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Abstract 

In Electrical Engineering one of the most important problems to be 
solved for electrical networks is the load flow problem [6] [3]. Currently 
numerical solutions are provided by Newton's method, which involves 
recomputing the solution whenever the input data change. Given that 
this problem must be solved very often with different input data, the 
GrSbner basis can be an interesting approach since it can, in principle, 
provide a more algebraic solution of the input parameters and has to 
be solved completely only once, supplying formulas to compute single 
simulations. In this paper the basic ideas and a practical example 
are reported. Nevertheless, the required computations for practical 
network sizes are very complex and c~tnnot yet be solved with the 
present algorithms. 

1 G e n e r a l  Formulat ion .  

An electrical network can be represented by a graph. At each vertex k there 
is a global injected power (Pk, Qk) (real and reactive part), which is the 
difference between the injected power arising from the generators connected 
to this vertex and the total outgoing charges. Two other pairs of variables 
associated to the vertex k are the real and imaginary part of the voltage 
(ek, fk). They are the state-variables of the network. A line connecting two 
vertices k - l is characterized by constant values of its conductance and sus- 
ceptance (Ckl, skt) (complex inverse of the impedance) and the susceptance 
with earth bk~. It is of maximum interest in Electrical Engineering, to main- 
tain the state-variables in a narrow tolerance band around the b~ic  voltage 
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that is taken to be~l,0),;using~g~de~kgte ut~tk~. If~thg ~lt~ges go out of the 
band, the electrical engines coni~e~e~to it~,~ul~be.damaged or not work 
correctly. In order to maintain ~tlae'i~s~.te of ,fhe network, it is necessary to 
connect or disconnect generators. The objective of the load flow problem is 
to analyze the state of the voltages (ca, fa)  when the input charges vary, in 
order to control them. 

The network is described mathematically by a system of quadratic equa- 
tions relating the above quantities. Let us call Pat + jqat the complex power 
flowing from vertex k to vertex I. It depends only on the voltages at vertices 
k and l and on the parameters cat, skt, bat of line k - l, 

2c - c  0 - s  
1 - c  0 s 0 

Pal = ~(ek ,e l ,  I a , f l )  0 s 2c -c 

- s  0 - c  0 

(e,) 
el 

A 
/l 

1 
qat =  (ea, et, A ,  ft) 

o cl(e  ) 
- s  0 - - c  0 el  

0 - c  2s - b - s  fa 
c 0 - s  0 fl 

(i) 

The equations of the network in the so-called bus reference are obtained 
considering the power balance al~ the nodes: the total injected power at 
vertex k must be equal to the sum of power flowing from vertex k to all 
connected vertices. 

Pkt = Pa 
l=llnes at vertex k 

qkt = Qk 
l=lines at vertex k 

(2) 

A network with n vertices gives rise to a system of 2n quadratic equations 
in the 2n state-variables el, ffl, e2, f 2 , . . . ,  en, fn, having as second member 
the 2n input-parameters P1,Q1, P2, Q2, . . . ,  Pn, On. If we intend to solve 
this system for arbitrary given parameters (Pk, Qk) ,  k = 1 + n, it will not 
be compatible. The input powers cannot all be fixed• This is natural from 
a physical point of view, because total energy must be conserved and the 
amount of energy used by the lines in the network depends on the state- 
variables. But the load flow problem has a different formulation. 

- 2 -  



At the dispatching controlling the network, all quantities (ek,pk) and 
(Pk, Qk), k = 1 + n, are known at any instant, and they vary with time 
as functions of the charge demands connected to the nodes. Let us sup- 
pose that  the voltages are observed to be wrong at some vertex, decreasing 
or increasing too much. In this case, an order must be given to connect, 
disconnect or vary the power production at some generator. 

