
A stochastic programming approach to cash
management in banking

Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona (Catalonia, Spain)

jordi.castro@upc.edu

Research Report DR 2004-14
December 2004

Revised August 2005, June 2007, October 2007

Report available from http://www-eio.upc.es/~jcastro





A stochastic programming approach to cash

management in banking

Jordi Castro

Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya

Jordi Girona 1–3

08034 Barcelona, Catalonia, Spain

jordi.castro@upc.edu

http://www-eio.upc.es/~jcastro

Abstract

The treasurer of a bank is responsible for the cash management of
several banking activities. In this work we focus on two of them: cash
management in automatic teller machines (ATMs), and in the compensa-
tion of credit card transactions. In both cases a decision must be taken
according to a future customers demand, which is uncertain. From histor-
ical data we can obtain a discrete probability distribution of this demand,
which allows the application of stochastic programming techniques. We
present stochastic programming models for each problem. Two short-term
and one mid-term models are presented for ATMs. The short-term model
with fixed costs results in an integer problem which is solved by a fast
(i.e. linear running time) algorithm. The short-term model with fixed
and staircase costs is solved through its MILP equivalent deterministic
formulation. The mid-term model with fixed and staircase costs gives
rise to a multistage stochastic problem, which is also solved by its MILP
deterministic equivalent. The model for compensation of credit card trans-
actions results in a closed form solution. The optimal solutions of those
models are the best decisions to be taken by the bank, and provide the
basis for a decision support system.

Keywords: stochastic programming, OR in banking, integer stochastic pro-
gramming

1 Introduction

Cash—or liquidity—management is one of the main concerns of a bank. This
class of problems appears in several of the usual banking activities. In this work
we focus on two relevant ones: cash management in automatic teller machines

1



(ATMs)—which is similar to cash management in branches—, and in the com-
pensation of credit card transactions. In both cases the bank must advance some
amount of money. This amount must be determined according to a future un-
known probabilistic demand. If the demand is higher or lower than the amount,
the bank incurs some problem specific penalty costs. These decision problems
result in nontrivial extensions of the classical newsvendor problem, which are
addressed in this work through stochastic programming techniques. Good in-
troductions to stochastic programming are Birge and Louveaux [1], Kall and
Wallace [8]. Briefly, stochastic programming problems are optimization prob-
lems (either linear, integer or nonlinear) with one or several stochastic model
parameters. Stochastic programming has previously been used for decision mak-
ing under uncertainty, both for generic decision support methodologies [11], and
in particular decision support systems for other liquidity management activities
in banking [4].

Cash management in ATMs (and similarly in branches) is a well-known prob-
lem faced by any bank. The purpose is to decide the optimum amount of money
that will be placed in the ATM to satisfy an uncertain demand. If the demand
exceeds the amount in the ATM, the bank incurs in costs due to refilling tasks.
It is worth to note that refilling is performed by external companies. There-
fore, from the bank point of view, location of warehouses, costs associated to
transportation, etc., are irrelevant. In practice, money transportation compa-
nies offer two policies. In the first one, the bank pays a significant fixed fee (e.g,
50e) for the refilling, independently of the amount, plus a small extra cost for
each fraction of a certain amount of money transported (e.g., 0.59e for each
fraction of 10000e); in this option we basically deal with fixed costs. In the sec-
ond one, the fixed fee is small (e.g., 20e) while the staircase costs are significant
(e.g., 30e for each fraction of 6000e). The above figures are close to the real
ones used by some Spanish money transportation companies. It is thus possible
to consider both models, one with only fixed cost—which is solved in linear time
by a specialized algorithm introduced in this paper—, the other with both fixed
and staircase costs. In addition, the paper analyzes two different situations: the
short-term problem, with one single refilling; and the mid-term problem, whit
more than one refilling, which forces a multistage stochastic problem. All the
above considerations make this problem significantly different from the classical
newsvendor problem. Several integrated decision support systems in the market
[12, 13] implement optimization/simulation procedures for cash management in
ATMs, but no details are given about the particular techniques used.

