 28.2 0.436 -0.0416 0.5*10-4 
middle 119 21 2 100+60 0.9+0.8 1 71 .63  0.478 -0.016 0.25*10-’ 



1060 

Month 
PeakWW) 
Duration(h) 

TABLE III. CHARACTERISTICS OF THERMAL UNITS. 

May June July August Sept. Oct. Nov. Dec. Jan. Feb. March April 
1701 1666 1768 1390 1754 1910 2232 2571 2442 2319 2169 1897 
744 720 744 744 720 744 720 744 744 672 744 720 

of the dry season), and has been subdivided into 12 one month 
intervals. Table V gives the main characteristics (peak load, 
duration and energy) of the 1.d.c.s of each interval. Table VI 
shows the natural inflows considered, in expected value and 
standard deviation, for each reservoir over the total time period. 
These inflows, obtained from historical data in the way 
described in 181, are fed into the algorithm described as 
multicommodity inflows (as in fig. 2a)) with three probability 
blocks of p1=0.3 , p2=0.4 and p3=0.3; (e.g.: for the October 
inflow in the upper reservoir we have infl.o=8m3/s, 
infl.l=7m3/s, infl.2=5m3/s and infl.3=10m3/s). 

At the top of fig. 6 are the optimum trajectories of stored 
volume, discharge and generation for each reservoir and 
multicommodity water (four commodities as in the inflows are 
considered). The graphical output related to reservoir 
management is self-explanatory. It should only be pointed out 
that: 

Initial and final volumes are user-fixed and coincide 
The upper reservoir is the main responsible for the regulation 
There is a loose relation among the optimal policies of each 

multicommodity water (and that is why it is sensible to 
employ a multicommodity model for long-term hydro 
optimization) [8]. 

The bottom part of fig. 6 shows the s.g.d.c. of each interval 
with the slices corresponding the 11 thermal units and to 
stochastic hydrogeneration (shown with a pattern of bubbles). 

The graphical output of the s.g.d.c.'s requires some 
comments: 

Energy(GWh) 914.7 

TABLE Iv. FUELS EMPLOYED BY THERMAL UrnS. 
rice Maximum fuel 

1504.72 
Nuclear 980.0 

909.9 997.8 815.1 058.6 1067.4 1219.1 1434.2 1432.0 1170.6 1209.9 939.9 

Given the interval times (e.g.: 744 h for October and 720 h 
for November) thermal units' genemtion duration is always less 
(due to forced outage ram). 

The s.g.d.c. represented is truncated where emergency energy 
would start. At the top left of each s.g.d.c. the power reached 
by thermal units and stochastic hydrogeneration is indicated. 
This is not constant as there are fuel limitations, which 
preclude some thermal units in some intervals from generating 
at their rated capability, besides the stochastic hydrogeneration 
HA' changes at each interval, thus giving rise to different  PA^. 

At the top right of each s.g.d.c. the optimal emergency 
imports Ex', the optimum deterministic hydrogeneration Hol 
and the stochastic hydrogenemtion H& are written, 

Slices of part of HA' may appear none, one or many times 
after any thermal unit (e.g.: in April it appears over Th.2 and 
Th.6). 

The area of the slices is proportional to the generation of each 
unit (e.g.: in August the generations in GWh are: Th.1 388; 
Th.2 213;  HA^ 77; Th.6 58; Th.9 25; Th.10 7; Th.11 5 and 
HA11 2) 

Only Th.1 and Th.2 (both shared nuclear stations) have no 
limitations in their fuel supply and generate at their rated 
power. Thermal. units #6, #9, #10 and #11 have limits on their 
fuels but these are not active. Units #3, #4, #5, #7 and #8 have 
an active fuel limit and thus at some interval they may not 
generate at all (e.g.: #3, #4 and # 5 do not generate in June) or 
generate at less than their rated power (e.g.: #4 in December). 

