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Abstract

In Electrical Engineering one of the most important problems to be
solved for electrical networks is the load flow problem [6] [3]. Currently
numerical solutions are provided by Newton’s method, which involves
recomputing the solution whenever the input data change. Given that
this problem must be solved very often with different input data, the
Grdobner basis can be an interesting approach since it can, in principle,
provide a more algebraic solution of the input parameters and has to
be solved completely only once, supplying formulas to compute single
simulations. In this paper the basic ideas and a practical example
are reported. Nevertheless, the required computations for practical
network sizes are very complex and cannot yet be solved with the
present algorithms.

1 General Formulation.

An electrical network can be represented by a graph. At each vertex k there
is a global injected power (Py,Qy) (real and reactive part), which is the
difference between the injected power arising from the generators connected
to this vertex and the total outgoing charges. Two other pairs of variables
associated to the vertex k are the real and imaginary part of the voltage
(eks fx). They are the state-variables of the network. A line connecting two
vertices k — [ is characterized by constant values of its conductance and sus-
ceptance (cki, Sg/) (complex inverse of the impedance) and the susceptance
with earth by;. It is of maximum interest in Electrical Engineering, to main-
tain the state-variables in a narrow tolerance band around the basic voltage



that is taken to bey1,0),. usmg a,de ate ua% ghg vpltages go out of the
band, the electrical engines comfe uldi be:damaged or not work
correctly. In order to maintain ﬂle stﬁte of the network, it is necessary to
connect or disconnect generators. The obj jective of the load flow problem is
to analyze the state of the voltages (ex, fr) when the input charges vary, in
order to control them.

The network is described mathematically by a system of quadratic equa-
tions relating the above quantities. Let us call py; + jgr the complex power
flowing from vertex k to vertex [. It depends only on the voltages at vertices
k and [ and on the parameters cki, sk, b5 of line & — [,
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The equations of the network in the so-called bus reference are obtained
considering the power balance af the nodes: the total injected power at
vertex k must be equal to the sum of power flowing from vertex k¥ to all
connected vertices.

Y P = Py

I=lines at vertex k

g = Qk

I=lines at verter k

(2)

A network with n vertices gives rise to a system of 2n quadratic equations
in the 2n state-variables ey, f1,e2, f2,...,€n, fa, having as second member
the 2n input-parameters P;,Q;, P2, Q2,..., P, @Qn. If we intend to solve
this system for arbitrary given parameters (P, Qk), k¥ = 1 + n, it will not
be compatible. The input powers cannot all be fixed. This is natural from
a physical point of view, because total energy must be conserved and the
amount of energy used by the lines in the network depends on the state-
variables. But the load flow problem has a different formulation.



At the dispatching controlling the network, all quantities (ex,pr) and
(P¢,Qk), k = 1+ n, are known at any instant, and they vary with time
as functions of the charge demands connected to the nodes. Let us sup-
pose that the voltages are observed to be wrong at some vertex, decreasing
or increasing too much. In this case, an order must be given to connect,
disconnect or vary the power production at some generator.

Before giving the order, numerical simulations of the effect of proposed
corrections should be done. A simulation is performed in the following way.
Suppose we try to correct the voltage at node 1 by acting on the injected
power at another vertex (perhaps the same). So we set vertex 1 to the
base voltage e; = 1, f; = 0 in equations (2) and leave free the equations of
the vertex where we prevent modification of power production, say vertex
n. The system to be solved now will consist of a set of 2(n — 1) quadratic
equations in the state-variables ey, f2,. .., en, fn Whose second members are
the input-parameters Py, Q1,..., Pa-1,@n-1. This system is now expected
to be compatible, as we have left the power injection at vertex n free in
order to allow conservation of energy. The equations to be solved for the
simulation will be

Fk(110,62’f27'-',€n’fn) = P
Gk(l,o,eg,fz,...,en,fn) Qk k=1+n-1

(3)

For any solution of this system the values of P,, @, will be given by the
two equations in (2) that have been already separated,

Pn = Fn(lao’eQ,fQ’--',envfn)
Qﬂ- Gn(1707e'27f2""aen1fn)

(4)

This kind of system must be solved many times for different values of
the inputs ( Py, Qk)’s. There are very efficient approaches for solving these
equations using the Newton-Raphson method with sparsity techniques (7).
Out of the multiple solutions to the system of nonlinear equations only those
close to e; = 1, f; = 0, for i = 2 + n are physically relevant, so this point is
the usual starting point for iterative methods.