The Spanish credit card system is based on a daily compensation mechanism
between banks and a central agent that collects all credit card transactions.
Each bank daily maintains an account, where the central agent charges all the
transactions from credit cards owned by this bank. The crucial decision for the
bank is what amount to daily maintain in that account, given the uncertain
overall sum to be charged. We will see that particular instances of this problem
can be solved through inventory techniques with stochastic demands [14, Ch.
17]. For a general model, we must rely on other more versatile procedures, as
stochastic programming.

2



As far as we know, stochastic programming has not previously been used
for the two problems of this work, although it was in many other financial
applications (few of them are described, for instance, in Dantzig and Infanger
[2], Golub et al. [5], Gondzio and Kouwenberg [6], Kallberg et al. [7], and many
more can be found in the books Ziemba and Mulvey [17], Zenios and Ziemba
[16], and the surveys Kouwenberg and Zenios [9], Yu et al. [15] and the more
than 150 references therein). The stochastic programming approach used in
this work is clear, easy to implement, very efficient, and provides the optimal
solution according to the future possible set of scenarios. The application of this
procedure may improve current techniques used by banks, which are based on
simulation, experience and trial and error. Even with the current low interest
rates, which anyway have been successively increasing in the last months in the
European Union, a better solution to the problem is relevant. For instance, the
financial group ”La Caixa” (one of the biggest of Spain, located in Barcelona)
owns near 7000 ATM’s and 5000 branches. Assuming that an average daily
amount of l e is currently disposed at each ATM, and interest rates of r%, a
solution that reduces the daily amount per ATM in just a p% would result in
an overall benefit of 0.7 · r · l · p e per year. Using realistic values l = 100000,
r = 3, an improvement of p = 5 results in 1.05 million e per year.

The paper is structured as follows. Section 2 outlines the general formulation
of the stochastic optimization problems used in this work. Section 3 describes
and solves the stochastic models for the cash management problem in ATMs.
Section 4 presents and solves the stochastic formulation of the cash management
problem in the compensation of credit card transactions.

2 The stochastic programming problem

In the two-stage stochastic programming problem a set of first-stage decisions
x ∈ R

n1 must be taken before the values of some stochastic parameters, de-
pendent of random variable ξ, are known. The cost of first-stage decisions is
represented by c(x). Once ξ is known, we must adjust another set of second-
stage variables y ∈ R

n2 to minimize the costs we incurred by our choice of x and
the particular value of ξ; the function of second-stage costs is Q(x, ξ). We look
for the decisions x that, in average, according to the distribution of ξ, provide
the minimum costs. The general model (with fixed recourse) is

min
x

c(x) + Q(x)

subject to x ∈ X ⊂ R
n1 ,

(1)

where

Q(x) = Eξ[Q(x, ξ)] and

Q(x, ξ) = min
y

q(y; ξ)

subject to Wy = h(ξ) − T (ξ)x
y ∈ Y ⊂ R

n2 .

(2)

c(x) and x ∈ X in (1) are usually a linear function cx and a convex polyhedron
defined by X = {x : Ax = b, x ≥ 0}, respectively. Integrality constraints x ∈ Z,

3



either for a subset or for all the first-stage variables, may also appear in (1).
Q(x), known as the recourse function, is the future average cost of our first-
stage decisions x, for all scenario (i.e., for all realization of ξ). q(y; ξ) and y ∈ Y

in (2) are usually a linear function q(ξ)y and nonnegativity constraints y ≥ 0,
respectively. Integrality constraints y ∈ Z can also appear in y ∈ Y , either for
a subset or for all the second-stage variables; indeed we will need them in the
cash management problem for ATMs. The stochastic parameters of this general
formulation are q(ξ), h(ξ) and T (ξ). In the models of next sections only h(ξ) is
stochastic, and is defined as h(ξ) = ξ, ξ being the customers demand of money,
either from the ATM or through the credit card.

For some particular problems we can obtain a closed form solution for
Q(x, ξ) = q(y∗; ξ), y∗ being the optimum second-stage decisions. In these cases
we may be able to “compute” Q(x) = Eξ[Q(x, ξ)], either evaluating the expec-
tation (e.g., for discrete distributions or some low dimensional random variable)
or approximating it (e.g., for multidimensional continuous variables) (see [1,
Ch.9] for details). This allows the solution of (1) only in terms of the first-
stage decisions. We will apply this strategy in the models of Subsection 3.1 and
Section 4.

