ﬁ“ Annals of Operations Research 124, 35-48, 2003
“ © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Solving Difficult Multicommodity Problems with a
Specialized Interior-Point Algorithm

JORDI CASTRO jecastro@eio.upc.es
Department of Statistics and Operations Research, Universitat Politecnica de Catalunya, Pau Gargallo 5,
08028 Barcelona, Spain

Abstract. Due to recent advances in the development of linear programming solvers, some of the formerly
considered difficult multicommodity problems can today be solved in few minutes, even faster than with
specialized methods. However, for other kind of multicommodity instances, general linear solvers can still
be quite inefficient. In this paper we will give an overview of the current state-of-the-art in solving large-
scale multicommodity problems, comparing an specialized interior-point algorithm with CPLEX 6.5 in the
solution of difficult multicommodity problems of up to 1 million of variables and 300,000 constraints.
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1. Introduction

Multicommodity flows are regarded among some of the most difficult linear program-
ming problems. Until recently, general linear programming solvers, and even special-
ized methods, required large execution times for some of the largest multicommodity
instances. This was specially true for general interior-point linear programming codes,
which usually showed a very poor performance when applied to multicommodity in-
stances. This situation changed with the introduction of the specialized interior-point
multicommodity algorithm of Castro (2000a). This algorithm, when developed, was
shown to be more efficient than simplex-based alternative methods (i.e., PPRN (Castro
and Nabona, 1996) and CPLEX 4.0).

However, the progress made in the simplex implementations during the last years
changed the scene again. For instance, CPLEX 6.5 (ILOG CPLEX, 1999) can solve
large multicommodity problems one order of magnitude faster than its previous release
CPLEX 5.0 (Bixby et al., 2000). Therefore, it is not clear which tool — specialized
interior-point or general linear programming solvers — is currently more efficient for
multicommodity flows. The purpose of this paper is thus to compare the specialized
interior-point algorithm of Castro (2000a) with CPLEX 6.5, one of the most efficient
simplex-based implementations. As we will comment later, both codes can be consid-
ered as good representatives of the best currently available software for multicommodity
flows. In this sense, the paper will also provide an overview of the current state-of-the-art
in solving large-scale multicommodity problems.

Listing an extensive bibliography for multicommodity flows is beyond the scope
of the paper. (A description of the main solution strategies can be found in Ahuja,
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Magnanti, and Orlin (1993).) Instead, we will just focus on the recent developments
achieved in the field during the last decade. These can be grouped into four classes
of methods: simplex-based, decomposition, approximation and interior-point meth-
ods.

The simplex-based multicommodity codes rely on primal partitioning techniques
that exploit the special structure of the basis Ahuja, Magnanti, and Orlin (1993). Two
codes of this type have been developed/improved during the last years: PPRN (Castro
and Nabona, 1996), for problems with either linear or nonlinear objective functions, and
EMNET (McBride, 1998; Mamer and McBride, 2000) just for the linear case. PPRN and
EMNET can also deal with additional linear side constraints. Although both codes share
the same underlying theoretical principles, EMNET turns out to be more efficient than
PPRN. The improvement is due to a better tuning of pricing and an efficient heuristic for
obtaining an initial feasible point. From the computational results presented in McBride
(1998) in the solution of the PDS problems with EMNET and those obtained in this
paper with CPLEX 6.5 (see section 4), we can conclude that both codes have similar
performances. It is thus possible to use a highly efficient general linear programming
solver as a good replacement for current primal partitioning multicommodity codes.

The two main decomposition approaches applied in the previous years to mul-
ticommodity problems are based on Lagrangian relaxations. The first one relies on
bundle-methods (Frangioni and Gallo, 1999) while the second applies the analytic center
cutting plane method (ACCPM) (Goffin et al., 1996), both for the maximization of the
non-differentiable dual function. The algorithm of Frangioni and Gallo (1999) provides
excellent results for the Mnetgen instances, but this good behaviour is not observed in
general for the PDS ones (these problems are described in section 4). However, and
through an indirect comparison of the results of Frangioni and Gallo (1999) with those
of this paper, CPLEX 6.5 seems to provide similar performances to that of the bundle-
method-based algorithm. The excellent computational results of Goffin et al. (1996) are
difficult to evaluate, since they are obtained with an ad-hoc nonlinear multicommodity
generator, and no results are reported with either the standard Mnetgen or PDS instances.