Nevertheless, it would be of interest if more algebraic solutions could
be found, avoiding recomputation of the whole numerical solution for each
simple variation of an input. In principle, this can be done by computing



the Grobner basis [1] in lex-order of the state-variables, taking the input
variables Py, Q1,..., Pp-1,@n-1 as parameters. As we are dealing with a
zero-dimensional ideal, the resulting basis will be in triangular form [4],
and it will allow computation of all the state variables by back substitution.
Substituting them in (4) provides an explicit formula for the new total power
input needed at vertex n to produce the solution.

In computing the Grébner basis, the order of the variables is instrumen-
tal, and the complexity of the triangularized basis depends on a good choice.
A presumable good order choice can be obtained following a Hamiltonian
cycle in the network if it exists. Let us consider as an example a three vertex
network.

2 Three vertex network.

Consider the triangle graph network in the picture

North East

South

with line-constants given below

line b ¢ s

1-2 || 0.05 | 12.0 | 110.0
1-3 1025 2.0 | 10.0
2-3 || 0.05] 4.0 | 20.0

Line conductances




2.1 The Grobner basis

In order to compute the algebraic solution it is necessary to convert the line
parameters c, 8, b to rationals, as it is pointless to compute the Grébner basis
in floating point arithmetic. We write equations (2) for vertex 1,2 as a list
of polynomials:

F:= [pi2+pia—P1, q2+q3—Q1, past+pa—P qaa+ga—Qq) (5)

using (1) with e; = 1, f; = 0, and we reserve the equations of vertex 3, to
evaluate P; and @3 once the solution has been obtained.

P3 = pay + p3z = Ps(es, fa, €3, f3), Qs = qa1 + g32 = Qalez, f2, €3, f3) (6)

Now, we compute the Grébner basis of F' with respect to lex order with
ez > f, > ez > fz. We use Maple for this purpose. The result has the
following form:

Af;+Bf3+C=0

Ues+V =0
Rfa+5=0
M62+N=0

(7)
where A,B,C,U,V,R,S, M, N are polynomials with integer coefficients in
the variables indicated below:

functions depend on
A)B)C PlanaP29Q2

VvN PlaQ11P27Q2,f3
UM Py,Q

S P,Qy, f3

R constant

Base (7) is not only completely triangularized, as expected, but it has
another very nice property: only one equation is quadratic in its main-
variable, namely the first one, whereas the rest are linear. In this simple
network the solutions can be completely expressed in explicit form using
only one radical, namely

D =+/B?-4AC



Nevertheles the coefficients of the polynomial functions are big. Let us give
the computed expressions of the coefficient functions obtained with Maple:

A := 664986038021686534400 — 858807722905600000 P,
—7508126517502208000 Q; + 21470193072640000 P}
+21470193072640000 Q2

B := 86927560372997968000 P; — 24522567908093923200 Q;
+40573425829794624000 P, — 4637625469900800000 Q.
+636603379775444583840 — 92772073474496000 P?
—968364090079360000 Q, P; + 216276151096512000 Q2
+5321804800000000 P; Q, + 2833147116800000 Py Q?
+25914723328000000 Q; Q, — 559686416640000 Q, P}
+2833147116800000 P} — 559686416640000 Q3
—46559139744000000 P; P; — 226721435715840000 Q, P;

C := -142597737984000000 P; Q2 + 2922116889920000 P, Q?
+623775980093760000 PZ — 3853890280000000 P, P?
+22740058173551911400 P, — 4332028461568937840 Q,
+19222978969681623200 P; — 3950912494201440000 Q,
+73913988000000 P} — 851326041360604919
—14030739078400000 P; Q, P, + 8149606400000000 Q3
+2259908548291533600 P? — 1146174508352812000 Q; P,
+136429144013221600 Q% — 521086912224000000 P, Q-
+10726873974320000 P, Q3 + 117547559980800000 Q; Q-
—24831978835552000 @, P? + 4450318720000000 P, Q; Q
—2222393979760000 P — 1127394311904000 Q3
+2629814540858240000 P; P, — 632248804589024000 Q; P,
—6490246899200000 P Q, + 76737028160000 P Q3
—28897998400000 @, P{ — 28897998400000 P; Q3



—626288064000000 Q3 Q2 + 2823040160000 Q7

U := 12386511500 + 778687600 P, — 159910000 Q,

V = —401200 P? + 4284787800 P, — 12487396027 + 4300835800 P;
+(139351726860 — 159910000 P; — 778687600 Q1) f3
~349460360 Q; — 401200 Q2 — 489760000 Q;

R := 1238651150+ 77868760 P, — 15991000 Q,

§ = —219980Q; P — 99700 — 795600 Q; + 6968003 P,
4400000 Q; + 699900 P? + 16000 Q2 — 3499500 P,
+(~104000 + 7278960 P, — 832000 Q) f3