Before giving the order, numerical simulations of the effect of proposed 
corrections should be done. A simulation is performed in the following way. 
Suppose we try to correct the voltage at node 1 by acting on the injected 
power at another vertex (perhaps the same). So we set vertex 1 to the 
base voltage el = 1, fl  = 0 in equations (2) and leave free the equations of 
the vertex where we prevent modification of power production, say vertex 
n. The system to be solved now will consist of a set of 2(n - 1) quadratic 
equations in the state-variables e2, f~ , . . . ,  e,~, f,~ whose second members are 
the input-parameters P1, Q1 , . . . ,  P,~-I, Qn-1. This system is now expected 
to be compatible, as we have left the power injection at vertex n free in 
order to allow conservation of energy. The equations to be solved for the 

simulation will be 

Fic(1,0, e2, h , . . . , e , ~ , f n )  = Pk 

Gk(1,0, e2, f2,...,e,~,f,~) = Qk k = l + n - 1  

(3) 

For any solution of this system the values of P,~, Q,~ will be given by the 
two equations in (2) that have been already separated, 

Pn = Fn(1,O, e2, f2 , . . . , en ,  fn) 

Qn -- Gn(1,O, e2, f2 , . . . , en ,  fn) 
(4) 

This kind of system must be solved many times for different values of 
the inputs (Pk, Qk)'s. There are very efficient approaches for solving these 
equations using the Newton-Raphson method with sparsity techniques [7]. 
Out of the multiple solutions to the system of nonlinear equations only those 
close to ei = 1, fl = 0, for i = 2 + n are physically relevant, so this point is 
the usual starting point for iterative methods. 

Nevertheless, it would be of interest if more algebraic solutions could 
be found, avoiding recomputation of the whole numerical solution for each 
simple variation of an input. In principle, this can be done by computing 
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the GrSbner basis [1] in lex-order of the state-variables, taking the input 
variables P1,QI,..., Pn-1, Qn-1 as parameters. As we are dealing with a 
zero-dimensional ideal, the resulting basis will be in triangular form [4], 
and it will allow computation of all the state variables by back substitution. 
Substituting them in (4) provides an explicit formula for the new total power 
input needed at vertex n to produce the solution. 

In computing the GrSbner basis, the order of the variables is instrumen- 
tal, and the complexity of the triangularized basis depends on a good choice. 
A presumable good order choice can be obtained following a HamUtonian 
cycle in the network if it exists. Let us consider as an example a three vertex 
network. 

2 T h r e e  ver tex  network.  

Consider the triangle graph network in the picture 

North East 

2 ~  

South 

with line-constants given below 

line b c s 
1-2 0.05 12.0 110.0 
I-3 0.25 2.0 10.0 
2-3 0.05 4.0 20.0 

Line conductances 

- 4 -  



2.1 T h e  G r S b n e r  bas i s  

In order to compute the algebraic solution it is necessary to convert the line 
parameters c, s, b to rationals, as it is pointless to compute the Gr6bner basis 
in floating point arithmetic. We write equations (2) for vertex 1, 2 as a list 
of polynomials: 

F:= [P12+Pl3-P1,  q12+q13-Q1, p23+p21-P2, q2a+q21-Q2] (5) 

using (1) with ex = 1, fl = 0, and we reserve the equations of vertex 3, to 
evaluate P3 and Qa once the solution has been obtained. 

P3 = P31 h- P32 ~ P3(e2, f2, e3, f3), Q3 = q31 + q32 =- Q3(e2, Y2, e3, f3) (6) 

Now, we compute the GrSbner basis of F with respect to lex order with 
e2 > f2 > e3 > f3. We use Maple for this purpose. The result has the 
following form: 

AI~-i-B f a + C = O  
Uea-bV = 0  

Rf2+S=O 
M e 2 + N = 0  

(7) 

where A, B, C, U, V, R, S, M, N are polynomials with integer coefficients in 
the variables indicated below: 

functions depend on 
A, B, C P1, Qi, P2, Q2 
V,N P,,Q,,P2,Q2,A 
U, M P1, Q, 
s P,,Q,,f3 
R constant 

Base (7) is not only completely triangularized, as expected, but it has 
another very nice property: only one equation is quadratic in its main- 
variable, namely the first one, whereas the rest are linear. In this simple 
network the solutions can be completely expressed in explicit form using 
only one radical, namely 

D = ~ B  2 - 4AC 
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Nevertheles the coefficients of the polynomial functions are big. Let us give 
the computed expressions of the coefficient functions obtained with Maple: 