Approximation algorithms for multicommodity flows are presented in Bienstock
(1999), Goldberg et al. (1998), and Grigoriadis and Khachiyan (1995), the first of them
seeming to be the most successful approach. These methods are able to provide fast
e-approximated solutions, where the € parameter is akin to the optimality tolerance.
The main drawback of these algorithms is that € is required to be about 0.01 in order
to be efficient. This means solutions that match the optimal objective function in the
first two significant figures, whereas both CPLEX 6.5 and the specialized interior-point
algorithm of Castro (2000a) achieve better precisions (full precision for CPLEX 6.5,
about 6 significant figures for the interior-point code).

The last line of research in multicommodity flows comes from the interior-point
field. One of the first attempts to apply an interior-point-based algorithm is described in
Schultz and Meyer (1991). However, the efficiency of that algorithm is not impressive if
compared to the currently available software. In Kamath, Karmarkar, and Ramakrishnan
(1993) a general interior-point code was applied to the solution of many multicommodity
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instances. That approach, however, did not exploit the structure of the multicommod-
ity problem. A generalization for multicommodity flows of the efficient algorithm for
single-commodity flows of Resende and Veiga (1993) was presented in Portugal et al.
(1997), without reporting any computational result. Finally, the specialized interior-
point multicommodity algorithm of Castro (2000a) has shown to be the most efficient
interior-point approach up to now. This is the algorithm to be compared with CPLEX 6.5
in this paper.

Some of the above methods were implemented and described in Chardaire and
Lisser (1999, 2002) for the case of non-oriented multicommodity flow problems (arcs
have no orientation). Among all the algorithms tried (primal partitioning, dual affine
scaling interior-point specialization, Dantzig—Wolfe decomposition and ACCPM), the
Danzig—Wolfe was shown to be the most efficient method. However, it is difficult to ex-
trapolate these results since non-standard and proprietary real multicommodity instances
from the telecommunications field were used. Since these instances are confidential and
hence not available for further testing, it is not possible to comment on the behaviour of
alternative solvers on these non-oriented problems.

The paper is organized as follows. Section 2 presents the node-arc formulation
of the multicommodity problem. Section 3 sketches out the specialized interior-point
algorithm of Castro (2000a). Finally section 4 shows the computational comparison
between CPLEX 6.5 and the multicommodity interior-point code.

2. The multicommodity network flow problem

Multicommodity network flow models provide optimization problems whose solution
gives the best routing of a set of k different types of flows (the commodities) through the
arcs of a network. This kind of problems arise naturally when modelling applications in,
e.g., routing, telecommunications networks and transportation problems.

We will deal with a fairly general formulation, where arcs are considered to have
a capacity for each commodity, and a mutual capacity for all the commodities. The
node-arc formulation of the problem is

k
min Z(ci)Txi 1)
i=1
N 0 ... 0 077[x! b!
0O N ... 0 0]] x? b2
s.t. R =10, 2
0 0 N 0 || x* bk
1 1 ... 1 1 x0 u
o<xi<u, i=1,...,k,
0<x'<u. 3)
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Vectors x' € R" are the flow arrays for each commodity, while x° € R" are the
slacks of the mutual capacity constraints. N € R™*" is the node-arc incidence matrix of
the underlying directed graph, while 1 denotes the n x n identity matrix. Clearly, m and n
are the number of nodes and arcs of the network, respectively. We shall assume that N is
a full row-rank matrix: this can always be guaranteed by removing any of the redundant
node balance constraints. ¢ € R" and u’ € R" are respectively the flow cost vector and
the individual capacity vector for commodity i, while u € R" is the vector of the mutual
capacities. Finally, b’ € R™ is the vector of supplies/demands for commodity i at the
nodes of the network.

