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[...] I salute the efforts and agreements being
made (in favor of sustainable development)
[...] But we must realize that the water cri-
sis and the aggression to the environment is
not the cause. The cause is the model of civ-
ilization that we have created. And the thing
we have to re-examine is our way of life [...]
Development cannot go against happiness. It
has to work in favor of human happiness, of
love on Earth, human relationships, caring for
children, having friends, having the basics.
Precisely because this is the most precious
treasure we have: happiness. When we fight
for the environment, we must remember that
the first element of the environment is called
human happiness. a

aSpeech given by the current President of Uruguay, José Mu-
jica for the ”RIO+20 United Nation Conference on Sustainable
Development” held in Rio de Janeiro, Brazil, on June 20-22,
2012.

gn
om

.u
pc

.e
du

http://www.youtube.com/watch?v=oRx5_ZVlrLI&feature=player_embedded
http://www.youtube.com/watch?v=oRx5_ZVlrLI&feature=player_embedded
http://www.youtube.com/watch?v=oRx5_ZVlrLI&feature=player_embedded
http://www.youtube.com/watch?v=oRx5_ZVlrLI&feature=player_embedded


Abstract

Keywords: CEaR · CVaR · Electricity market · Emission allowances · Emissions Trading Scheme ·
Optimal bid · Stochastic Programming · Risk

There are many factors that influence the day-ahead market bidding strategies of a generation com-
pany (GenCo) in the current energy market framework. Environmental policy issues have become
more and more important for fossil-fuelled power plants and they have to be considered in their man-
agement, giving rise to emission limitations. This work allows to investigate the influence of both
the allowances and emission reduction plan, and the incorporation of the derivatives medium-term
commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two
different technologies have been considered: the coal thermal units, high-emission technology, and
the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market and
the Spanish National Emissions and Allocation Plans are the framework to deal with the environ-
mental issues in the day-ahead market bidding strategies. To address emission limitations, some of
the standard risk management methodologies developed for financial markets, such as Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR), have been extended. This study offers to electricity
generation utilities a mathematical model to determinate the individual optimal generation bid to the
wholesale electricity market, for each one of their generation units that maximizes the long-run prof-
its of the utility abiding by the Iberian Electricity Market rules, the environmental restrictions set by
the EU Emission Trading Scheme, as well as the restrictions set by the Spanish National Emissions
Reduction Plan. The economic implications for a GenCo of including the environmental restrictions
of these National Plans are analyzed and the most remarkable results will be presented.
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Chapter 1
Introduction

Due to the constantly increasing pollution of earth’s atmosphere, in recent years emission
control has become a matter of paramount importance. Nowadays world energy systems
are highly dependent on fossil fuels (such as coal, oil and gas formed from the organic
remains of prehistoric plants and animals). Fossil fuels share in world energy production
is more than 85% and in electricity generation more than 60% [1]. Although they provide
a reliable and affordable source of energy, the use of fossil-fuelled power plants harm
the global ecosystem by emitting into the atmosphere noxious gases and toxic substances,
causing the greenhouse effect, which is thought to be responsible for climate change.

One of the major international instruments to address this problem is the Kyoto Protocol,
which seeks ways to stabilize the greenhouse concentration in the atmosphere. The Kyoto
Protocol provides a framework for combating climate change: sets legally binding limits
on greenhouse gas emissions and envisages novel market-based mechanisms for achieving
cost-effective emission reduction. The European Community, abiding with the Kyoto Pro-
tocol, was committed to reduce the aggregated emissions of Greenhouse Gasses by 8 %,
compared to 1990 levels, in the period 2008-2012, with different targets set among Mem-
ber States [2]. The European Union (EU) directive for greenhouse gas emission allowance
trading (2003/87/CE) [3] establishes that each member has to elaborate the National Allo-
cation Plan (NAP) to determine the total quantity of carbon dioxide (CO2) emissions that
Member States grant to their companies, which can then be sold or bought by the compa-
nies themselves. Emissions trading, as set out in Article 17 of the Kyoto Protocol, allows
countries that have emission units to spare - emissions permitted but not ”used” - to sell
this excess capacity to countries that are over their targets.

The EU Emission Trading Scheme [3] (EU ETS) is a cornerstone in the fight against cli-
mate change and the first international trading system for CO2 emissions in the world. The
aim of the EU ETS is to help EU Member States achieve compliance with their commit-
ments under the Kyoto Protocol. Emissions trading does not imply new environmental
targets, but allows for cheaper compliance with existing targets under the Kyoto Protocol.

Generation companies are subject to other environmental limitations besides the aforemen-
tioned CO2 emission allowances. The EU also sets limits for emissions of pollutants from
large combustion plants (Directive 2001/80/EC [4]). This Directive applies to combus-
tion plants (technical apparatus in which fuels are oxidized in order to use the heat thus
generated) with a rated thermal input equal to or greater than 50 MW, irrespective of the
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6 1. INTRODUCTION

type of fuel used (solid, liquid or gaseous). Its purpose is to limit the amount of sulphur
dioxide (SO2), nitrogen oxides (NOx) and dust emitted form large combustion plants each
year. Following this commitments, the Spanish public administration launched in 2004 the
Spanish National Emissions Reduction Plan (NERP, Real Decreto 430/2004 [2]).

The impact of both the National Allocation and the Emissions Plans on the power industry
appears to be very significant and whether these new restrictions are an opportunity or a
threat for the power industry depends on several factors, especially the strategies set by
power companies to integrate these new restrictions in their energy’s market bid strategy.
In this regard, NAP and NERP has to be necessarily considered in the elaboration of the
generation units optimal sale bid to the wholesale electricity market.

This MSc thesis develops several topics related with the research project DPI2008-02153,
Short- and Medium-Term Multimarket Optimal Electricity Generation Planning with Risk
and Environmental Constraints1 of the Spanish Ministry of Science and Innovation. The
main objective of this project is to study and develop stochastic optimization models and
algorithms that help electrical utilities to optimize the physical and financial electricity
transactions decisions in a multimarket context, taken into account hedging and environ-
mental constraints.

1. Objectives and Contribution of the Thesis.

The scientific aim of this thesis is to investigate the impact of NAP and NERP in the
optimal operation of a generation company (GenCo) that operates in the day-ahead Iberian
Electricity Market. This aim is met through accomplishing the following two specific
objectives:

• Regarding the NAP, the first purpose of this thesis is to find the generation schedul-
ing and sales bid of each one of the generators that maximize the expected value of
the net profit of a Genco including the incomes/costs of the CO2 allowances in the
emissions’ rights market.

• Regarding the NERP, this thesis aim to assess how emission limits may influence the
generation scheduling and profits. The motivation for this second objective has been
derived from the efforts to reduce negative trends in climate change.

The tool to achieve this two objectives is the stochastic programming model for the op-
timal generation bid in electricity markets developed in [5] . This model allowed to find
the optimal generation bid to the electricity market for a set of thermal and combined
cycle generation units, but without any environmental consideration. In order to extend
this model with the environmental issues of the NERP and NAP regulation, the following
methodology was adopted:

• Emission-bounded model: a first model was developed where amount of the NERP
emission limits were introduced as a set of emission bounding constraints to the
SO2 and NOx released by the generation units. Also, in this model, the NAP reg-
ulation was considered as a new financial term in the profit function. This is the

1gnom.upc.edu/projects/energy/dpi2008-02153gn
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1. OBJECTIVES AND CONTRIBUTION OF THE THESIS. 7

model described in Chapter 3 of this thesis and it has been published in [6].

• Risk-constrained model: secondly, the precedent emission bounded model was im-
proved through the explicit consideration of both the financial risk of the profit func-
tion as well as the risk of the NERP emissions limit violation, giving rise to the
risk-constrained model presented in Chapter 4 of this thesis.

The specific contribution of this thesis to each one of the two precedent models is:

• Regarding the emission-bounded model [6], the reformulation of the unit commit-
ment constraints of the CC units (Section 4.4. and 4.5 of Chapter 3). This reformula-
tion was yet introduced in [5] for the case of the thermal units but it has been extended
in this thesis to the case of the Combined Cycle units, which are much more difficult
to formulate than the classical thermal generation units. It is known that this formu-
lation improves the computational performance of the unit commitment problems [7].

• Regarding the risk-constrained model, the incorporation to the model of:

– The NERP emission limits through a new measure of risk called Conditional
Emission-at-Risk (CEaR) and

– Risk-aversion constraints to limit the financial risk of the market through a clas-
sical CVaR formulation.

• The computational implementation and solution of the precedent models for a set of
real-case electricity market problems.

• The analysis of the results for both the emission-bounded and risk-constrained mod-
els.

Besides the scientific objectives and contributions of this thesis, there is also several per-
sonal reasons that motivated the author to undertake this project:

• To understand the organization and operations of electricity and CO2 rights markets
and their mathematical modelization as stochastic programming problems.

• To explore several very important topic related to the inclusion of environmental re-
strictions into the stochastic optimal generation bid models, in order to understand
how to best accommodate and environmental friendly compromise of the electrical
utilities with the economical objectives of the electricity industry.

• To understand the environmental issues related with the electricity generation and
their mathematical modelization within stochastic programming problems.

• To understand the basis of the risk analysis methodology based on VaR and CVaR
measurements and their application to real energy market problems.

• To get introduced in the research methodology supporting the elaboration of scientific
publications.gn
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8 1. INTRODUCTION

• To gain experience in the numerical solution of real-life large scale stochastic op-
timization problems (with real data from the Iberian Electricity Market) and in the
analysis of its solutions.

2. Structure of the thesis

The thesis is organized as follows:

• In Chapter 2 the Iberian Electricity Market, and the allowances and emission reduc-
tion plan are described. Their special characteristics, which are needed as background
for the comprehension of the further analysis, are highlighted.

• Chapter 3 presents a detailed problem description, as well as the stochastic program-
ming model proposed to cope with the optimal generation bid to the next day auctions
of the Iberian Electricity Market (IEM) day-ahead market (DAM) taking into account,
according to both National Allocation and Emissions Plans, the CO2 allowances and
the SO2 and NOx emission constraints. This is the called emission-bounded model.

• The model developed in the precedent chapter satisfies the emission limits by im-
posing explicitly the NERP limits to each one of the scenarios. This methodology,
although valid, may seem to be quite restrictive as it forces the optimal bid to abide
by the NERP rules even in the most extremes (less likely) scenarios. Regarding the
modelization of the CO2 allowances, the simple maximization of the incomes from
the CO2 rights market is not taking full advantage of the probabilistic information
that the scenario tree contains. In Chapter 4 some general risk management ideas
are presented, as well as a detailed description of how to incorporate, using the risk
management methodology, the SO2, NOx and CO2 risk emission and financial con-
straints into the model for the optimal electricity market bid problem. A detail case
study is solved and analyzed.

• In Chapter 5 the final conclusions of this work are presented.

• Chapter 6 offers some possible further developments.

• Finally the appendix provides a glossary where the acronyms and symbols used in
this project are described.

It is worth mentioning that the emission-bounded model presented in Chapter 3, developed
in collaboration with prof. F.-Javier Heredia and prof. Cristina Corchero, was presented in
the 9th International Conference on the European Energy Market (EEM12, Florence, Italy,
May 2012, http://eem12.org/ ). This work has also been published as a full length
paper in the proceedings of the conference published by the Institute of Electrical and Elec-
tronics Engineers, IEEE ([6], http://dx.doi.org/10.1109/EEM.2012.6254676).
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Chapter 2
Context: Energy Markets and Environment

In recent years electricity markets in Europe experienced a big transformation. From being
a regulated market with no or very low uncertainty in future earnings, the market is now
liberalized and deregulated. Electricity prices are no longer determined by the regulator,
but by the market. As a consequence the price of electricity has become a significant
risk factor because is unknown at the moment when the generation companies has to take
the operational decisions. Although the liberalization of the electricity markets brings
along a lot of risks for the generation companies, also plenty of possibilities and chances.
The uncertainty is however not necessarily negative for electricity producers. Flexible
generation companies can take advantage of volatile prices. One of the keys to success in
the liberalized market is the ability to manage these new risks.