A :-- 664986038021686534400 - 858807722905600000P1 

-75081265175022O8000Q1 + 21470193072640000P~ 

+21470193072640000Q~ 

B 86927560372997968000P1- 24522567908093923200 Q1 

+40573425829794624000P2- 4637625469900800000Q2 

+636603379775444583840 - 92772073474496000P} 

-968364090079360000 Q1P~+ 216276151o965120O0Q~ 

+532180480o000000P1Q2 + 283314711680o0o0PiQ~ 

+25914723328000000Q1 Q2 - 559686416640000Q1P} 

+2833147116800oo0P~- 559686416640O00Q~ 

-46559139744000oooPiP2- 226721435715840000 Q1P2 

C Q m  

I m -142597737984000000 P2 Q2 + 2922116889920000 P2 Q~ 
+623775980093760000 P~ - 3853890280000000 P: P~ 

+227400581735519114o0 P1 - 4332028461568937840 Q1 

+ 19222978969681623200 P2 - 3950912494201440000 Q2 

+739139880o0000 P~ - 85132604136o6o4919 

- 14030739078400000 P2 Q1 P~ + 8149606400000000 Q~ 

+2259908548291533600 P~ - 1146174508352812000 Q1 P~ 

+ 136429144013221600 Q~ - 521086912224000000 P1 Q2 

+10726873974320000 P1 Q~ + 117547559980800000 Qi Q~ 

-24831978835552000 QI P~ + 4450318720000000 P1 Q1 Q2 

-2222393979760000 P13 - 1127394311904000 Q13 

+262981454o858240ooo P1 P2 - 632248804589024000 Qx P2 

-6490246899200000 P~ Q2 + 76737028160000 P~ Q~ 

-28897998400000 Q1 P~ - 28897998400000 P1 Q~ 

- 5 -  



-626288064000000Q~Q2 + 2823040160000Q~ 

u 

v 

12386511500 + 778687600P1- 159910000Q1 

-401200P~+ 4284787800P2- 12487396027 + 4300835800P~ 

+(139351726860 - 159910000P~- 778687600Q~)f3 

-349460360Q1 - 401200Q~ - 489760000 Q2 

/t  

S 

1238651150 + 77868760 P~ - 15991000 Q1 

-219980 Q~ P~ - 99700 - 795600 Q~ + 6968003 P~ 

+400000Q2 + 699900 Pff + 16000Q~ - 3499500 P2 

+(-104000 + 7278960 P~ - 832000 Qt) f3 

M :-- 

N := 

24773023000+ 1557375200P1- 319820000Q1 
1600000P~- 24721116491 - 2463598300P1+ 635470120Q1 
+89920000Q2 + 13678000Q1P1- 2799600Q~ - 786687600P2 
+(-25787323120+ 16640000P~+ 145579200Q1)f3 

(8) 

For given line-parameters and a choice of test and input vertices, we have 
to compute only one GrSbner basis. This has the following properties: 

. It provides explicit formulas for computing all output variables, namely 
f3, e3, f2, e2 and also P3, Q3 (by equation (6)) as functions of the input 
variables P1, Q1, P2, Q2. 

2. Formulas provided by the GrSbner basis can be introduced in a com- 
puter routine, allowing computation of individual simulations of the 
load-flow problem with explicit formulas. 

3. The analytic behavior of the solution can be studied, as we have ex- 
plicit formulas. In particular, we shall compute the condition numbers 
of the problem in Subsection 2.2. Taylor developments can also be ob- 
tained. 
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. 

. 

For our particular 3-vertex problem, we need only one radical to com- 
pute f3, the rest of voltages being linear in f3 with rational functions 
of the parameters as coefficients. 

For the 3-vertex network there exist also two and only two solutions 
of the equations for given input parameters, from which only one has 
a physical sense, as the resulting bus voltages are a long way outside 
their practical limits for the second solution. 

Let us give here, as an example, the two solutions obtained for given 
input parameters. 