The multicommodity flow problem is a linear program with m = km+n constraints
and 7 = (k + 1)n variables. In some real-world models, k can be very large (e.g.,
k = n®). For instance, in many telecommunication problems (Chardaire and Lisser,
1999) we have a commodity for the flow of data/voice to be sent between each each pair
of nodes of the network. Thus, the resulting linear program can be huge even for graphs
of moderate size.

3. The specialized interior-point algorithm

The specialized interior-point method considered in this paper was introduced in Castro
(2000a), and it turned out to be an efficient and promising tool for the solution of large
and difficult multicommodity problems. The purpose of this paper is not to describe that
algorithm; instead, we will only list its main characteristics. A comprehensive descrip-
tion can be found in Castro (2000a). For details about a parallel implementation of the
algorithm see (Castro, 2000b; Castro and Frangioni, 2001).

The main features of the algorithm are:

(1) It is based on a primal-dual infeasible path-following algorithm; hence it globally
converges superlinearly to the optimum (Wright, 1996).

(i1) At each interior-point iteration it solves the positive definite system
A®AT Ay = b, 4

where A € R is the constraints matrix of (2), ® € R™" is a diagonal matrix,
Ay € R™ is the direction for the dual variables, and b € R”. The solution of 4)1is
obtained through a scheme that combines direct factorizations and preconditioned
conjugate gradients (PCG) (see (Golub and Van Loan, 1996, chapter 10) for a de-
scription of PCQG). Indeed, exploiting the structure of A, see (2), and ® — which is
made of k + 1 n x n diagonal blocks related to the flows for the X commodities and
the slacks © = diag(®', ..., ®, @), and partitioning accordingly Ay and b, the
solution of (4) is reduced to

k k
(Z G G)iNT(NG)iNT)_lN@i) NG
i=0

i=1
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(iii)

(iv)

v)

(vi)

4.

4.1.

k
==Y N (NO'NT) i, (5)
i=1

(NO'NT)AY = (b' = NO'AY’), i=1,... k. (6)

The system (5) is solved through a PCG, while k Cholesky factorizations are per-
formed for (6). The matrix of system (5) let’s denote it by H is known as the Schur
complement of (4). See (Castro, 2000a) for more details.

An ad-hoc preconditioner for multicommodity flows is applied in the PCG. In Cas-
tro (2000a) it is proved that the inverse of the Schur complement is given by

H'= <§:(D—1Q)i>D‘l, (7

i=0

where

k k
D=0 ad Q=) O©N'(NO'NT)'NO".

i=0 i=1
A preconditioner for (5) is obtained by truncating (7) at the Ath term. The best
computational results are usually obtained with # = 0 or h = 1 (see (Castro,
2000a)).

Heuristic procedures for computing directions (as the Mehrotra’s predictor—
corrector (Mehrotra, 1992) or multiple centrality corrections schemes (Gondzio,
1996) are not applied, since they would mean solving at least twice the PCG system
at each interior-point iteration. The extensive set of tests performed with the Mehro-
tra’s predictor—corrector method showed that, although the number of interior-point
iterations was significantly reduced, the overall performance of the algorithm de-
creased (Castro, 2000a).

Inactive mutual capacity constraints are detected and removed during the optimiza-
tion process, reducing the dimension of the system to be solved by the PCG. The
heuristic implementing is based on Gondzio and Makowski (1995).

This algorithm was implemented in the IPM code. There also exists a parallel
version denoted as pIPM (Castro, 2000b; Castro and Frangioni, 2001). Both codes
can be freely obtained for research purposes from http: //www-eio.upc.es/
~jcastro, at the software entry.

Computational results

Test cases

Three sets of multicommodity instances were used for the computational compari-
son between CPLEX 6.5 and IPM. The first is made up of 24 problems obtained
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Table 1
Dimensions and optimal objective values for the Mnetgen problems.