This chapter introduces the general framework for this project and presents the special
characteristics of Iberian Electricity Market, along with a summery of the current regu-
lation imposed in the allowances and emission reduction plans. Also sets out a detailed
description of the problem and introduce the main operational characteristics of the two
kind of generating technologies considered in this study: thermal units and combined cy-
cle gas turbine units.

1. The Iberian Electricity Market (IEM)

An important factor to determine the efficiency of electricity markets is the specific market
structure and trading rules, such as regulations, applied in each specific market. The Iberian
Electricity Market (IEM) is the result of a joint initiative of the Governments of Portugal
and Spain to integrate their markets. The generation companies have to make daily bids
to sell its electricity through the wholesale market, while distribution companies perform
an energy demand. This market is organized by the Electricity Market Operator (OMEL,
by its Spanish initials) who has to match supply with demand in real time. Nowadays the
day-ahead market (DAM) (short-term mechanism) is the market where the most important
part of the electricity demand is negotiated (78% in the case of the IEM), explaining why
finding the optimal bid to the DAM is of utmost significance in the daily operation of
any GenCo. However DAM is not only the main physical energy market of the IEM, in
terms of the amount of traded energy, but also the mechanism thought which other energy
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10 2. CONTEXT: ENERGY MARKETS AND ENVIRONMENT
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FIG. 1. Market clearing for a certain hour: intersection of the aggre-
gated offer and demand curves.

products, as bilateral and futures contracts (medium term mechanisms), are integrated into
the energy production system.

The DAM of day D consists of a series of twenty-four hourly auctions which are cleared
simultaneously between 10:00h and 10:30h of the previous day (D-1). Selling and buying
agents must submit their sale/purchase bids to each auction before 10:00h of D-1. Both
sale and purchase bids are composed of up to 24 price-energy pairs with non-increasing
price values, and each agent is unaware of the bids of the other agents. The clearing price
λDt of each hourly auction for time t is determined by the intersection of the aggregated
offer and demand curves: Fig. 1 . All the sale/purchase bids with a lower/greater bid price
are matched and will be remunerated at the same clearing price λDt , whichever the original
bid price.

Bilateral contracts (BC) are agreements between a GenCo and a qualified consumer to
provide a given amount of electrical energy at a stipulated price along with a delivering
period. The agreements terms, namely: the energy, the price and the delivered period, are
negotiated several days before the DAM, and the energy that is destined to the BC cannot
be included in the DAM. Moreover, accordingly to the IEM rules, the DAM bid of each
unit must include the whole available energy not allocated to the BC. This fact makes the
optimal sale bid and the optimal BC’s dispatching mutually dependents, coupling both
problems. From the point of view of the GenCo, a BC represents a scheduled load curve
to be delivered, chargeable at a fixed price, that has to be optimally dispatched among the
GenCo’s units.

A future contract (FC) is an exchange-traded derivative that represents agreements to
buy/sell some underlying asset in the future at a specified price [8].The DAM’s operator
demands every GenCo to commit the quantity designed to each FC through the DAM
bidding of a given sets of generation units. This commitment is done through a sale offer
with a bid price of 0e/MWh, the so called price acceptance offer. All instrumental price
offers will be matched (i.e. accepted) in the clearing process, i.e., the energy shall be
produced and will be remunerated at the DAM spot price.gn
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2. EUROPEAN EMISSION TRADING SCHEME (UE ETS) AND SPANISH NATIONAL ALLOCATION PLAN (NAP)11

Some medium-term products, as for instance the futures or the bilateral contracts, are used
for hedging the market-price risk mentioned above. Therefore, a generation company op-
erating in such a complex market can no longer find its optimal bid, without considering
the relationship between the short-term bid and the medium-term physical products.

2. European Emission Trading Scheme (UE ETS) and Span-
ish National Allocation Plan (NAP)

The threat of large-scale climate change and global warming has led to the Kyoto Proto-
col [9]. According to its guidelines, industrialized countries must reduce emissions of six
greenhouse gases, among which CO2 is the most important. In order to facilities devel-
oped countries to achieve parts of their emission reduction commitments, Kyoto protocol
envisages three market-based mechanisms, one of them being Emissions Trading Scheme
ETS.

The ETS is divided in two phases. The first phase runs from 2005 to 2007 and the second
from 2008 to 2012. During each phase, installations have to measure and report their
emissions at the end of each year. Each allowance corresponds to the right to emit one
ton of CO2 equivalent. If a company under-uses its allowances in one year, it can save,
i.e. bank, them and use in the future (either to emit CO2 or to sell then on the market).
The banked allowances, however, have to be used within the compliance period, that have
been set to 3 and 5 years (to help companies to smooth out eventual annual imbalances due
to weather, maintenance,and other factors), respectively for each one of the two phases.
Otherwise, if the company has over-used its annual quota during a year, it can balance it
either by reducing emissions during other years in the compliance periods, or by buying
them on the market. There is no possibility to carry over unused allowance from one to
another compliance period, or to borrow them from a future compliance period.

Each member state in the EU decides on its allocation policy, this means that each country
can decide, through its National Allocation Plan, which of its industry sectors will have
to curtail CO2 emissions and by what amount. The electricity sector is one of the ma-
jor sources of CO2 emissions, explaining why generating units are included in the EU
ETS mechanism. Under this emission trading scheme a specified amount of emission
allowances are allocated to various industrial installations, including generators. These al-
lowances can be used either for producing corresponding amounts of CO2 or traded in the
market [10]. In the case that the total emission over a monitored period exceeds defined
emission allowances, the GenCo has an option to either buy additional allowances on the
market or pay a relatively high penalty. Although the allocation procedures are specific for
each EU country, all of them need to reduce emissions and will consequently have to limit
the amount of allowances that can be allocated.

The Spanish NAP for the period 2008-12 (approved on 2007 (RD 1402/2007 [11])) im-
posed to the electricity generation sector a reduction in the CO2 emissions for the period
2008-12 of almost a 60% with respect to the emissions in the period 2000-05. Since gen-
eration power outputs are bounded by the CO2 allowances, it is becoming increasingly
important for generation companies to manage their allocations in the most profitable way
and decide when and how much of permissions to spent to produce electricity.gn
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12 2. CONTEXT: ENERGY MARKETS AND ENVIRONMENT

3. Spanish National Emission Reduction Plan (NERP)

In addition to developing United Nations commitments in relation to protection of at-
mospheric environment, the EU envisages a Community Strategy to combat acidification
within the EU. One of the main objectives of the strategy is ”not to exceed, at any time,
critical loads and levels” of certain acidifying pollutants such as SO2 and NOx, so that
both, people and ecosystems are protected effectively against the risks of air pollution. In
line with this strategy the Spanish NERP [2] imposes, for the period 2008-15, a global
reduction of 81% and 15% for the SO2 and NOx emissions respectively, compared to the
emissions in 2001. These measures are intended to improve the environmental conditions
under atmospheric international commitments on pollution and the EU Strategy to combat
acidification.

It is worth mentioning that technological improvements made to reduce the emission of
pollutants involved in NERP, were taken into account for the allocation of NAP 2008-
2012. This shows the interrelationship between the different measures taken to control
emissions.

4. Generation Units

The development of an optimal bidding strategy based on hourly unit commitment in a
GenCo that participates in energy markets, consists of deciding which electricity genera-
tion units should be running in each period so as to satisfy the bilateral and future contracts
agreements abiding by legal the emission bounds. The objective is to design the optimal
bidding strategies to the next day auctions of the day-ahead market of each one of the gen-
erators in order to maximize the expected value of the net profit of a GenCo, expressed as
the difference between the incomes from the electricity market and the generation costs,
and taking into account the trading of the CO2 emissions rights. Environmental regulation
enforced in recent years has turned the emission control a very important operation objec-
tive. This point out the need of incorporating the emission constraints in the formulation
of the nit commitment problem.

In a typical electrical system there are a variety of units available for generating electricity,
and each has its own characteristics. This work considers a price taker GenCo (an electrical
utility with no capability of altering the market prices) with a set of coal thermal units,
high emission technology, and combined cycle gas turbines (CCGT) generation units, low
emission technology.

Thermal Units Thermal generation has been part of the energy story for nearly fifty
years. Thermal energy is generated by burning coal, natural gas, oil, or the combustion of
diesel. In thermal power plants electricity is generated by burning fossil fuels such as coal,
natural gas, or petroleum (oil). Fuel (coal for this study) and compressed air are mixed in a
combustion chamber and ignited. This combustion produces heat that is used to heat water,
which turns into steam, and spins a steam turbine rotor which drives an electrical generator
(G1) to produce electricity. Unfortunately, complete conversion of fuel into energy is no
possible. Consequently, flue gas and cooling water from combustion of the fossil fuels are
discharged to the air.gn
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5. LITERATURE REVIEW AND CONTRIBUTIONS 13
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FIG. 2. Combined cycle unit

Combined Cycle Units The combined cycle (CC) units represent a combination of com-
bustion and steam turbines within a power plant. The CC plants employ more than one
thermodynamic cycle. Water is heated and turns into steam, the heat captured from the ex-
haust gas of combustion turbine (CT), is used in the heat recovery steam generator (HRSG)
and spins a steam turbine (ST) which consequently drives an electrical generator (G2) to
produce electricity (Fig. 2). This additional electricity improves the efficiency of electricity
generation [12].

Currently, in Europe most of the new generating unit installations are combined cycle (CC)
units. They are between 20 and 30 % more efficient than thermal power plants, and can
reach upto 60 % of efficiency. They are fast response units, which can be a quite decisive
feature in facing fluctuations in power plants. Moreover, they are less climate-damaging as
the CO2 production of a CC plant is much lower than that of other technologies.

5. Literature Review and Contributions

Several authors have studied the impact of the CO2 emissions trading in the power indus-
try, specially through mid-term models. In [13] a simulation was carried out for the Iberian
Electricity Market. It was concluded that a rise in electricity prices is expected when CO2

constraints are in place. Since this increase in power prices would affect all electricity pro-
ducers, a generator that faces less carbon liabilities than market clearing technology, such
as natural gas, would benefit from the higher power prices, leading to an increase in profits.
In [14] the strategic technology options, especially the potential role of natural gas com-
bined cycle and nuclear power plants, in mitigation of CO2 emission in electricity sector in
China are assessed using a least-cost probabilistic simulation and dynamic programming
model. The results obtained in this study indicate that CO2 emission mitigation through
broad implementation of Combined Cycle Gas Turbines (CCGT) can be accompanied with
reduction of the total discounted cost of the generation system but is limited by the natural
gas supply capacity. Finally, the work in [15] presents an assessment of the impact of the
Kyoto Protocol on the Iberian Electricity Market. A market-equilibrium model is used in
order to analyze different conditions faced by generation companies. One of the conclu-
sions of this paper points again to the CCGT as the tecnology to replace coal generation ingn
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14 2. CONTEXT: ENERGY MARKETS AND ENVIRONMENT

the thermal mix as the ETS CO2 price increases. This replacement is particularly important
for CO2 prices under e15/tCO2. Contrary to all these mid-term studies, the work in [10]
addresses the short-term generation scheduling of a set of thermal generation units through
the minimization of the generation plus start-up/shut-down costs of a MILP deterministic
model that includes in the objective function the emission trading incomes and costs.

Although the NERP modify substantially the shape of the optimal bid strategy of an elec-
tricity producer, as shown by the numerical test of this thesis, quite few attention has been
paid in the bibliography to the optimal generation bid strategies under SO2 and NOx emis-
sion limits. Most of the research production in relation with the SO2 and NOx has been
mid and long-term studies of different aspects of the impact of the SO2 and NOx emis-
sions reduction in the wholesale electricity production system ([16, 17, 18]). Among the
few papers that study the optimal generation under emission limits, [19] develops a load
dispatch model to minimize the NOx emissions taking the fuel cost and stochastic wind
power availability as constraints, disregarding the electricity market auction. The model in
[20] considers a deterministic unit commitment of both thermal and combined cycle units
that minimizes the generation (fuel) costs while satisfying simple bounds to the SO2 and
NOx emissions. A quite common approach in several recent papers to the emission limits
handling are multiobjective optimization techniques where both the profit and emissions
are minimized [21, 22], sometimes with additional emissions limit constraints [9]. Despite
the interest of all these studies it is worth mentioning that, contrary to the model proposed
in this thesis, none of them can be considered as optimal-bid models, as their formulation
doesn’t incorporate the bid rules of the electricity market, limiting the influence of the elec-
tricity market to the expression of the total profits either through deterministic forecasted
electricity prices [21, 22, 9] or spot price scenarios [23].