In general, however, no closed form exists for Q(x, ξ) and we are forced to
solve the extensive form or deterministic equivalent of the stochastic problem.
For this purpose we consider ξ is a discrete random variable of s values ξ1, . . . , ξs

with probabilities p1, . . . , ps . Each particular value ξi, i = 1, . . . , s is usually
known as a scenario. Replicating for each scenario the second-stage variables
(i.e, yi, i = 1, . . . , s) and constraints, and combining problems (1) and (2), we
obtain the following (probably large) problem:

min
x,yi

c(x) +

s
∑

i=1

piq(yi; ξi)

subject to x ∈ X

Wyi = h(ξi) − T (ξi)x
yi ∈ Y

}

i = 1, . . . , s.

(3)

Problem (3) can be solved with standard linear, integer or nonlinear program-
ming algorithms if it is of moderate size; otherwise we need to apply specialized
procedures that exploit the particular problem structure [10, 1, Ch. 5–8]. The
model of Subsection 3.2 will be solved by a state-of-the-art MILP package.

Multistage stochastic problems generalize the above two-stage framework,
involving a sequence of observation-decision events. For k stages, they can be
formulated as

min
xi

c1(x1) + Eξ2

[

min c2(x2(ξ
2); ξ2) + · · · + Eξk

[

min ck(xk(ξk); ξk)
]

· · ·
]

subject to W1x1 = h1

W2x2(ξ
2) + T1(ξ

2)x1 = h2(ξ
2)

Wixi(ξ
i) + Ti−1(ξ

i)xi−1(ξ
i−1) = hi(ξ

i) i = 3, . . . , k

x1 ≥ 0, xi(ξ
i) ≥ 0 i = 2, . . . , k,

(4)

4



where Wi, i = 1, . . . , k are known mi×ni matrices, h1 is a known vector in R
m1 ,

hi, i = 2, . . . , mi are random vectors in R
mi , Ti, i = 1, . . . , k−1 are mi× (ni−1)

random matrices, xi ∈ R
ni , i = 1, . . . , k is the vector of decisions at stage i

(such that xi, i > 1, depends of previous random events), and ξi means the
history of random events up to stage i. In that formulation we have implicitly
restricted our decisions to depend on past data, and they must be the same at
stage i for scenarios with a common history up to stage i−1. In a deterministic
equivalent formulation we must include explicit nonanticipativity constraints to
model such behaviour (see [1] for details). The model of Subsection 3.3 will be
solved by a three-stage stochastic model.

3 Cash management in ATMs (and branches)

The objective is to find the amount of cash to be disposed in an ATM for a cer-
tain period of time (e.g., one week-end, one week) using a stochastic program-
ming approach. The same model can basically be also used for cash management
in branches. We need the following information:

• Historical data m1, m2, . . . , mt of the overall amount of money due to
transactions in the ATM or branch, during last t periods (e.g., days). mi

can be either positive (i.e., money injected into the ATM or branch) or
negative (i.e., money extracted from the ATM or branch). In practice
we should differentiate depending on the type of period, e.g., workable,
weekend, holidays, etc. We assume our data corresponds to the same type
of periods. Banks record all the transactions performed in an ATM (and
branch), and thus the historical data mi is exhaustive. It is known that
the empirical cumulative distribution function (cdf) is the maximum like-
lihood estimate of the real cdf [3, p. 310]. Because of the efficiency of
the procedure described below, we will consider the empirical probability
distribution ξ of values ξi and probabilities pi, i = 1, . . . , s,

∑s

i=1 pi = 1,
population data. That means that for all i ∈ {1, . . . , t} we guarantee that
some scenario j ∈ {1, . . . , s} satisfies ξj = mi. Usual techniques in stochas-
tic programming for estimating sampling distributions, as bootstrapping,
can thus be avoided.

• l ≥ 0, u > 0 (l < u): minimum and maximum allowed amount of money
in the ATM or branch. For an ATM u is its technical capacity. l can be
a reserve fixed by law, mainly for branches. Values 0 and ∞ can be used
if these bounds are not applicable.

• c ≥ 0: Cost per e in the ATM or bank branch for the time horizon
considered in the problem. This cost is associated with interest rates, and
it may also include insurance costs for the money disposed in the ATM.