Problem m n k n m f*

Me4a—a 64 524 4 2620 780 192400.1
Megy—g 64 532 8 4788 1044 394051.1
Mes—16 64 497 16 8449 1521 1071474.9
Mg4—32 64 509 32 16797 2557 2146944.1
Meg4—_64 64 511 64 33215 4607 4623138.5
Miz8—4 128 997 4 4985 1509 919643.2
Mi25-3 128 1089 8 9801 2113 1924133.9
Mi2s—16 128 1114 16 18938 3162 4145079.4
Mi28-32 128 1141 32 37653 5237 9785961.1
M28-_64 128 1171 64 76115 9363 19269824.2
Miog_128 128 1204 128 155316 17588 40143200.8
Mjs6—4 256 2023 4 10115 3047 5026132.3
Mjs6-—3 256 2165 8 19485 4213 9919483.2
Mjs6-—16 256 2308 16 39236 6404 20692883.7
Mjs6-32 256 2314 32 76362 10506 45671076.1
Mjs6—64 256 2320 64 150800 18704 92249381.1
Mjys6—128 256 2358 128 304182 35126 190137259.9
Mjs6-256 256 2204 256 566428 67740 397882591.3
Ms12_4 512 4077 4 20385 6125 21324851.2
Msio-3g 512 4373 8 39357 8469 46339269.9
Ms12-16 512 4620 16 78540 12812 96992237.2
Ms512-32 512 4646 32 153318 21030 192941834.8
Ms12—64 512 4768 64 309920 37536 412943158.7
Ms12_128 512 4786 128 617394 70322 828013599.8

with Ali and Kennington’s Mnetgen generator (Ali and Kennington, 1977). Ta-
ble 1 shows the dimensions and optimal solutions of the Mnetgen problems. The
parameters used to generate the instances can be found in Frangioni (1997), and
can be retrieved from http://www.di.unipi.it/di/groups/optimize/
Data/MMCF.html\#MNetGen. Columns “m”, “n”, and “k” show the number of
nodes, arcs, and commodities. Columns “7” and “m” give the number of variables and
constraints of the linear problem. Finally, column “ f*” gives the exact optimal objective
function value, as reported by CPLEX 6.5.

The second set consists of ten of the PDS (Patient Distribution System) problems
(Carolan et al., 1990). These problems arise from a logistic model for evacuating pa-
tients from a place of military conflict. Each instance depends on a parameter ¢ which
denotes the planning horizon under study (in number of days). The size of the network
increases with ¢, while the number of commodities is always 11. Problems obtained
with this generator are denoted as PDS¢, where ¢ is the number of days considered. The
PDS generator can be retrieved from http://www.di.unipi.it/di/groups/
optimize/Data/MMCF.html\#Pds. The dimensions and optimal objective func-
tions of these instances can be found in table 2. The meaning of the columns is the
same as in table 1. Until recently, these problems were considered very difficult, and
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Table 2
Dimensions and optimal objective values for the PDS problems.
Problem m n k n m f*
PDS1 126 372 11 4464 1758 29083930523.0
PDS10 1399 4792 11 57504 20181 26727094976.0
PDS20 2857 10858 11 130296 42285 23821658640.0
PDS30 4223 16148 11 193776 62601 21385445736.0
PDS40 5652 22059 11 264708 84231 18855198824.0
PDS50 7031 27668 11 332016 105009 16603525724.0
PDS60 8423 33388 11 400656 126041 14265904407.0
PDS70 9750 38396 11 460752 145646 12241162812.0
PDS80 10989 42472 11 509664 163351 11469077462.0
PDS90 12186 46161 11 553932 180207 11087561635.0
Table 3
Dimensions and optimal objective values for the Tripart and Mnetgen problems.
Problem m n k n m f*
Tripartl 192 2096 16 35632 5168 63478798.6
Tripart2 768 8432 16 143344 20720 387162296.6
Tripart3 1200 16380 20 343980 40380 269568993.0
Tripart4 1050 24815 35 893340 61565 17774676.0
Gridgenl 1025 3072 320 986112 331072 ~ 1622326915454 .62

2 Approximate solution obtained with CPLEX 6.5 after 35 days of execution.

could not be solved with a high degree of accuracy. As we shall see later, this has radi-
cally changed, and CPLEX 6.5 can solve the largest instances in less than an hour on a
midrange workstation.

