
A shortest paths heuristic for statistical
data protection in positive tables

Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona (Catalonia, Spain)

jcastro@eio.upc.es
Research Report DR 2004-10

July 2004. Updated June 2005.

Report available from http://www-eio.upc.es/~jcastro





A shortest paths heuristic for statistical data
protection in positive tables

Jordi Castro

Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya,

Pau Gargallo 5, 08028 Barcelona, Catalonia, Spain,
jcastro@eio.upc.es,

http://www-eio.upc.es/˜jcastro

Abstract

National Statistical Agencies (NSAs) routinely release large amounts
of tabular information. Prior to dissemination, tabular data need to
be processed to avoid the disclosure of individual confidential infor-
mation. Cell suppression is one of the most widely used techniques
by NSAs. Optimal procedures for cell suppression are computation-
ally expensive with large real-world data, and heuristic procedures are
used in practice. Most heuristics for positive tables (i.e, cell values
are non-negative) rely on the solution of minimum cost network flows
subproblems. A very efficient heuristic based on shortest paths was
already developed in the past, but it was only appropriate for general
tables (i.e., cell values can be either positive or negative), whereas in
practice most tables are positive. The method presented in this work
sensibly combines and improves previous approaches, overcoming some
of their drawbacks: it is designed for positive tables and only requires
the solution of shortest path subproblems—therefore being much more
efficient than other network flows heuristics. We report an extensive
computational experience in the solution of randomly generated and
real-world instances, comparing the heuristic with alternative proce-
dures. The results show that the method, currently included in a
software package for statistical data protection, fits NSAs needs: it is
extremely efficient and provides good solutions.

Key words: statistical disclosure control; cell suppression problem; linear
programming, network optimization; shortest paths.

1. Introduction

The field of statistical disclosure control comprises a set of tools for preserv-
ing confidentiality (i.e., individual information) when releasing statistical
data, either as microfiles —files of records, each record providing the values
for a set of variables of an individual—, or as tables that cross two or more

1



z1 z2
... ... ... ... ...

51–55 ... 38000e 40000e ...
56–60 ... 39000e 42000e ...

... ... ... ... ...

(a)

z1 z2
... ... ... ... ...

51–55 ... 20 1 or 2 ...
56–60 ... 30 35 ...

... ... ... ... ...

(b)

Figure 1: Example of disclosure in tabular data. (a) Average salary per
age and ZIP code. (b) Number of individuals per age and ZIP code. If
there is only one individual in ZIP code z2 and age interval 51–55, then any
external attacke would know taht the salary of this person is 40000e. For
two individuals, any of them can deduce the salary of the other, becoming
an internal attacker.

variables. An example of disclosure is illustrated in Figure 1. Table (a) shows
the average salary by age interval and ZIP code, while table (b) shows the
number of individuals for the same variables. If there were only one individ-
ual in ZIP code z2 and age interval 51–55, then any external attacker would
know that the salary of this person is 40000e. For two individuals, any of
them could deduce the salary of the other, becoming an internal attacker.
In that example, cells (51–55,z2) of both tables are sensitive and their values
should be protected. There are rules for the identification of sensitive cells;
a recent discussion about them is presented in Domingo-Ferrer and Torra
(2002). Good introductions to the state-of-the-art in statistical disclosure
control can be found in the monographs Willenborg and de Waal (2000),
Domingo-Ferrer (2002) and Domingo-Ferrer and Torra (2004).

Cell suppression is one of the most widely used techniques by National
Statistical Agencies (NSAs) for the protection of confidential tabular data.
Given a list of cells to be protected, the purpose of the cell suppression
problem (CSP) is to find a pattern of additional (a.k.a. complementary or
secondary) cells to be suppressed to avoid the disclosure of the sensitive
ones. This pattern of suppressions is determined under some criteria as,
e.g., minimum number of suppressions, or minimum value suppressed.

CSP was shown to be NP-hard in Kelly, Golden and Assad (1992).
This motivated that most of the former approaches focused on heuristic
methods for approximate solutions (e.g., Gusfield (1988); Kelly, Golden and
Assad (1992); Carvalho, Dellaert and Osorio (1994); Cox (1995); Dellaert
and Luijten (1999); Giessing and Repsilber (2002)). This work presents a
new heuristic approach for positive tables (i.e., cell values are greater than
or equal to zero). It relies on the solution of shortest path subproblems,
and is significantly more efficient than most of the alternative methods. A
recent exact procedure based on state-of-the-art mixed integer linear pro-

2



gramming (MILP) techniques was able to solve to optimality nontrivial CSP
instances (Fischetti and Salazar, 2001). The main inconvenience of such an
approach from the practitioner point of view is that the solution of very large
instances—with possibly millions of cells—can result in prohibitive execu-
tion times, as shown in the computational results of this work. In practice,
tabular data protection is the last stage of the “data cycle”, and, in an at-
tempt to meet publication deadlines, NSAs require to find fast solutions to
protect large tables (Dandekar, 2003). It is noteworthy that improvements
in new heuristics also benefit the exact procedure, since they provide a fast,
hopefully good, feasible starting point.

Although most current heuristics for CSP are based on network opti-
mization, some recent approaches have been devised for obtaining fast so-
lutions to large problems. Among them we find the hypercube method,
developed by Destatis (German NSA) (Giessing and Repsilber, 2002), that
focuses on geometric considerations of the problem. Although very effi-
cient, this approach has two drawbacks: it may report nonfeasible solutions
(i.e., some cells remain unprotected); and it provides patterns with a large
number of secondary cells or value suppressed, compared to alternative ap-
proaches (i.e., it suffers from over-suppression). Network flows heuristics
for CSP usually exploit more efficiently the table information and provide
better results. The approach described in de Wolf (2002), developed by
the Centraal Bureau voor de Statistiek (Dutch NSA), decomposes large ta-
bles into smaller ones, independently protecting them at each iteration of
a backtracking procedure. This approach also does not guarantee feasible
solutions. The shortest paths heuristic of this work always reports feasible
solutions and, from the computational results with real-world instances, is
faster than the approach of de Wolf (2002) and provides better solutions
than the hypercube method.

There is a fairly extensive literature on network flows methods for CSP.
For positive tables, they rely on the formulation of minimum cost network
flows subproblems (Kelly, Golden and Assad, 1992; Cox, 1995; Castro, 2002).
Such approaches have been successfully applied in practice (Jewett, 1993).
Those heuristics require the table structure to be modeled as a network,
which, in general, it can only be accomplished for two-dimensional tables
with at most one hierarchical variable (see Section 3 for details). Although
minimum cost network flows algorithms are fast compared to the equivalent
linear programming formulations (Ahuja, Magnanti and Orlin, 1993, Ch. 9–
11), for large tables they still require large execution times (Castro, 2002).
Instead, the approach suggested in Carvalho, Dellaert and Osorio (1994)
consists of formulating shortest path subproblems, which can be solved very
efficiently through specialized algorithms (Ahuja, Magnanti and Orlin, 1993,
Ch. 4–5). The main drawback of that approach based on shortest paths is
that it could only be applied to general tables (i.e., cell values can be either
positive or negative), which are less common in practice.

3



To avoid the above problems of current network flows heuristics (namely,
the efficiency of those based on minimum cost flows subproblems, and the
suitability of that based on shortest paths for positive tables) we present
a new method that sensibly combines and improves ideas of previous ap-
proaches (mainly Kelly, Golden and Assad (1992), Carvalho, Dellaert and
Osorio (1994), and Cox (1995)). The resulting method applies to positive
tables and formulates shortest path subproblems. As shown by the com-
putational results, it is much faster than heuristics based on minimum cost
network problems for large tables. The new approach has been included
in the τ -Argus package (Hundepool, 2004) in the scope of the project IST-
2000-25069 CASC (Computational Aspects of Statistical Confidentiality),
funded by the European Union. That project involved 14 institutions from
five European countries, including the NSAs of Catalonia, Germany, Italy,
Netherlands, Spain and United Kingdom.