I P1 Q1 P2 Q2 
- - 8 . 0  - 6 . 0  7.0 5.0 

f3 e3 f2 
• 06570788000 1.088343535 .05938500406 
-.5020041160 12.67980999 .01683041719 

e2 P3 Q3 
1.052823641 8.680698216 10.96656149 

-.0159103917 2365.827630i 19542.06558 

As we can see, only the first one has physical sense. 
Table 1 gives different simulations obtained by varying the inputs and 

using floating point arithmetic in the calculations. We only give there the 
physical interesting solution. The~umerical stability of the formulas will be 
studied in Subsection 2.3. 

2.2 P r o b l e m  c o n d i t i o n  n u m b e r s  

It is important to note that when computing the GrSbner basis, exact ra- 
tional arithmetic must be used to provide formulas to be introduced in a 
computer routine, whereas floating point arithmetic can be used to evaluate 
particular solutions. It is important to discuss numerical conditioning of the 
algorithm, and also the problem condition numbers. 

Let us begin with the study of the problem condition numbers. In ma- 
thematical terms, the problem is formulated by the function 

~ :  4 ) 6 

(P1,Q1,P~,Q2) ~ ~ ¢(e:,f2, e3, A,  P3, Q3) 

The problem condition numbers express how much relative variation 
of the outputs corresponds to little relative variation of the inputs. For 
physical reasons, we expect the problem to be well conditioned. Given that 
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Pl Q1 P: Q: A 
- -8.0 -6.0 7,0 5.0 .06570788000 

e2 
i'.052823641 

Pi Ol P2 Q2 f~ 
- -7.9 -6.0 7.0 5.0 .06220654880 

e2 
1.052770028 

P1 Q1 P2 02 f3 
- -8.1 -6.0 7.0 5.0 .06920934470 

e2 
1.052877248 

P1 QI P2 Q2 f3 
- -8.0 -5.9 7.0 5.0 .06627892690 

e2 
1.052265296 

P1 Q1 P2 Q2 f3 
- -8.0 -6.1 7.0 5.0 .06513669980 

e2 
1.053,,381991 

Pl Qx P2 Q2 A 
- -8.0 -6.0 7.1 5.0 .06277733675 

e2 
1.052834041 

P1 Q1 P2 Q2 f3 
- -8.0 -6 .0  6.9 5.0 .06863834975 

e2 
i.052813102 

Pl Q1 P2 Q2 13 
- -8.0 -6.0 7.0 5.1 .06618461400 

e2 
1.053089332 

es h 
1.088343535 .05938500406 

P3 Q3 
8.680698216 10.96656149 

e3 f2 
1.087548421 .05881452114 

P3 Q3 
8.214361773 10.84787972 

es f2 
1.089138714 .05995547412 

P3 Q3 
9.147439425 11.08852445 

e3 f2 
1.084690045 .05946042811 

P3 Q3 
8.693174606 lO.42516o61 

es [: 
1.091996952 .05930959277 

P3 Q3 
8.668621696 11.51142229 

e3 f2 
1.087969521 .05965708279 

Ps Qs 
8.278766299 10.91238591 

e3 f2 
1.088719051 .05911291981 

P3 Q3 
9.082935633 11.02326876 

e3 f2 
1.085491708 .05936453147 

P3 Q3 
8.694146524 10.52799820 

Table 1: Triangle network: set of input and output data 
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now we have explicit formulas for ¢, we can compute exact formulas for the 
derivatives and for the condition numbers of the problem. The condition 
number of Yi relative to xj is given by C(yi; zj) = [xj/yi[[Oyi/Oxj[, as we 
have 

I AY;I-< ~ l * A  0v~ A,j 
y-7 ~ v, ~ l I  ,TJ 

Computing the derivatives, from (7) we obtain 

fs = - B :t= D Of 3 f3 C Of 3 fa. OA _ T ' D  1 

2A ; O-A- A ~ DA; OB = TD'  OC 
Using chain derivation's rule, the above results and formulas (6), (7) and 

(8), we can compute ¢' 

Of 3 Of 30A Of 30B Of30C 
O P1 = O A OPt + O'B" 0-'~" + O--C O P1 
0e3 1 . ON ON 013 N OM 
OR, - ( - M ( ~ ÷  O-fatg-~ ) +  M 2 ~  )++ 
o/2 1 os  os  o/3 s oR 