The last set is made of the four Tripart problems and of the Gridgenl problem.
These instances were obtained with the Tripartite generator and with a variation for
multicommodity flows of the Gridgen generator. These generators were designed to
produce difficult multicommodity instances for approximation algorithms (Bienstock,
1999). The structure of these instances is similar to that of real-world telecommunica-
tions problems: they have one source and one destination node per commodity. These
can be considered very difficult multicommodity instances, as shown in section 4.2. This
is the only of the three sets that was not used in Castro (2000a). Table 3 shows the di-
mensions and optimal objective functions for these problems. For problem Gridgenl,
the f* column shows an approximate optimal solution provided by CPLEX 6.5 after 35
days of execution.

4.2. Results

Tables 4—6 show the results obtained with CPLEX 6.5 and IPM in the solution of the
three sets of problems. We also include the results obtained in Castro (2000a) with
CPLEX 4.0 for the Mnetgen and PDS instances. The results with this old version of
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Table 4
Results for the Mnetgen problems.
Problem CPLEX 4.0 CPLEX 6.5 IPM
CPU CPU T = T/ A+ 75 CPU

Me4—4 0.2 0.2 —6e—7 0.5
Mg4—g 0.4 0.4 4e—6 0.5
Mga—16 1.9 1.4 le—5 5.4
Mga—32 12.8 5.9 le—5 11.8
Mea—64 141.3 29.2 8e—6 91.3
Mi28—4 0.4 0.5 le—6 2.4
M128—8 1.3 1.5 —6e—7 7.6
Mji28—16 13.1 5.3 6e—6 24.8
Miz8-32 214.4 33.1 6e—6 154.8
M128—64 1646.8 2233 —3e—6 484.9
Mji28-—128 7880.1 377.4 9e—6 549.4
Mjs6—4 1.4 1.3 le—5 12.0
M256—8 12.4 4.0 —2e—6 40.0
Mjs56—16 157.9 21.3 6e—6 145.6
Msse_32 1663.9 142.4 —le—6 465.3
M256—64 9134.5 281.9 —le—6 1039.6
Mjs56—128 45990.1 747.0 —Te—6 3741.5
Majs6-256 181700.8 1419.3 —le—6 9186.7
Ms1o_4 7.2 34 —Te—5 99.1
Ms12-38 100.5 10.1 le—5 190.2
Ms1o-16 1456.5 323 —4e—6 1582.3
Ms12-32 8301.8 173.0 —Te—=7 2644.3
Ms1_64 55027.5 512.4 8e—8 7411.2
Ms12-128 280541.4 1217.1 —le—6 21262.6

CPLEX are useful to understand both the evolution of general simplex solvers for mul-
ticommodity problems, and that IPM is no longer the best tool for any class of mul-
ticommodity instances, but just for some of them. Columns “(f* — fip\)/(1 + f*)”
show the relative error of the approximate solution obtained with IPM. Columns “CPU”
show the execution times (in seconds) obtained for CPLEX 4.0, CPLEX 6.5 and IPM.
These times were obtained on a Sun Ultra2 2200 workstation with 200 MHz clock, 1 Gb
of main memory, ~ 68 Mflops Linpack, 14.7 SPEC{p95 and 7.8 SPECint95. For the
Mnetgen and PDS instances we used the network 4 dual solver of both CPLEX 4.0 and
CPLEX 6.5; this is the most efficient combination for most multicommodity problems.
For the Tripart and Gridgen problems both the network + dual and the barrier solvers of
CPLEX 6.5 were run, as shown in table 6. The two results that appear in this table for
Gridgenl and IPM correspond to executions with different optimality tolerances (10~*
and 107>, respectively).