This work extends the early version Castro (2004), which outlined the
unfinished method and reported some preliminary results. In particular,
compared with the early version, the current work presents the infeasibility
recovery procedure (in Subsection 4.5), which guarantees the robustness of
the method; the computational complexity (Subsection 4.9), which shows
the efficiency of the approach compared to previous ones; and the lower
bounding procedure (Section 5), which can be used to estimate the quality of
the solution found by the heuristic. Moreover, unlike the early version, this
work presents computational results with a definitive implementation of the
algorithm, including those obtained for real confidential data, reported by
the NSAs of Germany and Netherlands. These results prove the effectiveness
of the approach.

This paper is organized as follows. Section 2 outlines the formulation
of CSP. Section 3 briefly shows how to model a two-dimensional table with
at most one hierarchical dimension as a network. Section 4 outlines the
antecedents and presents the new shortest paths heuristic. Section 5 presents
an improved version of the lower bounding procedure introduced in Kelly,
Golden and Assad (1992). Finally, Section 6 reports the computational
experience in solving randomly generated and real-world instances, showing
the effectiveness of the method.

2. Formulation of CSP

Given a positive table (i.e., a set of cells ai ≥ 0, i = 1, . . . , n, satisfying m
linear relations Aa = b, A ∈ IRm×n, b ∈ IRm), a set P of primary sensitive
cells to be protected, and upper and lower protection levels uplp and lplp for
each primary cell p ∈ P, the purpose of CSP is to find a set S of additional
secondary cells whose suppression guarantees that, for each p ∈ P,

ap ≤ ap − lplp and ap ≥ ap + uplp, (1)

4



ap and ap being defined as

ap = min xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ S
xi = ai i 6∈ P ∪ S

and

ap = max xp

s.t. Ax = b
xi ≥ 0 i ∈ P ∪ S
xi = ai i 6∈ P ∪ S.

(2)

ap and ap in (2) are the lowest and greatest possible values that can be
deduced for each primary cell from the published table, once the entries in
P ∪ S have been suppressed. The lower and upper protection levels lplp
and uplp determine the length of the interval [ap− lplp, ap +uplp]. Imposing
(1), the lowest and greatest values deduced for each primary cell from the
published table are out of the above interval, making the cell safe. In practice
the protection levels are a fraction of the cell value (e.g., 15% and 30% are
usual values), but for small cells, where protection levels greater than the cell
value are allowed. CSP can thus be formulated as an optimization problem
of minimizing some function that measures the cost of suppressing additional
cells subject to that conditions (1) are satisfied for each primary cell. Unlike
Kelly, Golden and Assad (1992) we did not consider a sliding protection level
splp for primary cell p such that ap ∈ [ap, ap] and ap − ap ≥ spll. This was
not a requirement for our end users, who were mainly interested in lower
and upper protection levels.

CSP was first formulated in Kelly, Golden and Assad (1992) as a large
MILP problem. For each cell ai a binary variable yi, i = 1, . . . , n is con-
sidered. yi is set to 1 if the cell is suppressed, otherwise is 0. For each
primary cell p ∈ P, two auxiliary vectors xl,p ∈ IRn and xu,p ∈ IRn are intro-
duced to impose, respectively, the lower and upper protection requirement
of (1). These vectors represent cell deviations (positive or negative) from
the original ai values. The resulting model is

min
n∑

i=1

wiyi

s.t. Axl,p = 0
−aiyi ≤ xl,p

i ≤ Myi i = 1, . . . , n
xl,p

p ≤ −lplp

Axu,p = 0
−aiyi ≤ xu,p

i ≤ Myi i = 1, . . . , n
xu,p

p ≥ uplp





∀ p ∈ P

yi ∈ {0, 1} i = 1, . . . , n.

(3)

wi is the information loss associated with cell ai, usually set to wi = ai

(minimize the overall suppressed value) or wi = 1 (minimize the overall

5



number of suppressed cells). The inequality constraints of (3) with both
right and left-hand sides impose bounds on xl,p

i and xu,p
i when yi = 1 (M

being a large value), and prevent deviations in nonsuppressed cells (i.e.,
yi = 0). Clearly, the constraints of (3) guarantee that the solutions of the
linear programs (2) will satisfy (1). (3) gives rise to a MILP problem of n
binary variables, 2n|P| continuous variables, and 2(m + 2n)|P| constraints.
This problem is very large even for tables of moderate size and number of
primary cells. For instance, for a small-medium table of 8000 cells, 800
primaries, and 4000 linear relations, we obtain a MILP with 8000 binary
variables, 12800000 continuous variables, and 32000000 constraints.

If matrix A could be modeled as a network, we would find a feasible
non-optimal (but hopefully good) solution to (3) through a succession of
network flows subproblems for each primary cell. This is the basis of any
network flows heuristic for CSP. Different network subproblems (which pos-
sibly mean different solution algorithms) give rise to alternative heuristics.
Before presenting the heuristic in Section 4 we first show the particular net-
works considered for two-dimensional tables with and without a hierarchical
variable.

3. Modeling tables as networks

The linear relations of a two-dimensional table of r+1 rows and c+1 columns
aij , i = 1, . . . , r + 1, j = 1, . . . , c + 1 (last row and column are marginal) are

c∑

j=1

aij = ai,c+1 i = 1, . . . , r

r∑

i=1

aij = ar+1,j j = 1, . . . , c.

(4)

It is well-known (see, e.g., Ahuja, Magnanti and Orlin (1993, Ch. 6,8))
that equations (4) can be modeled as the network of Figure 2. Arcs are
associated with cells and nodes with constraints. The number of undirected
arcs n (i.e., the number of cells) and the number of nodes (i.e., the number
of linear relations) of the network is

n = (r + 1)(c + 1) m = r + c + 2. (5)

(Indeed, the number of linear reations is r + c + 1, since one is redundant.)
Two-dimensional tables with one hierarchical variable can also be mod-

eled through a network, and are of great practical interest (Cox and George,
1989; Jewett, 1993). Before providing a general formulation for hierarchical
tables, we first illustrate them through a small example. Without loss of
generality we will assume that the hierarchical variable appears in rows.

6



.  
.  

.

1

2

.  
.  

.

2

c

r+1c+1

1

r

Figure 2: Network representation of a (r + 1)× (c + 1) table

T1

C1 C2 C3

R1 5 6 11
R2 10 15 25
R3 15 21 36

T2

C1 C2 C3

R21 8 10 18
R22 2 5 7
R2 10 15 25

T3

C1 C2 C3

R211 6 6 12
R212 2 4 6
R21 8 10 18

Figure 3: Two-dimensional table with hierarchical rows made up of three
(2 + 1)× (2 + 1) subtables, T1, T2 and T3

Figure 3 shows a hierarchical table with three subtables. Row R2 of
subtable T1 has a hierarchical structure: R2 = R21+R22. The decomposition
of R2 is detailed in T2. And row R21 of subtable T2 is also hierarchical; T3

shows its structure. For instance, rows Ri could correspond to regions, R2i

to cities, and R21i to ZIP codes. Although in the example all the subtables
have the same number of rows, this is not required in general. However, the
number of columns must be the same for all the subtables; otherwise, we
would not preserve the hierarchical structure in only one dimension. Clearly,
every subtable can be modeled through a network similar to that of Figure
2. The hierarchical structure tree of the example is shown in Figure 4. That
tree has three levels, and one subtable per level. In general, we can have
hierarchical tables of any number of levels, and any number of subtables per
level (i.e., any number of hierarchical rows for each subtable).