• k ≥ 0: Fixed cost for the refilling or extraction of money if the ATM or
branch gets out the allowed bounds l and u. This cost is independent of

5



the amount of money refilled. It is used in the models of Subsections 3.1,
3.2 and 3.3.

• kv ≥ 0, v ≥ 0: cost for each fraction of ve disposed in the ATM or branch.
This cost defines the staircase costs of models of Subsections 3.2 and 3.3,
and it is used in conjuction with the fixed cost defined by k above.

We analyze three realistic situations. The first two correspond to a short-
term period of few days, e.g., one week-end, or some short period of holidays.
In that case, at most one single refilling may be necessary. Depending of the
policy considered by the money transportation company, we have two different
models: the first one only considers fixed costs k associated to refilling, whereas
the second also uses the staircase costs associated to kv. An O(s) algorithm is
presented for the fixed cost problem, whereas the other is solved formulating
the deterministic equivalent. The third model applies to a mid-term period,
e.g., one week. Current practice in banking is to refill twice per week, since one
single refill is not enough for the existing demand. This results in a multistage
optimization problem, which is again solved by its deterministic equivalent.

3.1 The short-term problem with fixed costs

We define x ∈ R as the amount of money to be placed in the ATM or branch.
Indeed we should impose x ∈ Z, but as shown below we will always obtain an
integer solution. This is the first-stage decision to be optimized in our two-stage
stochastic program. For the second-stage we define a binary variable z ∈ {0, 1};
z is 1 if the ATM has to be refilled, otherwise is 0. We also need auxiliary
second-stage variables y+ ∈ R and y− ∈ R. The final formulation is

min
x

cx + Eξ[Q(x, ξ)]

subject to l ≤ x ≤ u
(5)

where
Q(x, ξ) = min

z,y+,y−
kz

subject to x + ξ + y+ ≥ l

x + ξ − y− ≤ u

y+ ≤ Mz

y− ≤ Mz

z ∈ {0, 1}, y+ ≥ 0, y− ≥ 0,

(6)

M being a large enough value (e.g., M = maxi{|ξi|, i = 1, . . . , s}). Constraints
of (6) force that the amount placed in the ATM plus the future demand is
between bounds (l ≤ x + ξ ≤ u). If this can not be satisfied then we need
a positive value for the auxiliary variables y+ or y−, and thus z must be 1,
inducing refilling costs.

The deterministic equivalent of the above stochastic formulation is obtained
by replicating the second-stage variables for each scenario (i.e, zi, y+

i , y−
i , i =

6



1, . . . , s), and the constraints where they intervene. It gives rise to the following
MILP problem.

min
x,zi,y

+
i

,y
−
i

cx + k

s
∑

i=1

pizi

subject to l ≤ x ≤ u

x + ξi + y+
i ≥ l

x + ξi − y−
i ≤ u

y+
i ≤ Mzi

y−
i ≤ Mzi

zi ∈ {0, 1}, y+
i ≥ 0, y−

i ≥ 0























i = 1, . . . , s.

(7)

(7) involves s binary variables. If s is large it can require too many iterations for
a general MILP algorithm. However we show below that, exploiting the model
structure, the equivalent stochastic problem (5)–(6) can be solved through a
specialized procedure of running time O(s).

3.1.1 Solving the integer stochastic problem problem in linear time

Assume the values ξi, i = 1, . . . , s are sorted in ascendent order (i.e., ξi < ξi+1).
Note that sorting does not need to be performed in practice, since we can
maintain a sorted array of ξi values, which is updated, e.g., daily, after a new
mi value is known. Since the probabilities pi, i = 1, . . . , s have to be adjusted
after each new value, the overall running time of this preprocessing is O(s).

Then the optimal solution of (6) is

Q(x, ξ) =

{

k if (x + ξ < l) or (x + ξ > u)
0 otherwise.

(8)

Since conditions x + ξ < l and x + ξ > u in (8) are mutually exclusive (because
l < u), the recourse function can be computed as follows:

Q(x) = Eξ[Q(x, ξ)] =

s
∑

i=1

piQ(x, ξi) =

il(x)
∑

i=1

pik +

s
∑

i=iu(x)

pik = kP (x), (9)

where
P (x) =

∑

i∈{1,...,il(x)}∪

{iu(x),...,s}

pi (10)

and

il(x) = max{i : 1 ≤ i ≤ s, ξi < l − x}, iu(x) = min{i : 1 ≤ i ≤ s, ξi > u − x}.
(11)

Next proposition shows that indeed il(x) 6= iu(x) for any x.