This work presents a new stochastic programming model to cope with the optimal genera-
tion bid to the next day auctions of the IEM day-ahead market (DAM) taking into account
the trading of the CO2 emissions rights of the NAP regulation and the SO2 and NOx emis-
sion limits of the NERP regulation. Several characteristics distinguish this project from
the previous works in this area. Contrary to other studies, our model provides the optimal
generation bid for each one of the generation units assuming the representation of the opti-
mal offer curve developed in [24, 5]. Moreover, CCGT units has been incorporated to the
models through an improved formulation of the CCGTs’ unit commitment modelization
introduced in [25]. Similar to [5], the model presented here consider the ex-ante negoti-
ated Futures Contracts (FC) and Bilateral Contracts (BC) of the GenCo, that are integrated
in the optimal bidding strategy according to the IEM directives. Finally the day-ahead elec-
tricity market bid with futures and bilateral contracts model (DAMB-FBC) proposed in [5]
has been improved in the present work with the explicit consideration of both, the NERP
emissions limits through a new specific measure of risk called Conditional Emission-at-
Risk (CEaR), and the financial risk of the profit function through a CVaR set of constraints
to prevent from possible low-profit.

gn
om

.u
pc

.e
du



Chapter 3
Emission Bounded Model for the Optimal
Electricity Generation Bid

On current competitive and environmentally constrained electricity supply industry, a GenCo
faces the optimal trade-off problem of how to achieve the maximum profit while minimiz-
ing the environmental impact by the management of the energy available in fossil fuels for
power generation.

This chapter presents the complete characterization of the mathematical model: parame-
ters, variables, constraints and objective function.

1. Model Description

As it has been mentioned before, the price of the electricity is unknown at the moment that
generation companies have to take operational decisions. This means that the market price
can be considered as random variable whose realization is only known once the market has
been cleared. Generation companies would need to predict the unknown price in order to
decide its strategies and maximize profits. Such problem can be modeled using a stochas-
tic optimization model which can provide a framework for decision making. Stochastic
programming is an optimization technique to find optimal decisions in problems which
involve uncertain data. Doing so, stochastic programming models are able to provide, in a
single run, the best possible here-and-now decisions taking into account the most complete
and available statistical information.

This project extends the electricity bid stochastic optimization models developed in [5]
and [25], through the consideration of several environmental issues, as the CO2 emis-
sion trading market, the SO2 and NOx emission restrictions and the specificities of the
combined-cycle low emission technology. Bilateral and future contracts are merged into a
single model and at the same time two types of generating units are considered: the coal
thermal units and the combined cycle gas turbine units. The proposed model includes mod-
ifications related to the formulation of the operational characteristics of thermal and the CC
units operations, improving the formulation in [5] and [25]. Modifications are specified in
sections 4.4 and 4.5.
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16 3. EMISSION BOUNDED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

The two-stage stochastic optimization model developed allows a GenCo to optimally de-
cide the unit commitment of its thermal and CC units, the economic dispatch of the bilateral
and futures contracts between all the programming units, the optimal generation bid of the
committed units operating in the IEM and to decide when and how much of permissions
to spent to produces electricity, in order to manage their allocations in the most profitable
way.

The objective function of the model represent the expected benefits of the GenCo obtained
with the participation in the DAM and the incomes/costs associated with CO2 allowances.
The constraints ensures that IEM’s rules for the included market mechanisms are defined,
and that all the operational restrictions of the units, and the environmental limitations, ac-
cording to the NERP directives, are respected. The main decision variables are the ones that
model the start-up and shut down of the units, the quantity that will be bid at instrumental
price and the scheduled energy committed to the bilateral and the futures settlement.

2. Parameters

Following [25], the model is built for a price-taker GenCo owning a set of thermal gener-
ation units I and a set CC units that bid to the t ∈ T = {1, 2, .., 24} hourly auctions of
the DAM. The pseudo-units P represents the different generation configurations of the CC
units, therefore, the total set of generation units considered is U = I ∪ P .

The parameters for the ith generation unit are:

• Initial state of each thermal unit: u0i. Its value is 1 if the unit is on and 0 otherwise.
• Constant, linear and quadratic coefficients generation costs: cbi , c

l
i and cqi ([e], [e/MWh]

and [e/MWh2] respectively).
• Upper and lower bounds on the energy generation: P i and P i [MWh].
• Start-up and shut-down costs: coni and coffi [e].
• Minimum operation and minimum idle time: toni and toffi [h].
• Number of periods that unit i must be initially online, Gi, due to its minimum up-

time toni .
• Number of periods that unit imust be initially offline, Hi, due to its minimum down-

time toffi .

A base load physical futures contract j ∈ F is defined by:

• The set of generation units allowed to cover the FC j: Ij ∈ U .
• The amount of energy [MWh] to be procured each interval of the delivery period by

the set Ij of generation units to cover contract j: LFj .
• The price of contract j: λFj [e/MWh].

A base load bilateral contract k ∈ B is defined by:

• The amount of energy [MWh] to be procured during hour t of the delivery period by
the set of available generation units to cover the BC k: LBtk.
• The price of the contract k: λBk [e/MWh].gn
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3. VARIABLES 17

The random variable λDt , the clearing price of the tth hourly auction of the DAM, is rep-
resented in the two-stage stochastic model by a set of scenarios s ∈ S , each one with its
associated clearing price for each DAM auction t ∈ T :

• Clearing price for auction t at scenario s: λD,st [e/MWh].
• Probability of scenario s: P s .

λD,st and P s used in this thesis have been obtained from the works [26, 27].

The emission of a thermal unit is assumed to be linear with respect to the amount of en-
ergy generated by this unit. Then the relevant parameters needed to formulate the SO2 and
NOx emissions of the thermal units are the coefficients of the aforementioned linear rela-
tions and the total amount of pollutants allowed to be emitted by the NERP:

• Limits to the joint SO2 and NOx emissions of the thermal units: SO2 [kg/day] and
NOx [kg/day].
• The SO2 and NOx emission coefficients of the generation-to-emission linear func-

tion: eSO2
i [kg/ MWh], eNO2

i [kg/ MWh], i ∈ I.

According to the Spanish NERP the CC units are exempt from compliance with emissions
requirements because they are committed not to run for more than 20,000 operational hours
starting from 1 January 2008 until, at the latest, on December 31, 2015.

The parameters that defines the electricity generation’s CO2 emissions rate and allowances
are:

• The GenCo’s aggregated free emission allowances: CO2 [tCO2]. The enforcement
of the constraints related to the CO2 emission is based on the presumption that the
generating system is constrained by a predefined emission bound. This bound corre-
spond to the GenCo’s aggregated free emission allowance.
• The estimated CO2 -emission’s price in the emission trading market [3]: λCO2 [e/tCO2].

Trading price of emission allowances are estimated based on prices in emissions mar-
kets that operates separately from electricity markets.
• The emission conversion factor: eCO2

i [tCO2/ e]. The power production by thermal
power plants is always accompanied by the release of a given amount of CO2 that
depends on consumed amount of fuel and the the type of generating unit. A further
explication on how the produced CO2 can be calculated, can be found in Section 4 of
Chapter 4.

3. Variables

In stochastic programming models, those decision variables that doesn’t depend on the
scenarios s ∈ S are called first stage variables. In this model these variables are for every
time period t ∈ T and generation unit i ∈ U :

• The unit commitment binary variables: uti ∈ {0, 1} expressing the off-on operating
status of the ith unit.
• The start-up/shut-down costs variables: cuti, c

d
ti [e].

• The price acceptant offer bid: qti [e].gn
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18 3. EMISSION BOUNDED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

• The scheduled energy for futures contract j ∈ F : ftij [MWh].
• The scheduled energy for bilateral contract: bti [MWh].

Decision variables that can adopt different values depending on the scenario are called
second stage variables. In this formulation these variables are for each t ∈ T , generation
unit i ∈ U and scenario s ∈ S.:

• The total generation: gsti [MWh].
• The matched energy in the day-ahead market: psti [MWh].

4. Constraints

The maximization of the objective function is done subject to a set of constraints associated
with the IEM’s market rules, the operational characteristics of the generation units and the
CO2, SO2 and NOx emission control.

4.1. Futures and bilateral contracts covering constraints. The coverage of both the
physical futures and bilateral contracts obligations must be guaranteed. The constraints for
each FC are:

(1)


∑
i∈Ij

ftij = LFj ∀j ∈ F , ∀t ∈ T (a)

ftij ≥ 0 ∀i ∈ U , ∀j ∈ F , ∀t ∈ T (b)

where Ij ⊂ U stand for the set of thermal and pseudo-units allowed to cover the FC j. The
BC constraints are:

(2)


∑
i∈U

bti =
∑
k∈B

LBtk ∀t ∈ T (a)

0 ≤ bti ≤ Piuti ∀i ∈ U , ∀t ∈ T (b)

4.2. Day-ahead market bid constraints. The IEM establishes the following rules to in-
tegrate energies LFj and LBtk in the day-ahead market bid of a generation unit:

• If generator i ∈ U contributes with ftij MWh at period t to the coverage of the FC j,
then the energy ftij must be offered to the pool for free (price acceptance sale bid).
• If generator i ∈ U contributes with bti MWh at period t to the coverage of any of the

BCs, then the remaining production capacity P i − bti must be bid to the DAM.gn
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4. CONSTRAINTS 19

These market rules can be included in the model by means of the following set of con-
straints:

psti ≤ Piuti − bti ∀i ∈ U , ∀t ∈ T , ∀s ∈ S(3)

psti ≥ qti ∀i ∈ U , ∀t ∈ T , ∀s ∈ S(4)
qti ≥ Piuti − bti ∀i ∈ U , ∀t ∈ T(5)

qti ≥
∑
j|i∈Ij

ftij ∀i ∈ U , ∀t ∈ T(6)

where:

• (3) and (4) ensures that if a unit is on, the matched energy psti will be between the
instrumental price bid qti and the total available energy not allocated to a BC. Pi, Pi
represent upper and lower bounds on the energy generation (MWh).
• (5) and (6) guarantee respectively that the minimum generation output of the com-

mitted units will be matched, and that the contribution of the unit to the FC coverage
will be included in the instrumental price bid.

The analytical expression of the optimal generation bid of the generations units can derived
from this market constraints [5].

4.3. Total generation constraints. The total generation level of a given unit i, gsti, is
defined as the addition of the allocated energy to the BC, plus the matched energy in the
DAM:

gsti = bti + psti ∀i ∈ U , ∀t ∈ T , ∀s ∈ S(7)

The generation output of a any generation unit gsti are restricted to gsti ∈ {0} ∪ Pi, P i, that
is:

Piuti ≤ gsti ≤ P iuti ∀i ∈ U , ∀t ∈ T , ∀s ∈ S(8)

4.4. Thermal unit commitment constraints. The following set of constraints conve-
niently models the start-up and shut-down costs, and the minimum operation and idle time
for each unit. Contrary to formulation in [5] that does not consider the case t = 0, in
this formulation, the parameter u0i allows to include, the initial state of each thermal unit
i ∈ I, into the constraints:

cuti ≥ coni [uti − u(t−1)i] ∀t ∈ T , ∀i ∈ I(9)

cdti ≥ c
off
i [u(t−1)i − uti] ∀t ∈ T , ∀i ∈ I(10)

Gi∑
j=1

(1− uji) = 0 ∀i ∈ I(11)

Hi∑
j=1

uji = 0 ∀i ∈ I(12)gn
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20 3. EMISSION BOUNDED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

min{t+toni −1,|T |}∑
n=t

uni ≥ αonti [uti − u(t−1)i] t = Gi + 1, . . . , |T |, ∀i ∈ I

(13)

min{t+toffi −1,|T |}∑
n=t

(1− uni) ≥ αoffti [u(t−1)i − uti] t = Hi + 1, . . . , |T |, ∀i ∈ I

(14)

where the parameters αonti and αoffti are defined as:

αonti = min{toni , |T | − t+ 1}(15)

αoffti = min{toffi , |T | − t+ 1}(16)

The last two expressions (15) and (16) allow the regulation of the minimum up and down
time which are imposed by the parameters (toni ) and (toffi ), respectively, or at a minimum,
the number of periods that are needed to complete the optimization period: t ∈ T =

{1, 2, . . . , 24}. For instance, if for and specific unit i ∈ I, toffi = 5 and t = 22, therefore
αonti = min{5, 24− 22 + 1} which equals 3, i.e. although the unit must should be on for 5
hours, as to finish the optimization period, remaining only three hours, the unit must be on
at instants: t = 22, t = 23 and t = 24.