In general, a hierarchical table—with one hierarchical variable— can
be represented by a set of t two-dimensional (rk + 1) × (c + 1) subtables,
k = 1, . . . , t, plus additional equality side constraints. rk + 1 is the number
of rows of subtable k, while c+1 is the number of columns for all subtables.
The additional equality side constraints impose that common cells of two
subtables must have the same values, and can be defined through the set of
three-dimensional vectors

E = {(ok, uk, vk), k = 1, . . . , t− 1}. (6)

7



T1

?
R2

T2

?
R21

T3.

Figure 4: Hierarchical structure tree from the example of Figure 3

Vector (ok, uk, vk) indicates that row ok of table uk is decomposed in table vk.
For the above example, we have E = {(R2, T1, T2), (R21, T2, T3)}. Therefore,
E provides the particular structure of the hierarchical tree. Given E , the
table relations can be written as

c∑

j=1

ak
ij = ak

i,c+1 k = 1, . . . , t i = 1, . . . , rk

rk∑

i=1

ak
ij = ak

rk+1,j k = 1, . . . , t j = 1, . . . , c

auk
ok,j = avk

rk+1,j k = 1, . . . , t− 1 j = 1, . . . , c.

(7)

(7) gives rise to a network flow feasibility problem made of t subnetworks,
one per table, with (t − 1)c side constraints. For t = 1 no side constraints
are considered, and (7) represents a single two-dimensional table.

Equations (7) can be modeled as a network. A fast algorithm—linear
in the number of subtables—was described in Castro (2004). Applying this
algorithm to the example of Figures 3 and 4, we obtain the network of Figure
5. The number of undirected arcs n and nodes m of the network associated
with a hierarchical table is

n = (c + 1)(1 +
t∑

k=1

rk) m = 2 + tc +
t∑

k=1

rk. (8)

(5) is a particular case of (8) for t = 1.
More complex tables, as two-dimensional tables with hierarchies in both

variables, do not accept a pure network representation. A partial proof
of this result, valid for the network formulation of the complete controlled
rounding problem, was given in Cox and George (1989). However they can
be modeled as a network with additional side constraints. Since the number
of side constraints can be very large, general state-of-the-art dual simplex
implementations (Bixby, 2002) can outperform specialized algorithms for
network flows with side constraints (Castro and Nabona, 1996). Network
flows heuristics for CSP will, in general, not show a good performance in
these situations.

8



C3

R1

C3’

R22

R3

C2

C1’

C2’

C1

C3’’

R211

R212

C1’’

C2’’

11

25

7

18

5

15

21

15

10

2

12

6

8

10

6

6
2

4

36

5
6

Figure 5: Network from the example of Figures 3 and 4. Nodes with the
same name in different tables are marked with “′” and “′′”.

4. Antecedents and the shortest paths heuristic

We first present a common framework for network flows heuristics for CSP.
In the next three subsections, we outline the methods of Kelly, Golden and
Assad (1992), Carvalho, Dellaert and Osorio (1994), and Cox (1995). We
finally introduce the new heuristic, stating the common elements and differ-
ences with the previous approaches, and discussing some of its main features.

4.1. Framework for network flows heuristics

After modeling the table as a network, for each cell ai two arcs x+
i = (s, t)

and x−i = (t, s) are created, which are respectively related to increments
and decrements of the cell value. We use the notation x = (s, t) for an
arc x with source and target nodes s and t. Forward arcs x+ are clockwise
oriented, and are those that appear in the Figures 2 and 5. Backward arcs
x− are obtained by changing the direction of the arrows of the arcs depicted
in Figures 2 and 5.

A feasible solution to problem (3) can be obtained by solving two min-
imum cost network flows problems for each primary cell as follows. Given
the primary cell p ∈ P, let us consider its forward arc x+

p = (s, t) in the
network. In the first minimum cost network flows problem, associated with
the upper protection level, we send uplp units of flow from t to s through
the network excluding arc x−p = (t, s). We obtain an augmenting cycle. The
cells associated with the arcs in this augmenting cycle are suppressed (note
that some of these cells can be primary or secondary cells suppressed in the
augmenting cycle for a previous primary). The arc costs, to be discussed
later, are chosen to reduce the number of new suppressions. In the second
minimum cost network flows problem, associated with the lower protection
level, we proceed as before, now sending lplp units of flow from s to t through
the network excluding arc x+

p = (s, t). The above procedure is successively
repeated for all the primary cells. We finally obtain a set S of secondary

9



Algorithm Heuristic of Subsection 4.2 (Table,P, spl = lpl + upl)
1 S = ∅;
2 Create network, made of two subnetworks (lower and upper protection)
3 for each p ∈ P do
4 Set arc costs, using the source and target of primary arc x+

p = (s, t);
5 Solve minimum cost network flows problem;
6 V = {cells associated with arcs with positive flows};
7 S := S ∪ V \ P;
8 end for each
9 Clean-up procedure;
10 Return: S;
End algorithm

Figure 6: Outline of Kelly, Golden and Assad (1992) heuristic

suppressed cells that contains all the non-primary cells associated with arcs
in augmenting cycles. It is now clear that, if we solve the two problems
(2) the value ap of the primary cell p can be decreased and increased by
respectively lplp and uplp units by readjusting some of the cells in P ∪ S.
We thus satisfy (1).

4.2. The heuristic of Kelly, Golden and Assad (1992)

The approach of Kelly, Golden and Assad (1992) combined the two minimum
cost network flow problems discussed in Subsection 4.1 in a single problem.
For each primary cell p ∈ P an overall flow of splp = lplp + uplp is sent
through both networks. splp is the sliding protection level of primary p. A
fraction of splp is sent from t to s in one network (the “upper protection”
network) and the remaining flow is sent from s to t in the other network
(the “lower protection” network). Unlike ours, this approach do not satisfy
the upper and lower protection requirements, just the sliding protection
ones. The main steps of this procedure are shown in Figure 6. P and S in
the algorithm denote respectively the sets of primary and secondary cells.
This heuristic considered a clean-up procedure, performed at the end of the
protection stage. The clean-up is computationally very expensive and it
has not been introduced in the heuristic of this work. The approach also
computed an initial set of suppressions through a lower bounding procedure.
Such procedure is discussed and improved for our heuristic in Section 5

10



Algorithm Heuristic of Subsection 4.3 (Table,P)
1 S = ∅;P ′ = P;
2 for each p ∈ P ′ do
3 Find source and target nodes of primary arc x+

p = (s, t);
4 Set arc costs;
5 Compute the shortest path SP from t to s;
6 T = {cells associated with arcs ∈ SP};
7 S := S ∪ T \ P;
8 P ′ := P ′ \ T ;
9 end for each
10 Return: S;
End algorithm

Figure 7: Outline of Carvalho, Dellaert and Osorio (1994) heuristic

4.3. The heuristic of Carvalho, Dellaert and Osorio (1994)

This heuristic was designed for general tables (cells are allowed both posi-
tive and negative values). Neither the cell values nor the lower and upper
protection levels are required for performing the protection of the table, but
only the cell positions. In practice this means that infinity upper or lower
protection levels are provided for protected cells. This is a consequence of
the lack of lower and upper bounds for cell values.