Proposition 1 If il(x) = i for some x, l ≤ x ≤ u, then iu(x) 6= i for any
x, l ≤ x ≤ u.

7



Proof. From (11), il(x) = i means that x < l − ξi; since l ≤ x, then ξi < 0.
Let’s suppose that for some x, iu(x) = i. From (11) and u ≥ x, we have
u ≥ x > u − ξi, and then ξi > 0, which is a contradiction.�

The deterministic equivalent problem to be solved is

min
l≤x≤u

cx + kP (x). (12)

To compute cx + kP (x) we must know the il(x) and iu(x) indexes for each
interval of x values. From the definition (11), considering that l ≤ x ≤ u, and
using an artificial value ξs+1 = ∞, we have that

il(x) = i, 1 ≤ i ≤ s, if x ∈ [max{l− ξi+1, l}, min{l− ξi, u})] = [ai, bi)]. (13)

Abusing of notation, “)]” means that the right endpoint is either or not included
in the interval: if u < l − ξi, then the interval is [ai, bi], otherwise it is [ai, bi).
An interval such that bi < ai means that il(x) is never i, for any value x; those
intervals are removed from consideration. Note that the intervals [ai, bi)] are
contiguous, i.e., bi = ai+1. From (11), indices iu(x) are defined similarly, using
an artificial value ξ0 = −∞,:

iu(x) = i, 1 ≤ i ≤ s, if x ∈ [(max{u−ξi, l}, min{u−ξi−1, u}] = [(ci, di]. (14)

As before, “[(” means that the left endpoint is either included or not; it is if
l > u − ξi, otherwise it is not. As for il(x), an interval with ci < di means
that iu(x) is never i, for any value x, and it is discarded. The intervals [(ci, di]
are contiguous too. From the above intervals [ai, bi)], [(ci, di), P (x) can be
computed as

P (x) =

il
∑

i=1

pi +
s
∑

i=iu

pi, where

il =

{

i if ∃i : x ∈ [ai, bi)]
0 otherwise

, iu =

{

i if ∃i : x ∈ [(ci, di]
s + 1 otherwise

.

(15)
Consider for instance a small example for a short period of three days, with

s = 4, ξ = (−130,−80,−50, 50) with probabilities p = (0.2, 0.3, 0.4, 0.1), l = 20,
u = 140, c = 0.00025 (which corresponds approximately to an annual interest
rate of 3%) and k = 0.05. ξ, l, u, k and x are expressed in 1000’s e. Values k,
l, u, and c are real ones, whereas ξ has been chosen for illustrative purposes (in
a real situation, s ≫ 4). The first three values of ξ represent an extraction of
money from the ATM; the last scenario ξ4 represents an injection. Using (13)
and (14) we obtain the following [ai, bi)] and [(ci, di] intervals:

il(x) =















1 if x ∈ [100, 140]
2 if x ∈ [70, 100)
3 if x ∈ [20, 70)
4 if x ∈ [20,−30) not possible

8



Figure 1: a) cx and kP (x) for the example. b) cx + kP (x) for the example

x

0.0

0.03

40

0.02

80 120

0.05

0.04

0.01

0

kP(x)                   

cx                      

0.06

x

80

0.07

0.05

0.03

0.0

0.01

120

0.04

40

0.02

0

cx+kP(x)                

a) b)

and

iu(x) =















1 if x ∈ (270, 140] not possible
2 if x ∈ (220, 140] not possible
3 if x ∈ (190, 140] not possible
4 if x ∈ (90, 140]

The resulting cx, kP (x) and cx + kP (x) functions of the example are shown
in Figure 1. Note that the interval (90, 140] for iu(x) = 4 overlaps intervals
[70, 100) and [100, 140] for il(x) = 2 and il(x) = 1, respectively, giving rise to
the new ones [70, 90], (90, 100) and [100, 140]. As shown by next proposition
the number of final intervals in P (x) is at most 2s. Abusing of notation and to
simplify the cases in the proof, we will assume intervals for il(x), iu(x) and those
due to overlapping are of the form [(ai, bi)], [(ci, di)] and [(ej , fj)] (as before,
“[(”, “)]” means that the endpoint is either included or not).