It is worth mentioning that the above two constraints 13 and 14 simplify equations for-
mulated in [5] whose expressions impose the minimum up and down time, through the
following set of constraints, respectively:

t+toni −1∑
n=t

uin ≥ toni [uti − u(t−1)i] t = Gi + 1, . . . , |T | − toni + 1, i ∈ I

|T |∑
n=t

(uni − [uti − u(t−1)i]) ≥ 0 t = |T | − toni + 2, . . . , |T |, i ∈ I

and

t+toffi −1∑
n=t

(1− uni) ≥ toffi [u(t−1)i − uti] t = Hi + 1, . . . , |T | − toffi + 1, i ∈ I

|T |∑
n=t

(1− uni − [u(t−1)i − uti]) ≥ 0 t = |T | − toffi + 2, . . . , |T |, i ∈ I

The above expressions are divided into two periods, one up to |T | − (toni − 1) and |T | −
(toffi −1) and another for the last toni −1 and toffi −1 time periods respectively for ton and
toff . Thus, although the number of constraints formulated following [5] coincides with the
number of constraints introduced in this work, eq. (13) and (14), through the definition of
parameters αonti and αoffti , provides a more compact presentation of the minimum up and
down time constraints.gn
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4. CONSTRAINTS 21

TABLE 1. States of the CC unit and its associated Pseudo units

CC unit with a CT and HRSG/ST
State Composition Pseudo unit 1 uPc(1)t Pseudo unit 2 uPc(2)t

0 0CT+0HRSG/ST off 0 off 0
1 1CT+0HRSG/ST on 1 off 0
2 1CT+1HRSG/ST off 0 on 1

4.5. Combined cycle unit commitment constraints. A CC unit consists of several CTs
and an HRSG/ST set. Can operate at multiple states or configurations, based on the differ-
ent combinations of CTs and HRSG/ST. The first two columns of Table 1 show the states
of a CC unit with a CT and an HRSG/ST. Operational rules of a typical CC unit were
formulated in [28] with the help of the so-called pseudo units (PUs). The PUs of each
CC unit can be viewed as a special set of non-independent or coupling thermal units. As
the thermal units, the PUs have their own unique characteristics: start up cost, real power
generation limits and minimum down time limits. The formulation presented in this work
only considers two PUs, each one associated with states 1 and 2 of the CC. Columns 3 and
5 of Table 1 shows how the on/off state of these two PUs uniquely determines the state of
the CC.

Let Pc the set of PUs of the CC unit c ∈ C, and P = ∪c∈CPc, the complete set of PUs. By
Pc(j), we denote the PU associated with the state j ∈ {1, 2} of the CC unit c. Columns
4 and 6 of Table 1 illustrate the relation of the commitment binary variables of the PUs,
utPc(1) and utPc(2), with the state of the associated CC unit. The start-up cost and min-
imum on/off time formulation for both PU and CC units has been made following the
formulation in [25]. This reformulation represents an improvement of the original formu-
lation presented in [25]:

−
∑
t∈T

∑
c∈C

[
conPc(1)

(
ePc(1)t − aPc(2)t

)
+ conPc(2)ePc(2)t

]
where the auxiliary binary variables ait and eit are defined to be ait = 1 iff ui(t−1) = 1
and uit = 0, and eit = 1 iff ui(t−1) = 0 and uit = 1. Instead of the two auxiliary binary
variables ait and eit, that increase the execution time of the model, in the formulation of
this study is necessary to consider only the start-up costs continuous variables: cutPc(1) and
cutPc(2) for each PU i ∈ P . There are not shut-down costs associated to the PU, and neither
cost associated to the transition from state 2 to state 1:

(17)
cutPc(1) ≥ conPc(1)

[
[utPc(1) − u(t−1)Pc(1)] − [u(t−1)Pc(2) − utPc(2)]

]
∀t ∈ T , ∀c ∈ C

(18) cutPc(2) ≥ c
on
Pc(2)[utPc(2) − u(t−1)Pc(2)] ∀t ∈ T , ∀c ∈ C

Tables 2, and 3 shows all the possible values of the expression: [uPc(1)t − uPc(1)(t−1)] −
[uPc(2)(t−1) − uPc(2)t]. Note that it’s value is 1 only when CC unit c is in state 0 at periodgn
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TABLE 2. Start-up Cost of the PUs

utPc(1) u(t−1)Pc(1) u(t−1)Pc(2) utPc(2) [utPc(1) − u(t−1)Pc(1)]− [u(t−1)Pc(2) − utPc(2)]
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 0 0 -1
1 1 0 0 0
1 0 1 0 0

1 0 0 0 1

TABLE 3. Start-up Cost of the PUs (Combinations excluded because of
the feasible transitions rules)

utPc(1) u(t−1)Pc(1) u(t−1)Pc(2) utPc(2) Does no satisfy the feasible transitions rules because
0 0 1 0 if the CC unit c is in state 2 at period (t− 1) , it can not be in sate 0 at period t
0 0 0 1 if the CC unit c is in state 0 at period (t− 1) , it can not be in sate 2 at period t
0 1 1 0 only one of the PUs can be committed at a given period
0 1 1 1 ”
1 0 0 1 ”
1 0 1 1 ”
1 1 1 1 ”
1 1 0 1 ”
1 1 1 0 ”

t − 1 (i.e. when uPc(1)(t−1) = 0 + uPc(2)(t−1) = 0), and in state 1 at period t (i.e. when
uPc(1)t = 1 and uPc(2)t = 0).

Each PU i ∈ P has its own minimum up time, toni :

min{t+toni −1,|T |}∑
n=t

uni ≥ αonti [uti − u(t−1)i] t = Gi + 1, . . . , |T |, ∀i ∈ P(19)

where again u0i represents the initial state of each pseudo unit i ∈ P and Gi is the number
of the initial time periods along which the pseudo unit must remain on. So as in Eq. (11):

(20)
Gi∑
t=1

(1− uti) = 0 i ∈ P , t ∈ T

Equation (19) is again a simplification of the constraint considered in [25]:

uit − ui(t−1) − eit + ait = 0 (a)

eit +

min{t+toni ,|T |}∑
j=t

aij ≤ 1 (b)

uit, ait, eit ∈ {0, 1} ∩ Ki (c)


i ∈ P , t ∈ T

where the set Ki stands for the initial state of each unit, and the auxiliary binary variables
ait and eit are defined as above. Eq.(19) is clearly easy to understand and computationally
more efficient.

In turn each CC unit also has a minimum down time, i.e., once shut down, the CC unit
cannot be started up before (toffc )C periods. As in the case of the thermal and pseudogn
om
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t t+ 1

State 0State 0

State 1State 1

State 2State 2

(0CT+0HRSG/ST)(0CT+0HRSG/ST)

(1CT+0HRSG/ST)(1CT+0HRSG/ST)

(1CT+1HRSG/ST)(1CT+1HRSG/ST)

FIG. 1. Feasible transitions of the CC unit with a CT and HRSG/ST

units, the following constraints formulate the minimum down time condition for the CC
units:

(21)

min{t+(toffc )C−1,|T |}∑
n=t

[1− (unPc(1) + unPc(2))] ≥

αofftc

[
(u(t−1)Pc(1) + u(t−1)Pc(2))− (utPc(1) + utPc(2))

]
t = HC

c + 1, . . . , |T |, ∀c ∈ C

where
αofftc = min{(toffc )C , |T | − t+ 1}

and HC
c represents the number of the initial time periods along which the CC unit must

remain off. So as in Eq. (12):

(22)
HCc∑
t=1

utPc(1) + utPc(2) = 0 ∀c ∈ C , ∀t ∈ T

Equation (21)represents a simpler expression of the minimum down time constraint of each
unit introduced in [25]:

(
uPc(1)t + uPc(2)t

)
−
(
uPc(1)(t−1) + uPc(2)(t−1)

)
+

+
(
aPc(1)t − ePc(1)t

)
−
(
ePc(2)t − aPC(2)t

)
= 0 (a)

(
aPc(1)t − ePc(2)t

)
+

min{t+tCc ,|T |}∑
j=t

(
ePc(1)j − aPc(2)j

)
≤ 1 (b)


c ∈ C
t ∈ T

where tCc represent the minimum down time of each CC unit.

Furthermore, the satisfaction of the feasible transitions rules (Fig. 1) impose additional
constraints to the operation of the PUs associated to the same CC unit, c ∈ C. First, the
PUs in Pc are mutually exclusive Eq. (23)(a), i.e., only one of them can be committed
at a given period (a CC can only be in one state simultaneously). Second, the change ofgn
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24 3. EMISSION BOUNDED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

the commitment of the PUs in Pc between periods t − 1 and t are limited to the feasible
transitions depicted in Fig. 1. These feasible transitions impose that, if the CC unit c is in
state 0 at period t−1 (i.e u(t−1)Pc(1)) +u(t−1)Pc(2) = 0), it cannot be in state 2 at period t
(i.e. utPc(2) = 0) (Eq. (23)(b)). Conversely, if u(t−1)Pc(2) = 1, then utPc(1)+utPc(2) ≥ 1
(Eq. (23)(c)). The following set of constraints formulates the specific operation rules of
the CC units:

(23)

∑
m∈Pc

utm ≤ 1 (a)

utPc(2) ≤ u(t−1)Pc(1)) + u(t−1)Pc(2) (b)

u(t−1)Pc(2) ≤ utPc(1) + utPc(2) (c)


∀c ∈ C,
∀t ∈ T

4.6. SO2 and NOx emissions constraints. The Spanish National Emission Reduction
Plan imposes limits SO2 and NOx to the joint emission of the thermal units (CC units are
excluded). These limitations can be included in the model by imposing an emission limit
at every scenario s through the following set of constraints:

∑
t∈T

∑
i∈I

eSO2
i gsti ≤ SO2 ∀s ∈ S(24) ∑

t∈T

∑
i∈I

eNOxi gsti ≤ NOx ∀s ∈ S(25)

where the emission coefficients eSO2
i and eNOxi depend on the generation technology.

4.7. CO2 emission constraints. Following the method proposed in [29], the incorpora-
tion of the CO2 emission limits in the solution of the unit commitment problem have been
made integrating into the objective function the costs and revenues associated with the po-
tential purchases/sales of CO2 allowances in the market. This method allows, according to
the EU ETS mechanism, the acceptance of solutions which violate the enforced emission
limits. Therefore, emission allowances can be purchased in order to overcome the short-
fall in the existing emission rights. The expression that represent the cost/incomes of the
emission allowances is:

λCO2

[∑
t∈T

∑
s∈S

P s

[∑
i∈U

eCO2
i (cbiuti + clig

s
ti+c

q
i (g

s
ti)

2)

]
− CO2

]

where eCO2
i is the emission conversion factor (Section 4 of Chapter 4 shows how to cal-

culate its value), CO2 corresponds to the GenCo’s aggregated free emission allowances
(tCO2) and λCO2 is the estimated CO2 -emission price (e/tCO2) in the emission trading
market [3]. The model for the CO2 emission follows the assumption in [10] and [29] that
the nonlinear emission function is proportional to the quadratic generation cost function of
each unit.gn
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5. Objective Function

The expected value of the profit function of the GenCo with respect to the spot market
price random variable λD can expressed as:

EλD
[
h(u, cu, cd, g, p, b, f ;λD)

]
=

|T |

[∑
k∈F

λFk L
F
k

]
+
∑
t∈T

∑
j∈B

λBCtj L
BC

tj(26)

−
∑
t∈T

∑
i∈I

[
cuti + cdti + cbiuti

]
(27)

−
∑
t∈T

∑
c∈C

[
cutPc(1) + cutPc(2) +

∑
i∈Pc

cbiuti

]
(28)

+
∑
t∈T

∑
i∈U

∑
s∈S

P s
[
λD,st psti−(clig

s
ti+c

q
i (g

s
ti)

2)
]

(29)

− λCO2

[∑
t∈T

∑
s∈S

P s

[∑
i∈U

eCO2
i (cbiuti + clig

s
ti+c

q
i (g

s
ti)

2)

]
− CO2

]
(30)

where:

(26) corresponds to the incomes of the FCs and the BCs and is a constant term. λFk and
λBCtj are the prices of FCs and BCs respectively.