Unlike the heuristics of Subsections 4.2 and 4.4, this procedure does
not perform minimum cost network flows computations, but shortest paths
ones. For each primary cell p, associated to the arc x+

p = (s, t), the heuristic
computes the shortest path from t to s (or s to t, since we deal with general
tables). Costs of arcs are related to the cell values, or some function of the
cell values. The cells associated to arcs in the shortest path are protected
and considered secondary suppressions. If a primary cell appears in the
shortest path, it is protected. The algorithm is outlined in Figure 7. P ′
in this algorithm is the current set of unprotected primary cells. The main
benefit of this heuristic is that shortest paths computations are much more
efficient than minimum cost network flows ones. On the other hand, its
drawback is that positive tables can not be protected with this technique.
We adopted the idea of using shortest paths computations, in combination
with the methods of Subsections 4.2 and 4.4, thus extending shortest paths
heuristics to positive tables.

4.4. The heuristic of Cox (1995)

Unlike the framework of Subsection 4.1, this heuristic protected each pri-
mary cell p ∈ P through a sequence of minimum cost network flows sub-

11



Algorithm Heuristic of Subsection 4.4 (Table,P, upl, lpl)
1 S = ∅;
2 for each p ∈ P do
3 mp = max{lplp, uplp};
4 while mp > 0 do
5 Set arc costs and capacities;
6 Solve minimum cost network flow subproblem;
7 V = {cells associated with arcs in cycle};
8 S := S ∪ V \ P;
9 Compute γ = min{al : l ∈ V};
10 mp := mp − γ;
11 end while
12 end for each
13 Return: S;
End algorithm

Figure 8: Outline of Cox (1995) heuristic

problems, instead of with a single one. Assigning appropriate costs and
capacities, a minimum cost cycle is computed. The arc x+

p = (s, t) of the
primary p ∈ P is forced to belong to the cycle. The cells associated with
arcs in the cycle which are not primary cells are considered secondary cells.
Defining γ as the minimum of the values of cells associated with arcs in
the cycle, we can guarantee an upper and lower protection of γ for p. If
γ is greater than lplp and uplp, cell p is protected. Otherwise we look for
additional cycles until the cell is protected. Figure 8 outlines this procedure.

As the heuristic of Figure 8, the method of Subsection 4.5 protects each
primary through a sequence of subproblems. The motivation of Cox (1995)
for this sequence of subproblems was to approximate better the original com-
binatorial formulation of CSP. We had a somewhat different motivation, and
focused on efficiency. The heuristic of 4.5 solves a sequence of shortest path
subproblems, instead of minimum cost network flows ones, thus combining
the methods of Subsections 4.3 and 4.4. This is instrumental, and allows the
efficient protection of current large tables managed by NSAs (an impossible
mission using minimum cost network flows based approaches). Other main
improvements of the heuristic of Subsection 4.5 compared to that of Figure
8 are:

• The heuristic of Figure 8 can report a subproblem as infeasible, which
does not mean the infeasibility of the CSP. The heuristic of Subsection
4.5 includes an infeasibility recovery procedure for this purpose, which
guarantees the robustness of the approach.

12



• The new heuristic deals separately with the upper and lower protec-
tion, and updates not only the protection offered by the shortest path
to the current primary, but also to other primary cells. This enhances
the level of protection provided by each subproblem, significantly re-
ducing the number of shortest paths computations in some instances,
and even allowing the solution of problems with protection levels larger
than cell values. This is discussed in Subsection 4.6.

• Arcs costs of the new heuristic are computed following the stratifica-
tion suggested in Cox (1995), but with slightly different values. In
theory this may provide slightly worse protection patterns (in practice
they are not significant). However, the arc costs computation, which
is the most expensive step of the heuristic, is more efficient. This is
discussed in Subsection 4.7.

It is also worth to note that no computational experimentation was reported
for the heuristic of Cox (1995).

4.5. The shortest paths heuristic for positive tables

The main inconvenience of the approaches of Subsections 4.2 and 4.4 is that
minimum cost network flows subproblems must be solved. As in the ap-
proach of Subsection 4.3, these subproblems are replaced by shortest path
computations. In practice no more than a few shortest paths are required
for each primary cell. This dramatically reduces the overall running time.
Although it cannot be guaranteed that the sequence of shortest paths will
always protect the primary cell, such lack of protection only occurs in rare
situations. In particular, it never happened in our experiments with ei-
ther random or real data. However, even in this case we can switch, for
this primary cell, to the general framework of Subsection 4.1. Therefore,
the heuristic is always guaranteed to produce a (hopefully good) feasible
solution, if one exists.

Figure 9 shows the main steps of the heuristic. It combines some of the
ideas in the algorithms of Figures 6–8. Through the process, it updates the
set of secondary cells S, and two vectors Clpl and Cupl with the current
lower and upper protection values of all the primaries. The heuristic per-
forms one major iteration for each primary cell p ∈ P (lines 2–37 of Figure
9), and, unlike previous approaches, deals separately with the lower and up-
per protection values (lines 4–36). If not already done by previous primaries,
p is protected through one or possibly several minor iterations (lines 6–35).
At each minor iteration we first set the arc costs (see Subsection 4.7 below).
Arcs related to cells that can not be used are assigned a very large cost; arcs
related to primary or already suppressed cells are assigned a low favorable
cost. The arc costs are the only information to be updated for the network,
unlike previous approaches based on minimum cost network flows problems,

13



Algorithm Shortest paths Heuristic for CSP (Table,P, upl, lpl)
1 S = ∅; Clpli = 0, Cupli = 0, i ∈ P;
2 for each p ∈ P do
3 Find source and target nodes of primary arc x+

p = (s, t);
4 for each type of protection level ∗ ∈ {lpl, upl} do
5 T T = ∅; U = ∅;
6 while (C∗p < ∗p) do
7 Set arc costs;
8 Compute the shortest path SP from t to s;
9 if SP is empty then
10 // we have to solve two network flows problems
11 // before reporting this CSP instance as infeasible
12 T T = ∅;
13 S := S \ U ;
14 Set arc costs, capacities and zero node injections;
15 for each type of protection level ∗∗ ∈ {lpl, upl} do
16 if (∗∗ = lpl) then
17 Set supply uplp at node t and demand uplp at node s;
18 else
19 Set supply lplp at node s and demand lplp at node t;
20 end if
21 Solve minimum cost network flows problem;
22 if problem is infeasible then
23 Return: this CSP instance is infeasible;
24 end if
25 V = {cells associated with arcs with positive flows};
26 S := S ∪ V \ P;
27 end for each
28 go to line 37 for next primary;
29 end if
30 T = {cells associated with arcs ∈ SP};
31 U := U ∪ (T \ (S ∪ P));
32 S := S ∪ T \ P;
33 Update Clpli and Cupli, i ∈ (P ∩ T ) ∪ {p};
34 T T := T T ∪ T ;
35 end while
36 end for each
37 end for each
38 Return: S;
End algorithm

Figure 9: Shortest paths heuristic for CSP in positive tables

14



which also modified node injections and arc bounds. A shortest path from
t to s is computed, where x+

p = (s, t), and arc x−p = (t, s) is assigned a
very large cost (thus it will not be used). The set S of secondary cells is
updated with the cells associated with arcs in the shortest path (line 32). To
avoid the solution of unnecessary shortest path subproblems for following
primaries, we update not only the protection levels of p, but also of all the
primary cells in the shortest path (line 33). This is a significant improve-
ment compared to previous heuristics. If several shortest path problems are
needed for p (lines 6–35), cells in previously computed shortest paths for this
primary must not be used (otherwise we can not guarantee the protection
of the cell). To this end, T T in Figure 9 maintains the list of cells already
suppressed for the protection of p. Arcs of cells in T T are assigned a very
large cost in line 7.