XI. CONCLUSIONS 

A model for long-term hydro-thermal coordination based on the 
use of the PE curves to satisfy power and energy constraints 
has been presented. This model is based in the joint 
optimization of hydrogeneration and thermal unit generation 
linked through the covering of the l.d.c.'s of the intervals and 
on the differentiation of the role of the deterministic 

TABLE VI. EXPEC~ATION AND STANDARD DEVIATION OF THE PRoBABILUY 1 1 m;th 1 May 1 z e  1 :; 1 August I :;pt. 1 Oct. 1 In_. 
Upper ex ect. 125 64.25 45.75 17.95 12.5 
reserv. st.dev. 33.39 32.99 35.91 21.67 19.61 5.66 4.13 
Middle ex ect. 111.5 4.8.25 43.25 32.5 9.15 6.35 
reserv. st.dev. 43.33 17.54 17.80 10.31 8.27 2.74 2.28 
Lower e x  ect. 46.5 26.75 20.75 17.2 12.5 4.95 
reserv. I st.dev. 114.87 17.43 19.37 14.57 14.13 11.98 11.23 

ISTRIBUTIONS OF NATURAL WnOWS (di/sec). F. 1 Jan. 1 Feb. 1 March 1 
29.85 45.2 80.55 107 

2.89  24.40 29.64 34.16 25.38 
15.05 23.85 40.5 

1.65 11.29 14.75 18.86 16.98 
2.5 7.7 11.05 21.2 
0.83 5.53 6.90 8.79 8.27 
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Fig. 6 Graphical output of solution to problcn~ a)  showing optilllum hydrovariahles and therinal and stochastic 
hydro-generations in the s.g.d.c.s of the intervals 
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hydrogeneration and the stochastic one, with a procedure to 
include the stochastic hydrogeneration in the g.d.c., which has 
been introduced and implemented. A multicommodity network 
model has been employed to take into account in detail the 
reservoir system. 

The results obtained using the model put forward are 
consistent with the operating experience of hydrothermal 
systems and meet the expectations. The computational 
requirements are moderate. Many other extensions and 
refinements of the methodology proposed are possible and 
some are being pursued. 

w. GLOSSARY OF SYMBOLS 

parameters to estimate the emergency energy 

Bezier points (l=l, ..., 4) 
discharge of water Corresponding to commodity “1” 

parameters to estimate the emergency energy 

maximum discharge at reservoir “n” 

total energy of 1.d.c. in the i* interval 
energy generated by thermal unit “j” and 

emergency energy impom over the it” interval 
fuel “1” supplied to unit ‘3” over the i* interval 
fuel “1” remaining at the stockpile of unit “j” at 

generation duration curve 
hydroenergy of water commodity “k” generated 

over the i* interval, k=0,1, ..., K 
determinis tic hydroenergy and expected value 

corresponding to the ensemble of stochastic 
hydroenergies Hli, ..., H K ~ ,  over the ifll interval 

(superscript) indicates interval “3’ 
(subscript) indicates thermal unit ‘9’’ in merit order 
indicates water commodity, k 4 , I  ,..., K 
load duration curve 
(subscript) indicates one of the hydro-reservoirs 
number of fuels, of intervals and of thermal units 
minimum power of e.1.d.c. 
power-energy function 
base power of s.g.d.c. of interval “i” 
probability of the k* water commodity &=l, ..., K) 
maximum hydropower capability 
power of thermal unit “j” over the $11 interval 
rated power capability of unit “j“ 
power of stochastic hydrogeneration in interval “i” 
availability rate of the kh hydrogeneration 
smoothed generation dumtion curve 
total duration of l.d.c., duration of base power of 

s.g.d.c. and duration of emergency energy over 
the ith interval 

stored volume at reservoir “n” of water commodity 
“1” at the end of the ith interval 

maximum stored volume at reservoir “n” 
parameter of Bkzier curve 
efficiency in power generation of unit “j” for fuel 

import over the i* interval 

at reservoir ‘‘n” over the i* interval 

duration over the id1 interval 

the end of the ith interval 

‘‘I- 

zjli,  z x i  prices of supply of fuel ‘‘1” to unit ‘?** and of 
emergency energy over the ih interval 
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