Proposition 2 Let [(ai, bi)], i = 1, . . . , sl ≤ s be the intervals for il(x) and
[(ci, di)], i = 1, . . . , su ≤ s those for iu(x). The number of new intervals [(ej , fj)]
due to overlapping is, at most, 2s.

Proof. We assume the intervals are ordered, i.e., ai+1 = bi, ci+1 = di. This as-
sumption is guaranteed if intervals are computed by (13) and (14). The interval
[(ci, di)] may overlap some [(aj , bj)] intervals, resulting in new ones. There are
four cases, listed below. The first two are the nontrivial ones, while the last two
reduce to one of the first two cases.

a) The endpoints of [(ci, di)] belong to the same interval [(aj , bj)], i.e., aj ≤
ci ≤ di ≤ bj . Figure 2.a) illustrates this situation. The resulting three
intervals are [(aj , ci)], [(ci, di)], and [(di, bj)], increasing by one the number
of original two overlapping intervals.

9



Figure 2: Two nontrivial cases for overlapping intervals. a) Interval [(ci, di)]
is contained in interval [(aj , bj)]; b) Interval [(ci, di)] starts and ends in two
different intervals [(aj , bj)] and [(aj+l, bj+l)].

New intervalsNew intervals

Interval

ilInterval

iuInterval

ilIntervals

ui

a) b)

b) The endpoints of [(ci, di)] belong to different intervals [(aj , bj)] and [(aj+l, bj+l)],
l ≥ 1, i.e, aj ≤ ci ≤ bj ≤ aj+l ≤ di ≤ bj+l, as shown in Figure
2.b). The resulting l + 3 intervals are [(aj , ci)], [(ci, bj)], [(aj+1, bj+1)],
[(aj+2, bj+2)],. . . , [(aj+l, di)], [(di, bj+l)], increasing by one the number of
original l + 2 overlapping intervals.

c) The left endpoint of [(ci, di)] is less than a1, the leftmost point of all
[(ai, bi)] intervals, i.e., ci < a1 ≤ di. We then create one new interval
[(ci, a1)], an apply to the remaining portion of [(ci, di)], namely [(a1, di)],
one of cases a), b) or d).

d) The right endpoint of [(ci, di)] is greater than bsl
, the rightmost point of

all [(ai, bi)] intervals, i.e., ci < bsl
≤ di. We then create one new interval

[(bsl
, di)], and apply to the remaining portion of [(ci, di)], namely [(ci, bsl

)],
one of cases a), b) or c).

Therefore, for any interval [(ci, di)] that overlaps with intervals [(ai, bi)] one new
one is created at most. Since, from Proposition 1 sl+su, the number of intervals
[(ai, bi)] and [(ci, di)], is at most s, the number of new intervals created is at
most 2s. �

Since cx has always a positive slope, the minimum of cx+P (x) is on the left
point of one of the intervals due to overlapping. It is thus sufficient to evaluate
cx + P (x) in at most 2s points to obtain the optimal solution. It is worth to
note that if ξi, i = 1, . . . , s, l and u are integer values, then the left points of
all the intervals will also be integer and the procedure will report an integer
solution. Algorithm of Figure 3 shows the main steps of the procedure, which
is a constructive proof of the following result:

Proposition 3 The integer stochastic programming problem (5)–(6) for cash
management in ATMs can be solved in polynomial time using algorithm of Figure
3. Moreover, the running time is O(s), s being the number of scenarios.

10



Proof. It is immediate from the discussion of previous paragraph that algorithm
of Figure 3 solves (5)–(6). Moreover, the running time of steps 1–4 of algorithm
of Figure 3 is O(s), and then the overall procedure is O(s). �

Figure 3: Procedure for the solution of problem (12)

Algorithm Cash Management ATM :
1 Compute intervals of x [ai, bi)] i = 1, . . . s using (13)
2 Compute intervals of x [(ci, di] i = 1, . . . s using (14)
3 Obtain new intervals of x [(ei, fi)] i = 1, . . . l ≤ 2s due to overlapping
4 i∗ = arg min{cei + kP (ei), i = 1, . . . , l}
5 Return: x = ei∗

End algorithm

Looking at Figure 1, the final number of intervals is four, and the optimal
solution is x = 100 (100,000e to be put in the ATM for the time period consid-
ered) —the left point of interval [100, 140]— with an expected cost of 0.04 (40e
for the period). Solving (7) for this example through a MILP solver the same
solution is obtained.