The Mnetgen and PDS instances have been used for many years as a standard
test for multicommodity and linear programming solvers, and were regarded as difficult
problems. As shown by tables 4 and 5, in Castro (2000a) IPM was from one to two orders
of magnitude faster than CPLEX 4.0 for the largest instances, providing accurate enough
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Table 5
Results for the PDS problems.
Problem CPLEX 4.0 CPLEX 6.5 IPM
CPU CPU (fF* = fip)/ A+ ) CPU
PDS1 0.4 0.4 —2e—6 1.2
PDS10 59.5 27.5 —8e—6 88.0
PDS20 1830.4 208.0 —7e—5 386.3
PDS30 24904.9 336.2 le—6 1324.9
PDS40 95063.7 771.7 —le—4 1494.1
PDS50 85839.5 1035.4 —3e—5 4165.7
PDS60 3875717.3 1461.9 —2e—6 6761.3
PDS70 540606.3 1654.5 —2e—5 12209.9
PDS80 Not executed 2349.2 —3e—5 13004.9
PDS90 Not executed 2899.5 —le—5 21781.4
Table 6
Results for the Tripart and Gridgen problems.
Problem CPLEX 6.5 CPU IPM
Net + Dual Barrier " = fip)/ (L4 ) CPU

Tripartl 18.2 76.3 —5e—5 39.9
Tripart2 3263.8 672.8 —4e—5 248.9
Tripart3 13577.8 3046.8 —le—4 1584.2
Tripart4 89501.2 34371.9 —4e—5 4982.6
Gridgenl > 3.1e+6 —a 9e—5P 61807.8

9e—6P 126008.3

4 Not enough memory to run this problem.
b Relative length of the objective optimal interval provided by the primal and dual solutions.

solutions — the relative error in the objective was never greater than 1.0e-5. Moreover,
the efficiency of IPM increased with the dimension of the instances. This is clearly
shown by figures 1 and 2, that plot the ratio between the running times of CPLEX 4.0
and IPM in relation to the dimension of the Mnetgen and PDS problems, respectively.

However, the Mnetgen and PDS instances can no longer be considered as difficult
problems. Indeed, as shown by column “CPLEX 6.5 CPU” of tables 4 and 3, all the
Mnetgen and PDS instances could be solved by CPLEX 6.5 in less than an hour. This
means that, unlike its fourth release, CPLEX 6.5 is now outperforming IPM by one
order of magnitude. The ratios between the running times of IPM and CPLEX 6.5 for
the Mnetgen and PDS problems are plotted in figures 3 and 4. For the largest Mnetgen
and PDS instances CPLEX 6.5 was up to 20 and 10 times faster than IPM, respectively.
These results clearly show that the recent improvements to the simplex implementations
(Bixby et al., 2000) turned out state-of-the-art general linear solvers an efficient tool for
the solution of multicommodity problems.

Despite these advances in simplex-based implementations, some classes of multi-
commodity problems are still difficult for them. Among these we find the third set of



44

1000 T T
TIME CPLEX 4.0/TIME IPM ¢
°
100 | N4 4
5 o o °
= 4
# °
g °
s OF 3 ° 3
E °
<
L
1F o % & 4
0.1 . L
1000 le+6

e+d le+5
Number of variables (log scale)
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Figure 4. Ratio time between IPM and CPLEX 6.5 for the PDS problems.

Table 7
Memory requirements (in MB) of each solver for
the Tripart and Gridgen problems.

Problem CPLEX 6.5 IPM
Net + Dual Barrier

Tripartl 17 22 6

Tripart2 58 93 17

Tripart3 130 239 37

Tripart4 350 743 92

Gridgenl 553 > 1000 147

Tripart and Gridgen instances. For these problems the barrier algorithm of CPLEX 6.5
turned out to be more efficient than the network +4- dual solver for large enough instances,
as shown by table 6, while the specialized interior-point algorithm of IPM in its turn out-
performed the general one of CPLEX 6.5. For instance, IPM was about seven times
faster for problem Tripart4. Problem Gridgenl could not be solved with the barrier
CPLEX 6.5 option, due to memory limitations, and only an almost optimal solution was
computed with the network + dual solver after 35 days of execution. For Gridgenl,
IPM was 50.1 or 24.6 times faster than CPLEX 6.5, depending on the optimality toler-
ance we used in IPM. In fact, for this problem the objective function value provided by
CPLEX 6.5 after 26 days of execution — 1.62228 - 10'? — still was not inside the optimal
interval [ /3,1 fpima] Provided by IPM with the more accurate optimality tolerance —
[1.62232 - 102, 1.62234 - 10'?]. These results are specially relevant if we consider that
CPLEX 6.5 includes highly tuned sparse linear algebra routines (Bixby et al., 2000),
whereas IPM uses the standard library of Ng and Peyton (1993).