M = 24773023000 + 1557375200 P, — 319820000 Q,

N := 1600000 P? - 24721116491 — 2463598300 P + 635470120 Q;
+89920000 2 + 13678000 Q1 P, — 2799600 Q? — 786687600 P,
+(~25787323120 + 16640000 P, + 145579200 Q1) f3

(8)

For given line-parameters and a choice of test and input vertices, we have
to compute only one Grébner basis. This has the following properties:

1. It provides explicit formulas for computing all output variables, namely
fa, €3, f2, €2 and also Ps, Q3 (by equation (6)) as functions of the input
variables Py, @, P2, Q2.

2. Formulas provided by the Grobner basis can be introduced in a com-
puter routine, allowing computation of individual simulations of the
load-flow problem with explicit formulas.

3. The analytic behavior of the solution can be studied, as we have ex-
plicit formulas. In particular, we shall compute the condition numbers
of the problem in Subsection 2.2. Taylor developments can also be ob-
tained.



4. For our particular 3-vertex problem, we need only one radical to com-
pute fs, the rest of voltages being linear in f3 with rational functions
of the parameters as coefficients.

5. For the 3-vertex network there exist also two and only two solutions
of the equations for given input parameters, from which only one has
a physical sense, as the resulting bus voltages are a long way outside
their practical limits for the second solution.

Let us give here, as an example, the two solutions obtained for given
input parameters.

P | Q1| P} Q f3 €3 fa
--8.01-60|7.0] 5.0} .06570788000 | 1.088343535 | .05938500406
-.5020041160 | 12.67980999 | .01683041719
€ Py Q3
1.052823641 | 8.680698216 | 10.96656149
-.0159103917 | 2365.827630 | 19542.06558

As we can see, only the first one has physical sense.

Table 1 gives different simulations obtained by varying the inputs and
using floating point arithmetic in the calculations. We only give there the
physical interesting solution. The pumerical stability of the formulas will be
studied in Subsection 2.3.

2.2 Problem condition numbers

It is important to note that when computing the Grobner basis, exact ra-
tional arithmetic must be used to provide formulas to be introduced in a
computer routine, whereas floating point arithmetic can be used to evaluate
particular solutions. It is important to discuss numerical conditioning of the
algorithm, and also the problem condition numbers.

Let us begin with the study of the problem condition numbers. In ma-
thematical terms, the problem is formulated by the function

¢: 4 —_ 6
(PI’QI,P%Q?) — ¢(e2’f2ae3,f3>P3aQ3)

The problem condition numbers express how much relative variation
of the outputs corresponds to little relative variation of the inputs. For
physical reasons, we expect the problem to be well conditioned. Given that



P Q1| P Q2 fa €3 fa
--8.01-6.0) 7.0 5.0 || .06570788000 | 1.088343535 | .05938500406
€2 Py Qs
1.052823641 | 8.680698216 | 10.96656149
Py | P2 | Q2 fs €3 fa
--791-6.0] 7.0 5.0 .06220654880 | 1.087548421 | .05881452114
€ Py Qs
1.052770028 | 8.214361773 | 10.847R7972
P 1@y | P Qq f3 €3 fa
--81[-60]7.0} 5.0 .06920934470 | 1.089138714 | .05995547412
€y P Qs
1.052877248 | 9.147439425 | 11.08852445
P Q1| P Qe f3 €3 fa
--80|-59 (7.0 5.0 .06627892690 | 1.084690045 | .05946042811
€2 Py Q3
1.052265296 | 8.693174606 | 10.42516061
P | Q| P Q2 f3 e3 fa
--801-6.1]7.0] 5.0 .06513669980 | 1.091996952 | .05930959277
€2 Py Q3
1.053381991 | 8.668621696 | 11.51142229
P G| P} Q f3 €3 fa
--801-60147.1]5.0] .06277733675 { 1.087969521 | .05965708279
€9 P3 Q3
1.052834041 | 8.278766299 | 10.91238591
Py Q1| P | Q2 f3 €3 fa
--801|-6.0]6.9] 5.0 .06863834975 | 1.088719051 | .05911291981
€2 Py Q3
1.052813102 | 9.082935633 | 11.02326876
h || P @ fs €3 fa
--801]-60|7.0]5.1] .06618461400 | 1.085491708 | .05936453147
€ Py Q3
1.053089332 | 8.694146524 | 10.52799820