If the cardinality of T T significantly increases (i.e., we discard a large
number of arcs for the protection of this cell) we can eventually be unable
to compute a shortest path (line 9). This means that either the instance
is infeasible or that the sequence of shortest paths failed to protect the
primary cell. Before concluding the instance is infeasible, we switch to the
minimum cost network flows approach of Subsection 4.1 (lines 10–28). The
secondary cells specifically needed for the protection of p, stored in U (lines
5 and 31), are removed from S (line 13). The two minimum cost network
flows problems, for respectively the lower and upper protection levels (lines
15–27), determine a set of secondary cells that protect primary p. If there
is no solution to at least one of these two network flows problems, the CSP
instance is infeasible. In all the computational experiments of Section 6 the
algorithm never entered lines 10–28. If we want these lines to be executed, we
can impose very large upper protection levels to some subset of primary cells.
However, this is meaningless, in practice, unless the cell has a relatively small
value. For instance, we randomly generated some 10× 10 two-dimensional
instances with very large upper protection levels. A solution was obtained
through lines 10–28, but it suppressed 85% of the cells of the table. Indeed,
this is the only way to guarantee such large protection levels. Aside from the
above exceptional and nonmeaningful situations, practical and real tables
(i.e., with a large number of cells and upper protection levels less than the
cell value) will likely never be exposed to lines 10–28 of the algorithm.

We next discuss some of the relevant points of the heuristic.

4.6. Protection provided by the shortest path

The shortest path SP from t to s is a list of l arcs x∗i1 − x∗i2 − . . . − x∗il ,∗ being + or − depending on the arc orientation, such that x∗i1 = (t, ti1),
x∗il = (sil , s), x∗ij = (tij−1 , sij+1) for all j = 2, . . . , l − 1, and t = si1 , s = til
and sij = tij−1 for all j = 2, . . . , l. T = {i1, . . . , il} is the set of indexes of

15



cells associated with the arcs in the shortest path. Defining

γ = min{ap, aij : ij ∈ T }, (9)

we can send a flow γ through the shortest path in either direction. This
means that we can increase or decrease ap by γ without affecting the fea-
sibility of the table. If γ > max{lplp, uplp}, it follows from (2) that this
cell is protected by this shortest path. This is similar to the approach of
Subsection 4.4.

However, the heuristic exploits even better the information provided by
the shortest path. It separately computes

γ+ = min{ap, aij : x+
ij
∈ SP} γ− = min{aij : x−ij ∈ SP}. (10)

If there is no arc x−ij in SP , then γ− = ∞. γ+ gives the amount cell p can be
decreased without obtaining a negative cell. It is thus the lower protection
of p provided by this shortest path. Analogously, the upper protection
is provided by γ−. That permits to update separately and with different
protection values the lower and upper levels. One immediate benefit of this
procedure is that the heuristic can deal with upper protection values greater
than the cell value (i.e., uplp > ap). Such large protections are used for very
small cell values. For instance, if only arcs x+

ij
appear in SP , it is possible

to infinitely increase the value of cell p without compromising the feasibility
of the table. Indeed, in this case the upper protection level provided by the
heuristic is γ− = ∞. This can not be done by only computing (9). Current
protection levels Clpl and Cupl of p and primary cells in T are updated
using (10) in line 33 of Figure 9.

4.7. Arc costs

The behaviour of the heuristic is governed by the costs of arcs x+
i and x−i

associated with cells ai. Arcs not allowed in the shortest path are assigned
a very large cost. This includes arcs associated with zero cells: the values of
such cells are usually known by any attacker and can not be used for protec-
tion (e.g., the number of persons 5 years old with an average salary between
30000 and 40000 e is clearly 0). For the remaining arcs, as suggested in
the heuristic of Cox (1995), costs are chosen to force the selection of: first,
cells i ∈ P ∪ S and ai ≥ ∗p (∗ = lpl or ∗ = upl, following the notation of
Figure 9); second, cells i 6∈ P ∪ S and ai ≥ ∗p; third, cells i ∈ P ∪ S and
ai < ∗p; and, finally, cells i 6∈ P ∪ S and ai < ∗p. This cost stratification
attempts to balance the number of new secondary suppressions and shortest
path subproblems to be solved. Clearly, for each of the above four cate-
gories, cells with the lowest wi values are preferred. The particular costs
set by the heuristic at line 7 of Figure 9 for all the cells ai—but those not
allowed in the shortest path—when dealing with the primary cell p and the
lower protection level are:

16



cost ai =





1 i ∈ P ∪ S and ai ≥ lplp
C + wi i 6∈ P ∪ S and ai ≥ lplp
C(2n− C + 1) + M i ∈ P ∪ S and ai < lplp
(C(2n− C + 1) + M)(C + 1) + wi i 6∈ P ∪ S and ai < lplp,

(11)

where C = |P|+ |S| and M ≥ ∑n
i=1 wi. For the upper protection level just

replace lplp by uplp in (11). Note that (11) can be computed in a single
loop over the n cells, whereas other procedures (Cox, 1995) required two
loops. In practice this is instrumental, since, computationally, (11) is the
most expensive step of the heuristic.

4.8. Shortest path solver

Shortest path subproblems were solved through an efficient d-heap imple-
mentation of the Dijkstra’s algorithm (Ahuja, Magnanti and Orlin, 1993,
Ch. 4). Since we are interested in the shortest path to a single destination,
a bidirectional version was used. In practice, this can be considered the
most efficient algorithm for these kind of problems. As shown in the com-
putational results of Section 6, with this solver the heuristic is from one to
three orders of magnitude faster than other approaches based on minimum
cost network codes.

4.9. Complexity of the shortest paths heuristic

We will assume:

i) The sequence of shortest paths can always protect the primary cell,
i.e., the solution of minimum cost network flows subproblems is never
required to certify the feasibility of the instance. This assumption is
satisfied in all the computational experiments of Section 6.

ii) For all primary cell and protection level, the number of shortest paths
in the sequence is bounded by an integer K, independent of the size of
the problem. This assumption was empirically observed in the compu-
tational experiments of Section 6. As shown in Figures 10 and 11, the
average number of shortest paths required for the protection of each
primary does not increase with the number of cells of the instance.

From the above assumptions, the running time of the heuristic is ob-
tained as follows. For each primary cell we have to compute K shortest
paths for the lower protection level, and K for the upper protection level.
The costs of the n arcs must be updated for each shortest path computation.
The running time of Dijkstra’s algorithm for shortest paths depends on the
variant considered (Ahuja, Magnanti and Orlin, 1993, Ch. 4). For instance

17



Figure 10: Average number of shortest paths required for each primary cell
vs. number of cells for two-dimensional instances

Figure 11: Average number of shortest paths required for each primary cell
vs. number of cells for hierarchical instances

18



is O(m2) for the original Dijkstra implementation, and O(n log n
m

m) for the
d-heap (d = n/m) implementation used in this work, m being the number
of nodes of the network. The running time of the heuristic using the d-heap
implementation is thus

O(|P|2K(n+n log n
m

m)) = O(|P|2Kn(1+log n
m

m) = O(|P|n log n
m

m) (12)

(note that log n
m

m ≥ 1, and only for dense networks is equal to 1).
Using (8) we can express the running time in terms of the number of

subtables, rows and columns of the hierarchical table. To simplify the final
expression we define s = max{c, rk k = 1, . . . , t}, i.e., s is the maximum
number of rows or columns of any subtable. From (8) the number of rows
and columns satisfy n = O(ts2) and m = O(ts). Using these expressions in
(12) we obtain the following running time:

O(|P|ts2 logs t). (13)

If assumption ii) above is not considered, we must bound K. The pro-
tection provided by any shortest path of the sequence, computed as in (9),
satisfies γ ≥ min{ai, i = 1, . . . , n, ai 6= 0} ≥ 1. Moreover, in practice the
lower and upper protection levels are a fraction β of the cell value. Therefore,

K ≤ maxp∈P{lplp, uplp}
γ

≤ βU, where U = max
i=1,...,n

{ai}. (14)

An alternative bound on K can be obtained considering that at least one
cell is made secondary after each shortest path, i.e., one arc is not allowed
to appear in successive shortest paths of the sequence. Thus, K can not be
greater than the number of arcs of the network:

K ≤ n. (15)

From (14) and (15) we obtain the following running time:

O(|P|min{βU, ts2}ts2 logs t). (16)

Note that (15) provides a strongly polynomial-time algorithm even if as-
sumption ii) does not hold.