It is also worth to note the memory requirements of each solver for the Tripart
and Gridgen problems, which are reported in table 7. The specialized interior-point
algorithm needed by far much less memory than the network + dual CPLEX 6.5 option.
In fact, all the IPM runs could have been performed on a standard PC. From table 7
it can also be concluded that general interior-point algorithms require large amount of
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Table 8
Results for the Tripart and Gridgen problems with pIPM.
Problem )4 Tp Sp E
Tripartl 1 34.9 1.0 1.0
4 21.3 1.6 34
8 17.9 1.9 5.5
16 19.6 1.8 8.2
Tripart2 1 156.6 1.0 1.0
4 71.6 2.2 3.2
8 55.4 2.8 5.1
16 60.3 2.6 7.2
Tripart3 1 1140.7 1.0 1.0
4 408.4 2.8 35
10 300.5 3.8 6.9
20 304.8 3.7 10.2
Tripart4 1 3273.2 1.0 1.0
5 893.7 3.7 43
7 721.5 4.5 5.5
35 601.1 5.4 14.0
Gridgenl 1 37234.9 1.0 1.0
8 10533.2 3.5 7.7
16 7678.7 4.8 14.9
32 4426.5 8.4 27.7
64 3248.6 11.5 48.7

memory when applied to multicommodity problems. As noted in Castro (2000a), this is
due to the fill-in during the Cholesky factorization of the A AT matrix.

Problems Tripart and Gridgen can even be solved more efficiently using the par-
allel version of IPM, denoted as pIPM (Castro, 2000b; Castro and Frangioni, 2001).
Table 8 shows the results obtained running pIPM on a Silicon Graphics Origin2000
server, with 64 MIPS R10000 processors running at 250 Mhz, each of them credited of
24.5 SPECfp95 and 14.7 SPECint95. A total of 8 Gb of memory is distributed among
these processing elements. It is worth mentioning that the coarse-grained paralleliza-
tion scheme of pIPM could be ported to a less sophisticated parallel computing platform
without substantially affecting the quality of these results. Column “p” gives the num-
ber of processors used in the execution. “7,” denotes the execution (wall-clock) time.
Columns “S,” and “S_p” give respectively the observed and the ideal speedups. S, is
defined as T/ T),, while S_p depends on the fraction f of the time spent in the parallel
region in the sequential execution, and is computed as 1/(f/p + (1 — f)). Although
there is a gap between the observed speedups and their maximum values, the overall ex-
ecution time is reduced with the number of processors (except for problems Tripart 1, 2
and 3 with 16 processors). For instance, the difficult Gridgenl problem could be solved
in less than one hour with 64 processors.

From the above results it is clear that the behaviour of each algorithm mainly de-
pends on the problem structure rather than its size. As a rule of thumb, it could be stated
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that problems with sparse networks — leading to sparse N®' N7 matrices — can be effi-
ciently solved with interior-point methods. Simplex-based solvers should be chosen for
dense networks. However, it is difficult to stablish a definite decision rule, since other
problem characteristics, as the number of binding mutual capacity constraints, the num-
ber of degenerate steps performed by simplex-based algorithms, etc., play an important
role. The behaviour of the algorithms tested with problem Gridgen] clearly illustrates
this fact.

5. Conclusions

From the computational experience in the solution of a fairly large set of instances, it
can be stated that there seems not to be a definite algorithm for multicommodity flows.
Simplex-based solvers can outperform specialized interior-point codes for some partic-
ular problems, while for others the interior-point approach is a more effective tool. The
final recommendation to an end-user would be to check which solution method (simplex-
based, interior-point, decomposition methods) is the most appropriate for her/his partic-
ular type of problems. If the accuracy of the solution is not important, approximation
methods should also be considered. Combining all these strategies in a single solver, or
developing a decision rule to know in advance the best solver for each particular problem
is still part of the further work to be done in the field of multicommodity flows.
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