(27) accounts for the on/off fixed cost of the unit commitment of the thermal units. It
is independent of the realization of the random variable λDt . cbi are the constant
coefficients of the generation costs (e).

(28) CC’s start-up and fixed generation costs. Only start-up costs are associated to the PU,
and no cost is associated to the transition from state 2 to state 1. This term does not
depend on the realization of the random variable λD.

(29) represents the expected value of the benefits from the day-ahead market, where P s is
the probability of scenario s. The term between brackets corresponds to the expres-
sion of the quadratic generation costs with respect to the total generation of the unit,
gsti.

(30) at it has mentioned above this term accounts for cost/incomes associated to the pur-
chase/sale of the CO2 emissions rights [15].

6. Final Model

The proposed market clearing problem with emission trading can be mathematically ex-
pressed as the following optimization problem:gn
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26 3. EMISSION BOUNDED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

(31)



max EλD
[
h(u, cu, cd, g, p, b, f ;λD)

]
s.t. :

Eq. (1)− (2) FC and BC
Eq. (3)− (6) Day-ahead market
Eq. (7)− (8) Total generation
Eq. (9)− (14) Thermal unit commitment
Eq. (17)− (23) CC unit commitment
Eq. (24)− (25) Emission

The deterministic equivalent of the two-stage stochastic problem (31) is a mixed, continuous-
binary concave quadratic maximization problem with linear constraints and with a well
defined global optimal solution.

As it has been mentioned in the introduction the model described above (the emission-
bounded model) was accepted for presentation to the 9th International Conference on the
European Electricity Market (http://eem12.org/) and has been published by the Insti-
tute of Electrical and Electronics Engineers (IEEE) as a full paper proceeding [6]. Three
case studies was used to evaluate the impact of the CO2 allowances and emission con-
straints in the optimal scheduling and bid of the generation units:

• BASE: optimal bid problem without neither emission constraints nor CO2 allowances.
Corresponds to problem (31) excluding both the CO2 rights incomes/cost term (30)
and emission constraints (24)-(25).
• EC: optimal bid problem with only emission constraints. Corresponds to problem

(31) excluding the CO2 rights incomes/cost term (30) but retaining emission con-
straints (24)-(25).
• CO2EC: The complete model (31) with both CO2 allowances and emission con-

straints.

All the cases were implemented with the AMPL modeling language [30] and solved with
CPLEX 12.0 [31] (mipgap=0.05, threads=20) over a SunFire X2200 with 32 Gb of
RAM memory and two dual core processors AMD Opteron 2222 at 3 GHz. The number
of continuous and binary variables was 20.448 and 200 respectively and the number of
linear constraints was 49.458 for the BASE case and 49.558 for the other two cases. The
execution time was below one minute in all the cases.

In this study, the numerical test provided a reduction of the overall CO2 , SO2 and NOx emis-
sions by 70% together with 30% increase in the expected total profit, availing of the
CO2 emissions rights market. The results obtained suggest that, with the day-ahead market
and CO2 allowances prices used in this study, the CO2 rights market can be a valid tool for
utilities to reduce their emissions without any loss in their overall profits. Table 4 depicts
the expected value of the CO2, SO2 and NOx emissions, at the optimal solution of the three
cases considered, while Table 5 shows the optimal value of the expected profits obtained.
Fig. 2 shows the percentage share of the different cost and income sources in the objective
function value for the four cases.

It should be recalled that the main interest of this thesis is in the risk-constrained models
that will be developed in the next chapter, where a complete analysis of the results will begn
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TABLE 4. Daily emissions at optimal solution

E[CO2] E[SO2] E[NOx]

BASE 2.761 t 15.381 kg 26.811 kg
EC 835 t 3.900 kg 6.798 kg

CO2EC 801 t 3.898 kg 6.796 kg

TABLE 5. Optimal incomes and costs

BASE EC CO2EC

E[Profit] 554.479 e 472.677 e 734.052 e
BC Incomes 419.122 e 419.122 e 419.122 e
FC Incomes 374.543 e 374.543 e 374.543 e

E[market incomes] 1.101.440 e 482.469 e 398.955 e
E[Generation Costs] -1.334.540 e -799.772 e -720.998 e

Start-up/shut-down Costs -6.088 e -3.683 e -3.683 e
E[CO2 rights cost/incomes] - - 266.114 e

BASE EC CO2EC
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FIG. 2. Optimal Incomes and Costs. The graph shows the overall per-
centage of participation of the different income and cost sources as to the
total value of the profit function.

presented. For this reason only a summary of the results and conclusions for the emission-
bounded model developed in this chapter has been included in this section. The detailed
analysis can be found in [6].gn
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Chapter 4
Emission Risk Constrained Model for the
Optimal Electricity Generation Bid

Risk Management is the theory about how to handle risks. A risk measure is a measure
of how much one could lose or how uncertain a profit or loss is within a given time-
period. In portfolio optimization theory, methods of risk management include Value-at-
Risk (VaR) and Conditional Value-at-Risk (CVaR). VaR is a risk assessment tool to measure
the minimum occasional loss expected in a given portfolio within a stated time period. The
VaR determines the monetary risk associated with a generation schedule . It is an estimate
that shows how much, for a given probability of occurrence, the power company could lose
due to fluctuations in prices. As an alternative risk assessment tool, CVaR does quantify the
losses associated with the tail of the profit distribution [32]. For the same confidence level
used for VaR, CVaR provides an estimate of the average loss exceeding the VaR value.
That is why it gives a better indication of risk than VaR.

The risk management ideas developed for the financial markets and the CVaR concept have
been conveniently adapted to give a new approach to address the SO2 and NOx emission
constraints. Based on the CVaR concept developed in the finance industry to monitor
losses within pre-specified tolerances, it has been developed a new concept, Conditional
Emission-at-Risk (CEaR) to measure the risk of violation of the emission limits.

This chapter sets out a brief introduction to the risk management process as a framework
to reformulate the emission constraints. Section 1 introduce the mathematical description
of VaR and CVaR as risk measure, and gives, following the formulation in [33], the basics
for using the CVaR concept in optimization problems. Section 2 present, using the CVaR
concept, a detail description of a new SO2 and NOx emission constraints formulation. Sec-
tion 3 explain how to formulate a CVaR constraint to control possible low-profit outcomes
through a set of linear constraints. The proposed method has been successfully tested using
real data of a typical generation company operating in the IEM, and a set of scenarios for
both the Spanish day-ahead and emission trading market. Section 4 describe all data used
to validate the model. Finally Section 7 present and discuses the numerical results.

29gn
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1. Risk Management

A typical risk measuring methodology used to guide the risk management process is Value-
at-Risk (VaR). It is a very popular measure of risk, but it is difficult to optimize when cal-
culated using scenarios. In this case, VaR is non-convex and it has multiple local extrema.
An alternative measure of risk, which more desirable mathematical characteristics, is con-
ditional Value-at-Risk (CVaR), also called the mean excess loss or tail VaR. It is convex
and it can be optimized using linear programming and optimization algorithms which al-
low handling large numbers of scenarios [33]. In fact, whilst CVaR is the mean excess
loss, the VaR provides no indication on the extent of losses that might be suffered beyond
the amount indicated by this measure.

In portfolio optimization theory the VaR and CVaR concepts are used to measure the ex-
pected loss, for a given time horizon, through a loss function. This concepts can be used
also for maximizing expected returns functions, as opposed to minimizing the expected
loss. The fact that the objective function of the optimal bid model develop in this thesis
represent the expected profits, leads to reformulate the VaR and CVaR concepts to use them
in the study of the problem address in this project.

Let h(x, λD) be the profit function associated with the decision vector x , and the random
vector λD. The decision vector x represents the decision variables u, cu, cd, g, p, b, f of
the problem (31), and belongs to a certain set of generation bids belonging to the feasible
set X ∈ Rn, while the vector λD in R|S| stands for the uncertainties that can affect the
profit (the spot price scenarios in the case of this work).

For each x, the profit h(x, λD) is a random variable having a distribution in R induced by
that of λD. For convenience, it is assumed that the random vector λD has a probability
density function p(λD).

The probability that the profit h(x, λD) does not fall bellow a threshold ζ is given by:

Ψ(x, ζ) =

∫
h(x,λD)≥ζ

p(λD)dλD

By definition, the VaR(1− α) value, denoted by ζ(1−α)(x), for the profit random variable
associated with the decision vector x and any specified probability level α in (0, 1), is the
lowest amount ζ such that with probability α, the profit will not fall bellow ζ. Therefore,
the probability that the monetary profit falls bellow VaR(1−α) is α. Its value is given by:

ζ(1−α)(x) = min{ζ ∈ R : Ψ(x, ζ) ≥ 1− α}

The given probability is called a confidence level, which represents the degree of certainty
of the VaR estimate. Three values of the confidence level are commonly considered: 0.90,
0.95, and 0.99. For instance, a confidence level of 0.95 means that 95% of the time, the
power companys revenues will be more than VaR, and 5% of the time the revenues will be
less than VaR.gn
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1. RISK MANAGEMENT 31

FIG. 1. Graphical representation of CVaR concept. From [34].

The CVaR(1 − α) value, denoted by φ(1−α)(x), for the profit random variable associated
with the decision vector x and any specified probability level α in (0, 1) is defined as the
conditional expectation of the profit above ζ(1−α)(x) . Its value is given by:

(32) φ(1−α)(x) = (1− α)−1
∫

h(x,λD)≤ζ(1−α)(x)

h(x, λD)p(λD)dλD

For instance, the CVaR(1 - 0.95) is the average of the expected monetary profit for poten-
tial revenue values that fall bellow the VaR(1 - 0.95) threshold. The concept of CVaR is
illustrated in Fig.1.

The main idea of the formulation in [33] is a characterization of φ(1−α)(x) in terms of a
far simpler function F(1−α) , called the CVaR function, defined as follows:

(33) F(1−α)(x, ζ) = ζ + (1− α)−1
∫

b∈Rm

[ζ − h(x, λD)]+p(λD)dλD

where [t]+ = max {0, t}

This function can be used instead of φ(1−α)(x) which is difficult to handle because of
the VaR(1 − α) function ζ(1−α)(a) involved in its definition. Moreover the most relevant
properties of the function F(1−α) are as follows [32]:

• F(1−α)(x, ζ) is convex, which is a key property in optimization that eliminates the
possibility of a local maximum being different from a global maximum.

• The VaR(1−α) function ζ(1−α)(x) is a maximum point of F(1−α) with respect to ζ:
ζ(1−α) = argmaxζ∈R F(1−α).

• The maximum of F(1−α)(x, ζ) with respect to ζ gives the CVaR(1 − α), (function
φ(1−α)(x)).

These properties are summarized in the following expression:gn
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32 4. EMISSION RISK CONSTRAINED MODEL FOR THE OPTIMAL ELECTRICITY GENERATION BID

φ(1−α)(x) = F(1−α)(x, ζ(1−α)(x)) = max
ζ∈R

F(1−α)(x, ζ)

This formula reveals the fact that the CVaR(1 − α) can be calculated without the need to
calculate first the VaR(1 − α) value on which its definition formally depends (Eq.(32)).
Another advantage of the function F(1−α) is that it can be used for the calculation of
VaR(1− α) and the optimization of CVaR(1− α) at the same time:

max
x∈X

φ(1−α)(x) = max
(x,ζ)∈(X ,R)

F(1−α)(x, ζ)

In Eq. (33) the integral in the function F(1−α) can be approximated by sampling the
probability distribution of λD according to its density p(λD). If the sampling generates
a collection of vectors λD,s, s = 1, . . . , S , then the corresponding approximation can be
calculated as follows:

(34) F̃(1−α)(x, ζ) = ζ − (1− α)−1
S∑
s=1

P s[ζ − hs(x, λD,s)]+

where P s are probabilities of scenarios λD,s.