Table 1: Triangle network: set of input and output data




now we have explicit formulas for ¢, we can compute exact formulas for the
derivatives and for the condition numbers of the problem. The condition
number of y; relative to z; is given by C(yi; ;) = |z,/vi||0yi/0z;|, as we
have

Ay; z; Oy Am
y|<2|yja;'j] ’l

Computing the derivatives, from (7) we obtain

f3=—B:i:D' 0fs _ é:F_C'__ 0fs :F-fg‘ 0f3 ;_1_
24 8A - AT DA 8B D’ aCc D
Using chain derivation’s rule, the above results and formulas (6), (7) and
(8), we can compute ¢’

8fs _ 0fy0A  0/y0B 0 0C
P 0A BPI 0BoP,  9C 0P

363 _ e ON BN 6f3 N oM
ap, = ( tanap) T aEep) t
of, _ 1 as 35 8fs. S OR
a5, - “®ap tanap) t map)t
662 _ _I;QY_ -6V6f3 |4 3U
o, = CvGE tanen) T rEsn) T

8P3 _ 3P3 363 3P3 3f2 3P3 062 3P3 0f3
6P1 - 662 8P1 0f2 8P1 363 8P1 8f3 8P1

We are able to obtain exact computable expressions for all condition
numbers. We do not give explicit formulas here as they are very complex.
Instead, a computer routine evaluates them as a function of the input para-
meters, giving the following results for a set of values:

C(f3, €3, f2, €2, P3, Q3; Pla Ql, P2’ Q2)(_8-Oa "6'0» 7'07 5'0) =
4.262986746 .5215022756 3.121930607 .362794323
058448443 .2014135808 .024104358 .131049614
768512496 .0761986826 .320715742 .017234962
.004073558 .0318200059 .000696100 .012621167
4.299551464 .0848534371 3.242357840 .076618673
877743615 2.9715650300 .353888294 2.005070999

-10-



These values should be compared with incremental quotients obtained
from Table 1. For example

C(Ps; P)(-8.0,-6.0,7.0,5.0) = 4.299551464

is compared to the following quotient extracted from Table 1

|80 82144361773 - 9.147430425
8.680698216 —7.9-(-8.1)

| = 4.29920831

The agreement is excellent. Observing the condition number matrix we
see that the problem is very well conditioned, since the coefficients are small.

2.3 Numerical conditioning

Let us now discuss the numerical conditioning of the algorithm. From a
numerical point of view it seems to be an ill-conditioned algorithm since
the coefficients of the involved polynomials are very big. But this is only
apparent, as we shall see,

For the purpose of computing the condition numbers of the root the
general formulas described in [5] will be used

Applying them to the roots of the first equation (7) in order to compute
f3, we obtain

=1 Cy = (9)

_1AffI(Ca+5)+|Bfs1(CB+3)+|C|(Cc +1)
| 2Af2 + Bfs |

where C4,Cpg,Cc are the condition numbers for computing A, B, C as func-
tions of the variables Py, @1, P2, @2. If we use rational arithmetic to compute
A, B, C they are zero, but using floating point arithmetic these quantities
can be evaluated following [5].

%'%é' <Cy= 2| term;(A) |(2| ielg(tefmi(/l)) +1)

Upon substitution in (9) we compute the condition number Cy,. Using
it, we can compute again the condition numbers for e3, f3, ez, Ps, Q3. Results
are given in Table 2.

1.006

1.006  (10)

S11-



P1 = -8.0 Ql = —-6.0 P2 =70 Q2 =5.0

f3 €3 f2 € Ps Qs
(Ct,) (Ces) (C.f2 ) (Cez ) (Ch) (CQS)

106570788 | 1.0883435 | 05938500 | 1.0528236 | 8.6806981 | 10.966560
(145.4) (223.0) | (38.11) | (35.77) | (1670.) | (9444.)

--.50200412 | 12.679810 | .01683042 | -.01591039 | 2365.8276 | 19542.066
(36.07) (44.62) | (165.4) | (2871.) | (108.8) | (105.6)

Table 2: Algorithm condition numbers using f.p.a.

The biggest condition number occurs for @3, which is of the order 104,
so that 4 digits can be lost. This is quite acceptable as condition numbers
have been overestimated.

3 Conclusions

We can conclude that the Grébner basis approach can provide interesting
analytical results that cannot be obtained by current numerical methods.
Practical general formulas depending on parameters can be obtained that
allow the computation of particular solutions and condition numbers for the
algorithm and the problem. Condition numbers are not very high. However,
we are still far from being able to obtain results for networks of a practical
size. With networks of a size greater than 3 we are not at present able to
compute any Grobner basis. Finding solutions for bigger networks remains
an open problem.
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