Previous heuristics for CSP required the solution of at least one minimum
cost network flows subproblem for each primary cell. The currently fastest
strongly polynomial-time algorithm for the minimum cost flow problem—
the enhanced capacity scaling algorithm (Ahuja, Magnanti and Orlin, 1993,
Ch. 10)—runs in O((n log m)(n + m log m)). Again using (8), the running
time of a minimum cost network flows heuristic for CSP is:

O(|P|(n log m)(n + m log m)) = O(|P|(t2s4 log ts + t2s3(log ts)2))). (17)

The running time reported in (13) is clearly better than (17). Even if as-
sumption ii) is not considered, (16) provides a better running time.

19



5. Computing a lower bound

The relative gap between the computed lower bound and the solution pro-
vided by the heuristic can be used as an approximate measure of how far the
solution is from the optimum. Two improvements to the procedure intro-
duced in Kelly, Golden and Assad (1992)—and used in Fischetti and Salazar
(2001)—were developed: we extended the procedure for two-dimensional ta-
bles with one hierarchical variable, formulated as in (7); and we added extra
constraints that provide a higher lower bound. Lower bounding procedures
have also been used in the context of controlled tabular adjusment in Cox,
Kelly and Patil (2005).

Given a two-dimensional table with one hierarchical variable ak
ij , k =

1, . . . , t, i = 1, . . . , rk + 1, j = 1, . . . , c + 1 with the hierarchical relations of
(6), and defining the auxiliary parameters

sk
ij = 1 if cell ak

ij is primary, otherwise sk
ij = 0,

αk
i = max{ak

ij + uplkij j = 1, . . . , c + 1 : ak
ij is primary},

βk
j = max{ak

ij + uplkij i = 1, . . . , rk + 1 : ak
ij is primary},

(18)

(uplkij being the upper protection limit of primary cell ak
ij), the lower bound

is the optimal objective function of the linear relaxation of the following
integer problem:

min
y,u,v

t∑

k=1

rk+1∑

i=1

c+1∑

j=1

wk
ijy

k
ij (19)

c+1∑

j=1

yk
ij ≥ 2 for all k, i :

c+1∑

j=1

sk
ij = 1 (20)

c+1∑

j=1

yk
ij ≥ 2uk

i for all k, i :
c+1∑

j=1

sk
ij = 0 (21)

uk
i ≥ yk

ij for all k, i, j :
c+1∑

l=1

sk
il = 0 (22)

c+1∑

j=1

ak
ijy

k
ij ≥ αk

i for all k, i : for some j ak
ij is primary (23)

rk+1∑

i=1

yk
ij ≥ 2 for all k, j :

rk+1∑

i=1

sk
ij = 1 (24)

rk+1∑

i=1

yk
ij ≥ 2vk

j for all k, j :
rk+1∑

i=1

sk
ij = 0 (25)

vk
j ≥ yk

ij for all k, i, j :
rk+1∑

l=1

sk
lj = 0 (26)

rk+1∑

i=1

ak
ijy

k
ij ≥ βk

j for all k, j : for some i ak
ij is primary (27)

20



yuk
ok,j = yvk

rk+1,j k = 1, . . . , t− 1 j = 1, . . . , c + 1 (28)

yk
ij ≥ sk

ij for all k, i, j (29)

yk
ij ∈ {0, 1} for all k, i, j (30)

0 ≤ uk
i ≤ 1 for all k, i (31)

0 ≤ vk
j ≤ 1 for all k, j (32)

Variable yk
ij is set to 1 if the cell ak

ij is removed, otherwise is 0. Con-
straints (20–23) refer to rows, while (24–27) are for columns. (28) are the
linking constraints among subtables, which force that the same cell in two
subtables must have the same status, either published or suppressed. Fi-
nally, (29–32) are the integrality constraints and bounds. Constraints (20–
22), (24–26) and (29–32) were originally introduced in Kelly, Golden and
Assad (1992), but for the subtable superscript k. They force at least two
suppressions in rows and columns with a single primary (constraints (20,24)),
or with some secondary (constraints (21–22, 25–26)). Any optimal solution
must clearly satisfy the above constraints.

The new constraints (23,27) must also be satisfied by any optimal solu-
tion, if the upper protection levels are a fraction of the cell values (which is
common practice), as shown by the next proposition.

Proposition 1 For all primary cell ak
uv, if uplkuv ≤ ak

uv—i.e., the upper
protection level is less than or equal to the cell value— any solution of CSP
satisfies

row constraint:
c+1∑

j=1

ak
ujy

k
uj ≥ ak

uv + uplkuv, (33)

column constraint:
rk+1∑

i=1

ak
ivy

k
iv ≥ ak

uv + uplkuv, (34)

yk
ij being 1 if cell yk

ij is suppressed, otherwise is 0.

Proof: We only prove the result for the row constraint. The same procedure
can be used for the column constraint. Since ak

uv is primary we know that
yk

uv = 1. We consider two cases. First, if the marginal row cell ak
u,c+1 is

suppressed (i.e., yk
u,c+1 = 1), we have

c+1∑

j=1

ak
ujy

k
uj ≥ ak

uv + ak
u,c+1 ≥ ak

uv + uplkuv,

since the marginal row cell is always greater than or equal to any internal
cell, and we assumed that uplkuv ≤ ak

uv. Second, consider the case where the
marginal cell is not suppressed (i.e., yk

u,c+1 = 0). Therefore,
∑c+1

j=1 ak
ujy

k
uj =

21



Figure 12: Improvement with the new lower bounding procedure vs. number
of cells for two-dimensional instances

∑c
j=1 ak

ujy
k
uj . Assume that (33) is not satisfied. When solving problem (2)

for the primary cell ak
uv one of the constraints is

∑

∀j:yk
uj=1

xk
uj =

c∑

j=1

ak
ujy

k
uj ,

and then the maximum value for this primary verifies

ak
uv ≤

c∑

j=1

ak
ujy

k
uj < ak

uv + uplkuv,

which does not guarantee the protection condition (1). We then conclude
that (33) must hold. 2

As an immediate result of the above proposition, all the constraints (33)
((34)) of cells of the same row (column) can be replaced by the one with the
maximum right-hand-side, obtaining (23) ((27)).