Further, CVaR can be modeled by means of linear expressions. The work in [33] describe
a linear programming formulation to optimize the value of CVaR and, at the same time,
to calculate the value of VaR. By using auxiliary variables as, s = 1, . . . , S, the function
F̃(1−α)(x, ζ) can be replaced by the function:

(35) ζ − (1− α)−1
S∑
s=1

P sas

and the set of linear constraints:

(36) as ≥ ζ − hs(x, λD,s), as ≥ 0 s = 1, . . . , S

Thus maximization of the approximation of the CVaR function F̃(1−α)(x, ζ) can be re-
duced to the following linear programming problem:

(37)


max ζ − (1− α)−1

S∑
s=1

P sas

s.t. :
as ≥ ζ − h(x, λD,s) ∀s ∈ S
as ≥ 0 ∀s ∈ S

This formulation provides a practical technique as to solve problems with a large number
of scenarios.gn
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2. CONDITIONAL EMISSION AT RISK (CEAR) 33

The description just introduced in this section establishes the foundations for applying
the CVaR concept to reformulate the SO2 and NOx emission constraints, and extend the
optimal bid generation model of the precedent chapter with CVaR-like risk constraints.

2. Conditional Emission at Risk (CEaR)

In the previous chapter, the NERP limits for the SO2 and NOx emissions control, have been
addressed in a very-restricting way. Constraints (24) and (25) imposed an upper limit on
emissions that can never be violated. To enrich the analysis referred to the emission control,
and following the CVaR risk notions presented above, some flexibility will be introduced
in the emission limits control through a new risk tool called Conditional Emission-at-risk
(CEaR).

In order to evaluate the consequences of exceeding emission limits, the SO2 emission limit
constraint (24) can be reformulated as a probabilistic constraint in the following way:

∑
t∈T

∑
i∈I

eSO2
i gsti − SO2 ≤MSO2ys ∀s ∈ S(38) ∑

t∈T

∑
i∈I

eSO2
i gsti − SO2 ≥MSO2(ys − 1) ∀s ∈ S(39) ∑

s∈S
P sys ≤ γ(40)

The first two equations (38) and (39) conveniently classify the scenarios in which the SO2

emission exceed the limit. ys, s ∈ S is a binary variable that takes value 1 if the emissions
are higher than SO2 and 0 otherwise, and parameter MSO2 � 1 is an upper bound of the
emission violation, that is:

MSO2 ≥
∑
t∈T

∑
i∈I

eSO2
i gsti − SO2 ≥ −MSO2

Equation (40), in turn , limits joint probability of those of scenarios that may exceed the
SO2 emission upper bound SO2. Thus, instead of imposing an emission limit at every
scenario s, this approach allows with some probability γ that some of the scenarios exceeds
the limit. It is worth mentioning that when γ takes value 0 constraints (38)- (40) are
equivalent to constraint (24) in which no scenario can exceed the emission limit, while
taking γ = 1 is equivalent to not to impose any limit at all.

The above three constraints: (38) - (40) can be complemented imposing certain limit on the
average amount in which the emissions exceed the limit. Taking the risk ideas presented
in Section 1, but applied to the study of the emission function

∑
t∈T

∑
i∈I

eSO2
i gsti instead of

the profit function h(x, λD), it is possible to propose, by analogy of the CVaR function,
the so-called Conditional Emission-at-Risk (CEaR) in order to establish a new measure of
risk associated with the expected value of SO2 excess.gn
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FIG. 2. Graphical representation of CEaR concept. Based on [33]
.

To do this it’s necessary to define, for every scenario s, a new set of variables emiSO2,s

whose value will be equal the SO2 emissions (
∑
t∈T

∑
i∈I

eSO2
i gsti) if the emission of scenario

s exceed the limit, i.e. ys = 1; or 0 if the emission of scenario s are below the limit i.e.
ys = 0. The following constraints ensure the correctness definition of emiSO2,s:

emiSO2,s −
∑
t∈T

∑
i∈I

eSO2
i gsti ≤MSO2(1− ys) ∀s ∈ S(41)

emiSO2,s −
∑
t∈T

∑
i∈I

eSO2
i gsti ≥ −MSO2(1− ys) ∀s ∈ S(42)

emiSO2,s ≤MSO2ys ∀s ∈ S(43)

In this way Eq. (41) - (43) guarantee that:

emiSO2,s =


∑
t∈T

∑
i∈I

eSO2
i gsti if ys = 1

0 if ys = 0

∀s ∈ S

With these set of variables, the CEaR definition can be now formalized as follows: the
SO2-CEaR value, for the emission random variable associated with the decision vector gsti
and any specified probability level β, is the conditional expectation of the emissions, given
that SO2 emission is beyond the SO2 emission limit SO2. The following constraint may
conveniently control the average amount of the emissions excess over the limit SO2:

(44)
1∑

s∈S
P sys

∑
s∈S

P semiSO2,s ≤ (1 + β)SO2

where β ≥ 0 is the maximum permitted violation as a fraction of the emission limit SO2.
Eq. (44) then ensures, that in case that emissions are above the limit, the deviation will be
on the average less than a fraction β of SO2. Note that when β = 0 no scenario can exceed
the emission limit, and when β � 0 this constraint does not impose any limit.gn
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It is worth mentioning that known value SO2 term plays the role of the VaR level in the
CVaR definition, which as mentioned above, is difficult to handle. This is why the CEaR
concept is much easier to implement than the CVaR concept. The definition of CEaR(β)
is illustrated graphically in Fig. 2.

In this way, to include in the model the SO2 emission limit through Eq. (38)-(44) gives the
opportunity to relax the problem. Using different values for parameters γ and β it is pos-
sible to evaluate the impact of excess emissions in the unit commitment of the generation
units and in the objective function value.

Similarly to what has been done in the case of SO2 emissions, it is possible to reformulate
the NOx emission limit constraint (25) through the following set of constraints:

∑
t∈T

∑
i∈I

eNOxi gsti −NOx ≤MNOxzs ∀s ∈ S(45) ∑
t∈T

∑
i∈I

eNOxi gsti −NOx ≥MNOx(zs − 1) ∀s ∈ S(46) ∑
s∈S

P szs ≤ γ(47)

emiNOx,s −
∑
t∈T

∑
i∈I

eNOxi gsti ≤MNOx(1− zs) ∀s ∈ S(48)

emiNOx,s −
∑
t∈T

∑
i∈I

eNOxi gsti ≥ −MNOx(1− zs) ∀s ∈ S(49)

emiNOx,s ≤MNOxzs ∀s ∈ S(50)
1∑

s∈S
P szs

∑
s∈S

P semiNOx,s ≤ (1 + β)NOx(51)

The set of variables zs and emiNOx,s, and parameter MNOx are defined analogously to
ys, emiSo2,s and MSO2 respectively. Of course, both constraints (44) and (51) can be lin-
earized by multiplying both terms by the non-negative expression

∑
s∈S

P sys and
∑
s∈S

P szs

respectively.

3. CVaR of Total Profits Including CO2 Emission Allowances

A generation company typically prepares budgets which include an estimate of the profits
obtained during a given period, in order to be able to evaluate whether the probability of
facing a low-profit outcome is higher than desired. This requires analyzing the operat-
ing profit of the Genco. Focusing on the probability distribution function for the profits
obtained during a given period, one could consider the possibility of finding a strategy
to improve the worst scenarios. This strategy can be approached with the CVaR concept
through CVaR constraints. CVaR establishes a hard limit on the expected value of revenues
for the subset of scenarios in which the profit falls below the VaR at a given confidence
level. In this regard, using the CVaR concept, the aim of this section is to extend thegn
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proposed model for the optimal electricity market bid problem, with a new constraint to
impose a lower limit to the worst-case expected profits value.

Following [33] and [34] a CVaR constraint, that is, a constraint that imposes a lower bound
to the value of the CVaR associated to the optimal generation bid, can be approximated
by including in the optimization problem a new set of linear constraints. Let S be a set of
scenarios, and let λD, ∀s ∈ S be a sampled from the density λD. The CVaR constraint,
φα(x) ≥ ω can be equivalently represented, by the following set of constraints:

(52)


ζ − (1− α)−1

S∑
s=1

P sas ≥ ω

as ≥ ζ − hs(u, cu, cd, g, p, q, b, f ;λD) ∀s ∈ S
as ≥ 0 ∀s ∈ S

where ω is some constant constraining CVaR, as are the auxiliary variables used to maxi-
mize CVaR and to simultaneously calculate the VaR value ζ, described in Section 1 above
and h(u, cu, cd, g, p, b, f ;λD) is the profit of the GenCo obtained with the participation in
the DAM and the incomes/costs associated with CO2 allowances associated to the scenario
s ∈ S.

This set of constraints ensures that in the worst case scenario, the benefit will be, at least,
the fixed ω value. For instance setting the lower bound ω and the confidence level α = 0.95
implies that the average profit in the 5% worst scenario cases will not be below the lower
bound ω value.

In the next sections the effect of the CEaR and CVaR risk constraints on the optimal gen-
eration bid will be analyzed.

4. Case Study

The data for the day-ahead market prices has been downloaded from the website of the
Independent Iberian Market Operator OMEL [35]. This study uses the same set of 50 sce-
narios generated in [36] for the random day-ahead market spot prices λD as the result of
the application of a scenario reduction algorithm [37] to the complete set of historic data
available from June 2007 to May 2010 [36]. The generation units of this study corresponds
to the same two combined cycle units considered in [25]. They correspond to actual gen-
eration units currently operating in the IEM. The operational characteristics of the thermal
units have been updated using the generation cost of two different kinds of coal thermal
units: national and imported. The electricity production cost from both national and im-
ported coal has been updated according to the Book of Energy in Spain 2010 published
by The Ministry of Industry, Energy and Tourism of Spain Government [38]. The values
found (42.16 [e/tCoal] for national coal and 65.08 [e/tCoal] for imported coal) correspond
to the average price of coal during the year 2010.

In order to recalculate, accordingly with the updated price of coal, the constant, linear
and quadratic coefficients, cbi , c

l
i and cqi , of the generation costs, the price of the coal

([e/ton]) have been transformed to [ce/kWh], based on the information found in Energygn
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TABLE 1. Operational Characteristics of the Thermal Units

i cbi cli cqi p
i

pi st0i coni coffi toni toffi
e e/MWh e/MWh2 MW MW hr e e hr hr

1 159.24 42.55 0.016 160.0 350.0 +3 435.09 435.09 3 3
2 901.70 59.38 0.038 250.0 563.2 +3 1307.70 1307.70 3 3
3 344.68 30.41 0.038 160.0 370.7 +3 462.07 462.07 3 3
4 322.04 60.04 0.032 160.0 364.1 +3 682.04 682.04 3 3

TABLE 2. Operational Characteristics of the Combined Cycle Units

c Pc cbi cli cqi p
i

pi st0i coni toni
e e/MWh e/MWh2 MW MW hr e hr

1 5 151.08 50.37 0.023 160.0 350.0 –2 803.75 2
1 6 224.21 32.50 0.035 250.0 563.2 –2 412.80 2
2 7 163.11 55.58 0.019 90.0 350.0 –2 320.50 2
2 8 245.32 31.10 0.022 220.0 700.0 –2 510.83 2

in a Ton of Coal [39]that ensures that each ton of coal consumed at an electric power
plant produces about 2.000 kilowatt hours (or 2 [MWh]) of electricity. According to this,
for example, 40 [e/tCoal] corresponds to 20 [e/MWh]. Once the costs are expressed in
[ce/kWh] the coefficients from the generation costs and the start-up and shut-down costs,
con and coff have been re-calculated proportionally to the respective values in [25]. Table
1 shows the updated operational characteristics of the thermal units. For instance, in [25],
the constant coefficient from generation cost for the first thermal unit is 151.08 [e], and its
fuel supply cost is 20 [e/MWh], then as the updated fuel supply cost is 21.08 [e/MWh] (or
42.16 [e/tCoal]) the updated constant coefficient from generation cost can be calculated
as follows:

151.08 [e] ∗ 21.08 [e/MWh]
20 [e/MWh]

= 159.24 [e]

The remaining data have been calculated in a similar way. The values of p
i
, pi, st

0
i , toni

and toffi are the same that were considered in [25]. The characteristics of the CC units and
bilateral and future contracts are shown in Table 2 and 3, respectively. The parameter st0i
stands for the number of hours the unit has been on (st0i > 0) or off (st0i < 0) previous to
the first optimization period. The minimum off time for both CC units (parameter (toffc )C

in Eq.21) was set to 3 hours, and both CC units was considered shut-down for one hour
previous to the first optimization period.