( ~(gK__ + o/3 oP, ) + n ~ o 7  ) + OPi 
Oe2 1 0 V  .OV 01'3 V OU 

- ( - V ( ~  ~ + 0/3 oP1 ) + v-~ b-K ) + OP1 
og3 OP3 0e3 OP3 Of 2 OP3 0e2 OP3 Of 3 
OP, - O e~ O-~a + 0-~2 0-~1 + O e~ O~a + Of 30P, 

We are able to obtain exact computable expressions for all condition 
numbers. We do not give explicit formulas here as they are very complex. 
Instead, a computer routine evaluates them as a function of the input para- 
meters, giving the following results for a set of values: 

C Ia, e3, /2, e2, Pz, Q3; P1, Qi, P2, Q2)(-8.0,-6.o, 7.0,5.0) = 
4.262986746 .5215022756 3.121930607 .362794323 

.058448443 .2014135808 .024104358 .131049614 

.768512496 .0761986826 .320715742 .017234962 

.004073558 .0318200059 .000696100 .012621167 
4.299551464 .0848534371 3.242357840 .076618673 

.877743615 2.9715650300 .353888294 2.005070999 
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These values should be compared with incremental quotients obtained 
from Table 1. For example 

C(P3; P1)(-8.0, -6.0,  7.0, 5.0) = 4.299551464 

is compared to the following quotient extracted from Table 1 

8.0 8.2144361773- 9.147439425 I I 4.29920831 
I 8.680698216 - 7 . 9 -  (-8.1)  

The agreement is excellent. Observing the condition number matrix we 
see that the problem is very well conditioned, since the coefficients are small. 

2.3 N u m e r i c a l  c o n d i t i o n i n g  

Let us now discuss the numerical conditioning of the algorithm. From a 
numerical point of view it seems to be an ill-conditioned algorithm since 
the coefficients of the involved polynomials are very big. But this is only 
apparent, as we shall see. 

For the purpose of computing the condition numbers of the root the 
general formulas described in [5] will be used 

Applying them to the roots of the first equation (7) in order to compute 
f3, we obtain 

1 AI3 I ~ _< cj3 = (9) 

I Af~ I(CA + 5) + I Bf3 t(CB + 3) + I C I(Cc + 1) 
= 12Afs  2 + BI3I 1.006 

where CA, CB, Cc are the condition numbers for computing A, B, C as func- 
tions of the variables P1, Q1, P2, Q2. If we use rational arithmetic to compute 
A, B, C they are zero, but using floating point arithmetic these quantities 
can be evaluated following [5]. 

1 Z~A ~ i  ] termi(A)](2 deg(termi(A)) + 1)1.006 (10) 
~ I ~  -I -< CA = IAI 

Upon substitution in (9) we compute the condition number C f3. Using 
it, we can compute again the condition numbers for e3, f2, e2, P3, Q3. Results 
are given in Table 2. 
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P1 

(cf,) 
.06570788 

(145.4) 

= - 8 . 0  Q1 = - 6 . 0  P2 = 7.0 Q2 = 5.0 

e3 
(C~) 

1.0883435 
(223:0) 

A 
(cf,) 

.05938500 
(38.11) 

e2 
(c,,) 

1.0528236 
(35.77) 

P3 
(cp~) 

8.6806981 
(1670.) 

Q3 
(CQ3) 

10.966560 
(9444.) 

--.50200412 12.679810 .01683042-.01591039 2365.8276 19542.066 
(36.07) (44.62) (165.4) (2871.) (108.8) (105.6) 

Table 2: Algorithm condition numbers using f.p.a. 

The biggest condition number occurs for Q3, which is of the order 104, 
so that 4 digits can be lost. This is quite acceptable as condition numbers 
have been overestimated. 

3 Conc lus ions  

We can conclude that the GrSbner basis approach can provide interesting 
analytical results that cannot be obtained by current numerical methods. 
Practical general formulas depending on parameters can be obtained that 
allow the computation of particular solutions and condition numbers for the 
algorithm and the problem. Condition numbers are not very high. However, 
we are still far from being able to obtain results for networks of a practical 
size. With networks of a size greater than 3 we are not at present able to 
compute any GrSbner basis. Finding solutions for bigger networks remains 
an open problem. 
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