In practice, the effectiveness of constraints (23) and (27) (i.e., the quality
of the lower bound compared to the original formulation without those con-
straints) increases with the size of the upper protection levels. This is clearly
shown in Figures 12 and 13, which plot the percentage of improvement in
the quality of the lower bound due to constraints (23) and (27) vs. the num-
ber of cells of the table, for, respectively, two-dimensional and hierarchical
tables. The percentage of improvement is computed as 100(nlb − olb)/olb,
olb being the lower bound computed with the original procedure of Kelly,
Golden and Assad (1992), and nlb the lower bound obtained with the new
formulation that includes constraints (23) and (27). Each line plotted in Fig-
ures 12 and 13 corresponds to a group of instances with the same number of

22



Figure 13: Improvement with the new lower bounding procedure vs. number
of cells for hierarchical instances

primary cells and upper protection limits expressed as a percentage of the
cell value (we considered 15% and 30%, which are usual values). The partic-
ular pairs considered for these values, one per line, are shown in the legends
at the right margin of the figures. The instances considered are a subset
of those used in the computational results of Section 6. From Figure 12 it
is clear that, for two-dimensional tables, the improvement due to the new
lower bound increases with the upper protection limit, and decreases with
the number of primary cells of the table. On the other hand, for hierarchical
tables, the improvement is only explained by a larger upper protection limit,
independently of the number of primary cells. From the positive slopes of
the lines in both figures, it can also be stated that the new lower bound
improves with the size of the table.

6. Computational results

The heuristic of Section 4—including the lower bounding procedure of Sec-
tion 5— has been implemented in C. It is currently included in the τ -Argus
package (Hundepool, 2004) for tabular data protection, which is used by
several European NSAs. For testing purposes, we considered two classes
of problems. The first class consists of randomly generated instances, while
real-world problems—thus confidential—were used for the second one. Ran-
dom instances were produced with the generator for two-dimensional tables
used in Castro (2002), and with an extension for hierarchical tables. Both
generators can be obtained from http://www-eio.upc.es/~jcastro/gen-
erators csp.html. We produced 54 two-dimensional instances, ranging
from 62500 to 562500 cells, and with |P| ∈ {1000, 2000, 3000}, |P| being the

23



Figure 14: CPU time vs. number of cells for two-dimensional instances

Figure 15: CPU time vs. number of cells for hierarchical instances

number of primary cells. Cells weights were set to wi = ai (i.e., cell value).
We also generated 72 two-dimensional hierarchical tables, ranging from 1716
to 246942 cells and from 4 to 185 subtables, with |P| ∈ {500, 1000}. Cells
weights were set to wi = ai for half of the instances and wi = 1 for the
remaining ones. In all the cases the lower and upper protection levels were
set at 15% of the cell value. Executions with random instances were carried
out on a standard PC with a 1.8 GHz Pentium-4 processor and 1 Gb of
RAM.

The results obtained with random instances are summarized in Figures
14–19. Figures 14–15 show, respectively for the two-dimensional and hierar-
chical tables, the CPU time in seconds vs. the number of cells of the table,
for the different number of primary cells. Clearly, the CPU time increases
with both |P| and the number of cells. However, the shortest paths heuristic
was able to provide a solution in few seconds.

Figures 16–17 show, again for the random two-dimensional and hier-
archical tables, the efficiency of the shortest paths heuristic compared to
alternative approaches based on network flows. We applied the algorithm

24



Figure 16: CPU ratio between minimum cost network flows and shortest
paths heuristics vs. number of cells for two-dimensional instances

Figure 17: CPU ratio between minimum cost network flows and shortest
paths heuristics vs. number of cells for hierarchical instances

of Figure 9 twice, formulating minimum cost network flows subproblems
(as previous approaches did), and shortest path ones. The minimum cost
network flows subproblems were solved with the network simplex solver of
CPLEX 7.5, a state-of-the-art implementation. The larger instances were
not solved because CPLEX required an excessive execution time. The verti-
cal axes of the figures show the ratio between the CPU time of CPLEX 7.5
and the implementation of Dijkstra’s algorithm used in the heuristic. For
the two-dimensional tables we plot separately the instances for the different
|P| values. Similarly, two lines are plotted in Figure 17, one for each type of
weights (wi = ai and wi = 1). We observe that the ratio time increases with
the table dimension, and it is of about 1900 and 120 for the largest two-
dimensional and hierarchical instances, respectively. It can be concluded
that the shortest path formulation is instrumental in the performance of the
heuristic.

Finally, Figures 18–19 show, for respectively the random two-dimensional

25



Figure 18: Gap vs. number of cells for two-dimensional instances

Figure 19: Gap vs. number of cells for hierarchical instances

and hierarchical tables, an estimation of the quality of the solution obtained.
The vertical axes show the relative gap (ws − lb)/ws, ws being the weight
suppressed by the heuristic, and lb the computed lower bound. Those figures
must be interpreted with caution, since the computed lower bound can be
far away from the optimum, which is unknown for these large instances. At
first sight, it could be concluded that the heuristic works much better for
two-dimensional than for hierarchical tables. However, the lower bounding
procedure could be providing better bounds for two-dimensional tables. It
is thus difficult to know which factor—the quality of the heuristic or the
quality of the lower bounding procedure—explains the much larger gap for
hierarchical tables. Both factors likely intervene, and in that case we should
conclude that the heuristic behaves better for two-dimensional than for hi-
erarchical tables. Note that for two-dimensional instances with the largest
number of primary cells we obtain solutions with an optimality gap less than
1%.

The second class of problems is made of a small number of real-world hi-
erarchical instances. Cells weights were set to wi = ai in all the cases. Table

26



Table 1: Dimensions and results with the shortest paths heuristic for the
real-world instances

Shortest paths
Name n |P| WS CPU
CBS1 6399 570 4.84e+6 4
CBS2 172965 68964 2.96e+10 403
DES1 460 18 0.87e+6 6
DES2 1050 61 2.44e+7 4
DES3 8230 994 12.9e+7 10
DES4 16530 2083 1.83e+8 21
DES4a 29754 3494 11.9e+7 65

1 shows the dimensions and results obtained with the shortest paths heuris-
tic. Table 2 gives the results obtained with three alternative procedures.
The information reported for instances CBS* and DES* was provided, re-
spectively, by Centraal Bureau voor de Statistiek (Dutch NSA), and Destatis
(German NSA). They were obtained with the τ -Argus package, running its
four available solvers for tabular data protection: two heuristics, named
HiTas (de Wolf, 2002) and hypercube (Giessing and Repsilber, 2002), the
optimal procedure described in Fischetti and Salazar (2001), and the short-
est paths heuristic of this work. For each instance, we provide the total
number of cells in the hierarchical table n, the number of primary cells |P|,
and the CPU execution time (columns “CPU”) and weight of suppressed
secondary cells (columns “WS”) for each of the above four methods. Prob-
lems CBS* and DES* were solved, respectively, on a 1.5 GHz Pentium-4
and a 900MHz Pentium-3 processor.

It is noteworthy that the HiTas and hypercube heuristics include a con-
trol to avoid the protection of single respondent cells (i.e., cells with only
one individual) through other single respondent cells. That slightly penal-
izes the weight suppressed by these two heuristics. On the other hand, these
two heuristics can provide—and in practice they do—nonfeasible solutions,
i.e., patterns of suppressions that do not guarantee the protection levels.
Therefore, comparisons with these two nonfeasible heuristics must be done
with caution. The optimal procedure and the shortest paths heuristic do not
include the above control for single respondent cells, but always guarantee
feasible solutions.