All data related with SO2 and NOx can be obtained from Tables 4 and 5. The emission
limits SO2 and NOx derives from the National Emission Reduction Plan [2].

The generation unit’s emission data shown in Table 5 are adapted from [29] while the SO2
and NOx emissions rates correspond to the values published by the Intergovernmental
Panel on Climate Change Emission [40] for coal thermal units.gn
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TABLE 3. Characteristics of Futures and Bilateral Contracts

j LBCj,t=1...24 λBCj,t=1...24 LFCj,t=1...24 λFCj,t=1...24

MW e/MWh MW e/MWh

1 164 43,35 120 45,6
2 50 43,35 120 46,1
3 150 43,35 120 51,2

TABLE 4. Daily emission limits data

λCO2 CO2 SO2 NOx
e/t tCO2/day kg/day kg/day

15.28 1.527 3.900 17.651

TABLE 5. Generation unit’s emissions data

eCO2
i eSO2

i eNOxi

tCO2/e kg/MWh kg/MWh

Thermal units (National Coal) 0.06765 0.7848 1.368
Thermal units (Imported Coal) 0.04383 0.7848 1.368

CC units (Gas) 0.0104 - -

Emission conversion factors for CO2 have been recalculated according to section: Calcu-
lation of Carbon Dioxide Emissions of [29]. As the value of the emission coefficient for
each generator i, eCO2

i depends on the type of a generating unit, as well as on the quality
of the used fuel, its value needs to be calculated in a way that accounts for these variations.
Columns 3-5 of Table 6 shows the net calorific value (NCV), the emission factor (EF) and
the oxidation factor (OF) respectively. Column 6 shows the fuel supply cost (FSC) whose
values have been taken from Book of Energy in Spain 2010 [38] (national coal form p.
121 and imported coal from: p. 120), and finally column 7 show the emission conversion
factors whose values can calculated according to equation (16) in [29] by the following
expression:

(53) eCO2
i =

NCV · EF ·OF
FSC

Net calorific value and emission factor depend on the particular type of a fuel used, and
have to be regularly measured. The emission factor is based on the carbon content of a
fuel. Finally, the oxidation factor accounts for the fact that a portion of carbon content
remains unburned or partly oxidized and is therefore not emitted into the atmosphere.gn
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TABLE 6. CO2 Emission Conversion Factors

i Unit NCV EF OF FSC eCO2
i

Type kJ/kg or kJ/m3 tCO2 % e/t tCO2/e

1 and 3 National Coal 29308 98.3 0.995 42.16 0.06765
2 and 4 Imported Coal 29308 98.3 0.995 65, 08 0.04383

5. Numerical Tests

Four case studies was used to evaluate the impact of the emission constraints in the optimal
scheduling and bid of the generation units:

• BASE: optimal bid problem without neither emission constraints nor CO2 allowances.
Corresponds to problem (31) excluding both the CO2 rights cost/incomes term (30)
and emission constraints (24)-(25).

• EC: optimal bid problem with only emission constraints. Corresponds to problem
(31) retaining emission constraints (24)-(25).

• EC(γ, β): optimal bid problem with only emission constraints, but formulated using
the risk concepts. Corresponds to problem (31) excluding the CO2 rights cost/incomes
term (30) and replacing emission constraints (24) and (25) by (38)-(44) and (45)-(51)
respectively. Parameters γ and β are those described in the Section 2 of this chapter.
Different values of γ and β have been used in order to assess the possibility of ex-
ceeding emission limits. In particular, as an example, the results highlights the case
where γ = 0.3 and β = 0.15. The problem with emission constraints using the risk
concept can be mathematically expressed as the following optimization problem:

(54)



max EλD
[
h(u, cu, cd, g, p, b, f ;λD)

]
s.t. :

Eq. (1)− (2) FC and BC
Eq. (3)− (6) Day-ahead market
Eq. (7)− (8) Total generation
Eq. (9)− (14) Thermal unit commitment
Eq. (17)− (23) CC unit commitment
Eq. (38)− (44) and (45)− (51) Emission with risk

• CO2(α, ω)EC(γ, β): the complete model (31) with both CO2 allowances and SO2 and
NOx emission constraints formulated with the risk management methodology. Cor-
responds to full model (31) replacing emission constraints (24) and (25) by (38)-(44)
and (45)-(51) respectively, and including the CVaR constraint associated with the to-
tal profits including CO22 emission allowances (52). The parameter value γ and β
have been set to 0.3 and 0.15, respectively. α is the confidence level, its value has
been set at 0.95, ω the minimum CVaR. To calculate its value, first the optimal bid
problem with only CO2 allowances was solved (CO2 case). Then the CVaR of the
optimal solution of problem CO2 is calculated with the help of problem (37). To thisgn
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TABLE 7. Case studies, number of variables and constraints

Variables
Cases Continuous Binary Constraints

BASE 20.160 200 49.458
EC 20.160 200 49.558
EC(γ, β) 20.260 300 49.962
CO2(α, ω)EC(γ, β) 20.311 300 50.013

α = 0.95, γ = 0.3, β = 0.15 and ω = 669.000

end, the optimal value for both the first and the second stage variables is fixed in the
formulation of problem (37) and the resulting problem is optimized with respect to
variable ζ. The optimal value of this problem (704.862 e) corresponds to the CVaR
value associated with the case CO2, as explained previously in Section 2. Finally,
the lower bound to the CVaR value has been fixed to a 95% of the CVaR associated
with the case CO2: 669.000 e. The problem with emission constraints using the risk
concept and with the CVaR constraint can be mathematically expressed as follows:

(55)



max EλD
[
h(u, cu, cd, g, p, b, f ;λD)

]
s.t. :

Eq. (1)− (2) FC and BC
Eq. (3)− (6) Day-ahead market
Eq. (7)− (8) Total generation
Eq. (9)− (14) Thermal unit commitment
Eq. (17)− (23) CC unit commitment
Eq. (38)− (44) and (45)− (51) Emission with risk
Eq. (52) CVaR constraint

All these cases have been implemented with the AMPL modeling language [30] and solved
with CPLEX 12.4 [31] (mipgap=0.05, threads=20) over a SunFire X2200 with 32 Gb
of RAM memory and two dual core processors AMD Opteron 2222 at 3 GHz, taking
advantage of the multithreading capabilities of CPLEX.

The risk constrained models EC(γ, β) and CO2(α, ω)EC(γ, β) are, in fact, a family of
models parameterized by the risk factors α, ω,γ and β. In order to illustrate the effect
of the risk constraints in the solution of the optimal generation bid problem, the detailed
solution for the instance with α = 0.95, ω = 669.000, γ = 0.3, β = 0.15 and will be
presented.

Table 7 shows the number of continuous and binary variables as well as the number of
constraints for the four cases. Execution time is below one minute for cases: BASE, EC,
and CO2(α, ω)EC(γ, β) with α = 0.95, ω = 669.000, γ = 0.3 and β = 0.15. Execution
time is also below one minute for case EC(γ, β) with γ = 0, but when γ and β take values
the execution time increases considerably, for example when γ = 0.9 and β = 1.10 the
execution time is 269.051 s, about 3h45min.gn
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TABLE 8. Daily emissions at optimal solution

E[CO2] E[SO2] E[NOx]
t/day kg/day kg/day

BASE 1.561 8.413 14.665
EC 832 3.900 6.798

EC(γ, β) 859 4.074 7.101
CO2(α, ω)EC(α, β) 796 3.899 6.797
α = 0.95, γ = 0.3, β = 0.15 and ω = 669.000

TABLE 9. Optimal Incomes and Costs

BASE EC EC(γ, β) CO2(α, ω)EC(γ, β)

E[Profit] 469.663 e 448.766 e 455.451 e 710.828 e
BC Incomes 419.122 e 419.122 e 419.122 e 419.122 e
FC Incomes 374.543 e 374.543 e 374.543 e 374.543 e

E[Market Incomes] 691.628 e 482.469 e 494.382 e 395.160 e
E[Generation Costs] -1.011.020 e -823.194 e -828.422e -741.428 e

Start-up/shut-down Costs -4.608 e -4.173 e -4.173 e -4586 e
E[CO2 Rights Cost/Incomes] - - - 268.017 e

α = 0.95, γ = 0.3, β = 0.15 and ω = 669.000

Table 8 depicts the expected value of the CO2, SO2 and NOx emissions, at the optimal
solution of the four cases. The table clearly shows the impact of considering the emission
constraints on the level of emissions. Focusing on the CO2(α, ω)EC(γ, β) case, the CO2,
SO2 and NOx emissions has been reduced by 49%. 54% and 54% respectively, compared
to the BASE case.

Table 9 shows the optimal value of the expected profits (objective function of problem (31)
for the four cases together with the value of the different terms (26)-(30)). Although the
reduction in the total generation forced by the SO2 and NOx limits (case EC(0.3, 0.15))
causes a decrease of 3% in the total profit, the expected incomes due to the CO2 rights:
268.017 e compensates this loss increasing the total expected profits in a 34%. Fig. 3
illustrates the structure of the benefits and the costs in each one of the cases-studies show-
ing the individual contribution of the bilateral contracts, the future contracts, the market
revenue, and the CO2 right incomes (if any) to the expected value of total profit. Total
cost has been also splitted in generation costs and Start-up/shut-down costs. While the
distribution of the benefits and costs is quite similar in the EC and EC(γ, β) cases , the
6,685 e/day difference in the optimal value of the two objective functions, turn out to be
quite significant. For instance considering Gas Natural Fenosa with a total of 19 generating
units (11 thermal units and 8 combined cycle units) the equivalent increase in the expected
profits will be 21.170 e daily which results in nearly 7.621.000 e over one year. This,
in turn, shows how flexibility in the emission limits satisfaction introduced by the CEaR
constraints affects (increases) the total profits.gn
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BASE EC EC(0.3, 0.15) CO2EC
0

5

10

15
x 10

5

E
ur

os

 

 

99.5% 99.5% 99.5% 99.4%

0.5%
27.1%

18.4%

0.5% 0.5%

0.6%

28.8%
32.8%

28.2%

25.2%

46.6%

37.8% 38.4%

25.7%
29.3%29.3%

32.5%

FIG. 3. Optimal Incomes and Costs. The graph shows the overall per-
centage of participation of the different income and cost sources as to the
total value of the profit function.

The impact of the emission constraints over the individual units commitment of each gen-
eration unit, together with the optimal dispatch of the bilateral and future contracts, i.e.,
the quantity each unit commits to the bilateral contracts for each interval t, and the energy
used to cover the futures contracts, can be judged from Fig. 4, 5 and 6. Fig. 4 depicts
the optimal unit commitment for the BASE case. The blue area corresponds to the energy
allocated to the bilateral contracts (variable bti); the green area is the energy of the price
acceptance bid qti that includes the energy allocated to the futures contracts ftij . Finally,
the yellow area is, for each generation i and period t, the expected value of the matched
energy in the day-ahead market

∑
s∈S

P spsti. Comparing the generation profiles in Fig. 4 and

5 it is clear how the environmental constraints are affecting the unit commitment: all the
high-emission coal thermal generators are shut-down as soon as toffi allows, except ther-
mal unit 3, which is maintained on to satisfy future contract 3. This effect is due mainly to
the opportunity of profits in the CO2 market by reducing the emission below the Genco’s
free emission allowances. Although the energy matched in the day-ahead market (the ad-
dition of the green plus yellow areas) is reduced from the BASE to the CO2EC cases, the
overall profits increases due to the CO2 rights incomes.gn
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The basic premise, that higher expected returns can only be achieved by taking a greater
risk, leads naturally to the concept of an efficient frontier. The efficient frontier defines
the maximum profit that can be achieved for a given confidence level of risk. One way
to assess risk is to consider different expected profits varying the confidence levels and
generate the efficient frontier. In Fig. 7 it is possible to assess how affects the value of the
objective function to overcome the SO2 and NOx emissions limits. The fewer limitations
there are in the value of emissions, the greater the value of the objective function will be,
i.e. as γ takes larger values, emissions may exceed the limit with greater probability and
consequently the objective function value increases. Moreover, if the average percentage
at which emissions exceeds the limit is increased (i.e. when β increases), the expected
value of the profits increase accordingly. Figure 7(b) has highlighted the case EC(0.3,
0.15) to emphasize the result in one of the case studies. As an example of an improvement
in profits in an extreme case, it has also highlighted the case γ = 0.9 and β = 0.3 whose
objective function value is 459,779 e. In this case, the violation of emission restrictions
would represent for a company like Gas Natural an increase in profits at the end of a year of
about 12,564,000 e. It is worth mentioning that given the proximity of the plotted points
in Fig.7, it was necessary to use a smaller optimality gap (mipgap=0.01) to build it. For
these reason the value represented of the EC case (i.e. γ = 0 and β = 0) does not match
the value presented in Table 9.