From Tables 1 and 2 we conclude that the shortest paths heuristic is
far more efficient than the optimal procedure and provides good solutions.
Indeed, for instances CBS1 and DES1 the shortest paths heuristic provided
a better solution than the optimal procedure with its default optimality
tolerance; and it was 900 and 15.5 times faster, respectively, for each of these

27



Table 2: Results for the real-world instances using alternative procedures

HiTas Hypercube Optimal
Name WS CPU WS CPU WS CPU
CBS1 5.85e+6 12 11.8e+6 6 4.85e+6 >3600
CBS2 1.31e+10 1151 24.9e+10 177 — —
DES1 1.68e+6 1 43.2e+6 2 0.90e+6 93
DES2 2.57e+7 4 4.06e+7 4 2.41e+7 98
DES3 9.41e+7 35 42.2e+7 9 10.2e+7 618
DES4 1.54e+8 38 5.98e+8 14 fail fail
DES4a 5.95e+7 119 33.8e+7 24 fail fail

two instances. Note that CBS2, the largest instance, was not attempted to
solve with the optimal procedure, because of the excessive computational
resources. Moreover, the optimal procedure failed for DES4 and DES4a. As
for the other two approaches, hypercube is more efficient than the shortest
paths heuristic, but provides much worse solutions. On the other hand,
HiTas is slower than the shortest paths heuristic, but provides slightly better
solutions. However, these two heuristics do not guarantee the protection of
all primary cells. To detect the unprotected cells we need to solve (2) for
each primary cell. Then, these unprotected cells must be dealt with using
some feasible method, as the optimal one or the shortest paths heuristic.
However, this procedure would significantly increase the overall execution
time. The shortest paths heuristics guarantees feasible good solutions and
reasonable execution times.

7. Conclusions

The shortest paths heuristic for positive tables presented in this work is
an efficient procedure for the protection of large two-dimensional and hier-
archical tables. From the computational experience of end-users with real
data, it is a competitive approach compared to alternative procedures. This
heuristic has been included in the τ -Argus package and it does not require
any external solver; thus it can be freely used by any NSA.

There are some possible future extensions. One of them is to avoid
the protection of single respondent cells (i.e., cells with only one individ-
ual) through other single respondent cells. Another extension is to add a
post-process for the detection of unnecessary over-suppressed cells; however,
unlike the approach of Kelly, Golden and Assad (1992), and for efficiency
reasons, such a procedure would only solve shortest path subproblems. A
last extension would be to deal with more complicated tables (e.g., tables

28



with two hierarchical variables, in rows and columns). Such classes of ta-
bles can not be modeled as networks, but as networks with many equal
flow constraints (Ahuja et al., 1999; Calvete, 2003). Instead of shortest path
subproblems, the heuristic should then solve “equal flow shortest path” sub-
problems (i.e., shortest path problems with constraints that force that if
certain arc is in the path, its pair must also be in the path). An efficient
procedure for the “equal flow shortest path” problem is still an open issue.

8. Acknowledgments

This work was supported by the European Union IST-2000-25069 CASC
project and the Spanish MCyT Project TIC2003-00997. The author is in-
debted to Narćıs Nabona (Dept. of Statistics and Operations Research,
Universitat Politècnica de Catalunya) for providing him with the implemen-
tation of the Dijkstra’s shortest path algorithm. The author also thanks
Sarah Giessing and Anco Hundepool, respectively from Destatis (German
NSA) and Centraal Bureau voor de Statistiek (Dutch NSA) for the results of
the confidential real-world examples. Finally, the author thanks two anony-
mous referees for helpful comments and suggestions.

References

Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network flows. Theory, Al-
gorithms and Applications. Prentice Hall, Upper Saddle River.

Ahuja, R.K., J.B. Orlin, P. Zuddas, G. Secki. 1999. Algorithms for the equal
flow problem. Management Science 45 1440-1455.

Bixby, R.E. 2002. Solving real-world linear programs: a decade and more of
progress. Operations Research 50 3–15.

Carvalho, F.D., N.P. Dellaert, M.D. Osório. 1994. Statistical disclosure in
two-dimensional tables: general tables. Journal of the American Statistical
Association 89 1547–1557.

Calvete, H. 2003. Network simplex algorithm for the general equal flow prob-
lem. European Journal of Operational Research 150 585–600.

Castro, J. 2002. Network flows heuristics for complementary cell suppres-
sion: an empirical evaluation and extensions. Lecture Notes in Computer
Science 2316 59–73. Volume Inference control in statistical databases, J.
Domingo-Ferrer (ed.), Springer, Berlin.

Castro, J. 2004. A fast network flows heuristic for cell suppression in positive
tables. Lecture Notes in Computer Science 3050 136–148. Volume Privacy

29



in statistical databases, J. Domingo-Ferrer and V. Torra (eds.), Springer,
Berlin.

Castro, J., N. Nabona. 1996. An implementation of linear and nonlinear
multicommodity network flows. European Journal of Operational Research
92 37–53.

Cox, L.H. 1995. Network models for complementary cell suppression, Jour-
nal of the American Statistical Association 90 1453–1462.

Cox, L.H., J.A. George. 1989. Controlled rounding for tables with subtotals,
Annals of Operations Research 20 141–157.

Cox, L.H., J.P. Kelly, R. Patil. 2005. Computational aspects of controlled
tabular adjustment: algorithm and analysis. B. Golden, S. Raghavan,
E. Wassil, eds. The Next wave in Computer, Optimization and Decision
Technologies. Kluwer, Boston. 45–59.

Dandekar, R.A. 2003. (Energy Information Administration, Department of
Energy.) Personal communication.

de Wolf, P.P. 2002. HiTaS: A heuristic approach to cell suppression in hi-
erarchical tables. Lecture Notes in Computer Science 2316 74–82. Vol-
ume Inference control in statistical databases, J. Domingo-Ferrer (ed.),
Springer, Berlin.

Dellaert, N.P., W.A. Luijten. 1999. Statistical disclosure in general three-
dimensional tables. Statistica Neerlandica 53 197–221.

Domingo-Ferrer, J.(ed.). 2002. Inference control in statistical databases. Lec-
ture Notes in Computer Science. Vol. 2316, Springer, Berlin.

Domingo-Ferrer, J., V. Torra. 2002. A critique of the sensitivity rules usually
employed for statistical table protection. International Journal of Uncer-
tainty Fuzziness and Knowledge-Based Systems 10 545–556.

Domingo-Ferrer, J., V. Torra (eds.). 2004. Privacy in statistical databases.
Lecture Notes in Computer Science. Vol. 3050, Springer, Berlin.

Fischetti, M., J.J. Salazar. 2001. Solving the cell suppression problem on
tabular data with linear constraints. Management Science 47 1008–1026.

Giessing, S., D. Repsilber. 2002. Tools and strategies to protect multi-
ple tables with the GHQUAR cell suppression engine. Lecture Notes in
Computer Science 2316 181–192. Volume Inference control in statistical
databases, J. Domingo-Ferrer (ed.), Springer, Berlin.

Gusfield, D. 1988. A graph theoretic approach to statistical data security.
SIAM Journal on Computing 17 552-571.

30



Hundepool, A. 2004. The ARGUS software in the CASC project. Lecture
Notes in Computer Science 3050 323–335. Volume Privacy in statistical
databases, J. Domingo-Ferrer and V. Torra (eds.), Springer, Berlin.

ILOG CPLEX. 2001. ILOG CPLEX 7.5 reference manual library. ILOG,
Gentilly.

Jewett, R. 1993. Disclosure analysis for the 1992 Economic Census.
Manuscript, Economic Programming Division, Bureau of the Census.

Kelly, J.P., B.L. Golden, A.A. Assad. 1992. Cell suppression: disclosure
protection for sensitive tabular data. Networks 22 28–55.

Willenborg L., T. de Waal (eds.). 2000. Elements of statistical disclosure
control. Lecture Notes in Statistics. Vol. 155, Springer, New York.

31