Figure 8 depicts, for each generation unit, the total expected matched energy (yellow bar),
the total price-acceptant offer (green bar) and the total energy assigned to bilateral con-
tracts, excluded from the market (blue bar). It can be observed how the CEaR and CVaR
risk constraints affects the overall participation of the units in the market. It is specially rel-
evant how heavily the CEaR risk constraints are affecting the results in the case of thermal
units 3 and CC unit 2.
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FIG. 4. Unit commitment of the generation units for the BASE case: bti
(scheduled energy for bilateral contract, blue), qti (price acceptant bid,
green). In yellow the expected value of matched energy. For the CC
units, dark colors are for state 1 and light colors for state 2.gn
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FIG. 5. Unit commitment of the generation units for the EC(γ, β) case
with γ = 0.3 and β = 0.15 : bti (scheduled energy for bilateral contract,
blue), qti (price acceptant bid, green). In yellow the expected value of
matched energy. For the CC units, dark colors are for state 1 and light
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FIG. 6. Unit commitment of the generation units for the CO2(α,
ω)EC(γ, β) case with α = 0.95, γ = 0.3, β = 0.15 and ω = 669.000:
bti (scheduled energy for bilateral contract, blue), qti (price acceptant
bid, green). In yellow the expected value of matched energy. For the CC
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Chapter 5
Conclusions

In this thesis we addressed one of the key challenges faced by electricity generation com-
panies. On a daily base, generation companies have to decide the generation bid to be
submitted to the day-ahead electricity market1, where a total of more than 30 millions of
Euros are negotiated daily. Management decision are aimed reduce cost and increase in-
come. Hence, economic efficiency is of utmost importance for generating companies, but
new constraints should be taken into account to ensure admissible levels of emission in the
environment. The new competitive and environmentally constrained electricity supply in-
dustry requires new computing tools to ensure both competitiveness with other generating
companies in the electricity market and secondly, environmental protection by limiting the
emission of greenhouse gases into the atmosphere.

Generally, the impact of the environmental restrictions in the optimal electricity genera-
tion has been studied through simulation techniques ([13, 14]) or deterministic models that
neglect stochasticity [10]. The approach of this thesis is to cope with stochasticity using
stochastic programming techniques [41]. Stochastic programming is a powerful optimiza-
tion technique that allows to incorporate in a single mathematical optimization model the
same statistical information on the relevant random variables handled in the simulation
studies performed by other authors, with the advantage that stochastic programming pro-
vides, in a single run, the optimal decisions with respect to all possible outcomes of the
random variables.

This work provides a mixed-integer stochastic programming model for the integration of
both bilateral and futures contracts and the emission restrictions into the day-ahead bidding
problem of a Genco operating in the IEM, taking into account the most recent environmen-
tal policy. The optimal bid of the model determines, not only the optimal bidding strategy
and the optimal operation of the generating units, but also the optimal economic dispatch
for BCs and the committed FCs for all thermal and combined cycle units each hour, as well
as the influence of the emission constraints on the generation scheduling. The model was
implemented in the AMPL language and solved with the commercial optimization package
CPLEX. The applicability of the results is supported by the computational test preformed
with real data of the Spanish wholesale electricity market in addition to data of actual gen-
eration units of Gas Natural Fenosa, one of the major Spanish electrical utilities which
is collaborating actively with the GNOM-Energy research team. Results indicate that the

1http://www.omie.es/files/flash/ResultadosMercado.swf
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50 5. CONCLUSIONS

formulation of the problem can be used to find good-quality solutions in a relatively short
time frame.

This thesis has successfully achieved the list of proposed objectives, namely:

• The improvement of the emission-bounded model (Chapter 3) with a new formulation
of the unit commitment constraints for Combined Cycle units and the computational
implementation and solution of the model, together with the analysis of the achieved
results.

• The formulation of a new risk-constrained model, a more elaborated alternative to the
initial emission-bounded model, where the risk of both financial profits and violation
of emission limits are formulated in terms of CVaR and CEaR (a new CVaR-like risk
measurement tool introduced in this thesis) constraints.

• The computational resolution of four case-studies:

– Base case model disregarding emissions limits,
– Emission-bounded model: EC case,
– CEaR risk-constrained model: EC(γ, β) case and
– CEaR+CVaR risk constrained model: CO2(α, ω)EC(γ, β) case.

• The detailed analysis of the four aforementioned models showing the impact of the
environmental constraints in both the generation unit’s optimal bid and scheduling
as well as the impact in the expected profits’ structure, together with the economical
consequences of different levels of risk-aversion.

gn
om

.u
pc

.e
du



Chapter 6
Further developments

The work developed in this project can be extended in three ways.

• From the point of view of the modelization, it would be interesting to include in the
stochastic programming model emission-free technologies, as wind-power, solar and
hydro-generation units, taking advantage of the experience of the GNOM group in
the mathematical modellization of such generation systems. Also, the actual multi-
market structure of the electricity markets, where the electricity generation can be bid
not only to the day-ahead market but to other subsequent markets (mainly system re-
serve and intraday markets), should be incorporated in the model, following the most
recent developments of the GNOM-Energy team [36].

• From the point of view of the theoretical study of the mathematical properties of the
optimization problem, it would be interesting to try to find specific valid inequalities
of the feasible polytope of problem (31) to be aggregated to the Branch and Cut al-
gorithm of CPLEX. This study will contribute to the characterization of the polytope
of (31) [42].

• The execution times observed in the computational tests performed so far are below
one minute, which is acceptable for this kind of problems with a day-ahead horizon.
But with the addition of the wind, solar and hydro-generation units and the inclu-
sion of the reserve and intraday markets, execution times are envisaged to strongly
increase. This will lead to the necessity of substituting the general purpose opti-
mization package CPLEX with specialized algorithm for large-scale mixed integer
nonlinear programming (MINLP). The GNOM-Energy group has been engaged in
the last years in the development of such specialized procedures that could be ap-
plied to this end: outer polyhedral approximations of the quadratic objective function
h(u, cu, cd, g, p, b, f) through perspective cuts [5]; Branch and Fix Coordination [43].
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Notation

Acronyms and symbols

BC: Bilateral Contracts.
CEaR: Conditional Emission-at-risk.
CVaR: Conditional Value-at-Risk.

CC: Combined Cycle.
CCGT: Combined Cycle Gas Turbines.

CO2: Carbon Dioxide.
CT: Combustion turbine.

DAM: Day-ahead Market.
e: Euro.

ETS: Emission Trading Scheme.
EF: Emission Factor.
EU: European Union.
FC: Future Contracts.

FSC: Fuel Supply Cost.
GenCo: Generation Company.
HRSG: Heat Recovery Steam Generator.

IEM: Iberian Electricity Market.
kWh Kilowatt hour.

MWh: Megawatt hour.
NAP: National Allocation Plan.
NCV: Net Calorific Value.

NERP: National Emission Reduction Plan.
NOx: Nitrogen Oxides.

OF: Oxidation Factor.
OMEL: Electricity Market Operator.

RD: Real Decreto.
SO2: Sulphur Dioxide.

ST: Steam Turbine.
PUs: Pseudo Units.
VaR: Value-at-Risk.gn
om

.u
pc

.e
du



REFERENCES 1

Sets

B: set of bilateral contracts.
F : set of futures contracts.
I: set of thermal units.
Ij : set of generation units allowed to cover the FC j.
Ki: set of the initial states of each unit i (formulation presented in [25]).
Pc: set of pseudo-units of the CC unit c ∈ C.
P: the complete set of pseudo-units. P = ∪c∈CPc.
S: set of scenarios.

X ∈ Rn: feasible set of generation bids.
T : set of hourly auctions of the DAM.
U : total set of generation units.

Parameters

cbi , c
l
i, c

q
i : constant, linear and quadratic coefficients of the generation cost function of unit i.

coni , coffi shut-down and start-up cost of unit t.

CO2: the GenCo’s aggregated free emission allowances.

eSO2
i , eNO2

i : the SO2 and NOx emission coefficients of the generation-to-emission linear function
of thermal unit i ∈ I.

eCO2
i : the emission conversion factor of unit i
Gi: number of periods that unit i must be initially online, due to its minimum up-time toni .

Hi: number of periods that unit i must be initially offline, due to its minimum down-time toffi .
HC
c : represents the number of the initial time periods along which the CC unit c must remain off.

LBtk: amount of energy to be procured during hour t of the delivery period by the set of
available generation units to cover the BC k.

LFj : amount of energy to be procured each interval of the delivery period by the set Ij of
generation units to cover contract j.

MSO2 : upper bound of the SO2 emission violation.
MNOx : upper bound of the NOx emission violation.

P s: probability of scenario s.

P i , P i: upper and lower bounds on the energy generation.
st0i : the number of hours the unit i has been on (st0i > 0) or off (st0i < 0) previous

to the first optimization period.

SO2, NOx: limits to the joint SO2 and NOx emissions of the thermal units.

toni , toffi : operational minimum idle and in service time of unit i.

(toffc )C minimum down time of the CC unit c .
tCc : the minimum down time of each CC unit.
u0i: initial state of each thermal unit i.gn
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α: confidence level of the CVaR constraint.

αonti , αoffti : allow the regulation of the minimum up and down time

which are imposed by the parameters (toni ) and (toffi ), respectively,
or at a minimum, the number of periods that are needed to complete
the optimization period: t ∈ T = {1, 2, . . . , 24}.

β: the maximum permitted violation as a fraction of the emission limit.
γ: probability that some of the scenarios exceeds the emission limit.

λBk : settlement price of futures contract j
λCO2 : the estimated CO2-emission price in the emission trading market.

λD,st : clearing price for auction t at scenario s.
λFj : settlement price of futures contract j.
ω: the minimum CVaR for the CVaR constraint.

Variables

as: auxiliary variables to optimize the value of CVaR and, at the same time,
to calculate the value of VaR.

ait: binary variable indicating the shutting-down of unit i at interval t (formulation
presented in [25]).

bti scheduled energy for bilateral contract allocated to thermal unit i at interval t.

cuti, c
d
ti: start-up/shut-down costs variables of unit i.

cutPc(1), c
u
tPc(2): the start-up costs continuous variables for each PU i ∈ P .
eit: binary variable to indicate the turning-on of unit i at interval t (formulation

presented in [25]).
emiSO2,s,
emiNOx,s: auxiliary continuous variables to control the average amount in which

the emissions exceed the SO2 and NOx emissions respectively.
ftij : continuous variable representing the energy of the future contract j allocated to

thermal unit i at interval t.
gsti: total generation.
psti: matched energy in the day-ahead market.
qti: continuous variable standing for the energy of the instrumental price offer of unit i

at interval t.
uti : unit commitment binary variables expressing the off-on operating status of the unit i .

ys, zs: auxiliary binary variables to classify the scenarios in which the SO2 and NOx
emissions exceed the limit.

ζ(1−α)(x): the VaR(1− α) value.
φ(1−α)(x): the CVaR(1− α) value.gn
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Functions

F(1−α)(x, ζ): the CVaR function.

F̃(1−α)(x, ζ): approximation of the CVaR function.
h(x, λD): the profit function associated with the decision vector x and the random vector λD.

Ψ(x, ζ): probability that the profit h(x, λD) does not fall bellow a threshold ζ.
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