3.2 The short-term problem with fixed and staircase costs

Extending formulation (5) we obtain the following model for this second situa-
tion:

min
x

cx + Eξ[Q(x, ξ)]

subject to l ≤ x ≤ u
(16)

where

Q(x, ξ) = min
z,y+,y−,nv

kz + kvnv

subject to x + ξ + y+ ≥ l

x + ξ − y− ≤ u

y+ ≤ Mz

y− ≤ Mz

y+ ≤ nvv

y− ≤ nvv

z ∈ {0, 1}, nv ∈ N, y+ ≥ 0, y− ≥ 0,

(17)

nv being the number of fractions of ve disposed to or removed from the ATM.

11



Although the solution of (17) is given by

Q(x, ξ) =































k + kv

⌈

l − (x + ξ)

v

⌉

if x + ξ < l

k + kv

⌈

(x + ξ) − u

v

⌉

if x + ξ > u

0 otherwise,

(18)

the expression of Q(x) can not be easily computed, unlike in (9). We then have
to resort to the following deterministic equivalent formulation

min
x,zi,y

+
i

,y
−
i

,nvi

cx + k

s
∑

i=1

pi(zi + kvnvi
)

subject to l ≤ x ≤ u

x + ξi + y+
i ≥ l

x + ξi − y−
i ≤ u

y+
i ≤ Mzi

y−
i ≤ Mzi

y+
i ≤ nvi

v

y−
i ≤ nvi

v

zi ∈ {0, 1}, nvi
∈ N, y+

i ≥ 0, y−
i ≥ 0







































i = 1, . . . , s.

(19)

Although (19) has s binary variables and s integer ones, in practice, it can be
efficiently solved by state-of-the-art MILP solvers. Table 1 shows the computa-
tional results for some instances generated from the example used in Subsection
3.1. The realistic values considered, expressed in 1000’s e, are l = 20, u = 140,
c = 0.00025 (which corresponds approximately to an annual interest rate of
3%), k = 0.02, kv = 0.03 and v = 6. First instance of 4 scenarios of demand
of money corresponds to the example of Subsection 3.1. The scenarios for the
other instances were randomly generated from the same theoretical distribution,
a normal of µ = −65 and σ = 20, which explains the same optimal value in all
cases. We used a theoretical distribution for the demand because we have no
access to such a confidential information. The runs were performed on a PC
with one AMD Athlon 4400+ 64 bits dual core processor, using the AMPL mod-
elling language and the solver CPLEX 9.1. For each intance, Table 1 shows the
number of scenarios (column s), optimal first stage decision in 1000’s e (x∗),
number of overall simplex iterations (MIP iter.), the number of branch-and-
bound nodes explored (B&B nodes) and the overall CPU time (CPU). Clearly,
it is shown that, unlike the specialized algorithm of Subsection 3.1, the CPU
times do not linearly increase. However, an optimal solution is provided in few
seconds.

3.3 The multistage mid-term problem

For a mid-term planning (e.g. one week), models of Subsections 3.1 and 3.2
are not applicable, since they only consider a single refilling. Current technical

12



Table 1: Solution of (19) for pseudo-randomly generated instances
s x∗ MIP iter. B&B nodes CPU
4 138 8 0 0.016

100 114 243 6 0.064
1000 114 7352 434 4.27
5000 114 35567 837 35.33

capacities of ATM’s and customers demand of money force two or more refill
operations, depending of the time horizon. In theory we can consider any num-
ber h of refill operations, giving raise to a (h+1)-stages stochastic problem. As
for the model of Subsection 3.2, we will consider fixed and staircase costs for
the refill operations. The general (h + 1)-stages model can be formulated as an
extension of (16)–(17):

min
x

cx1 + Eξ2,...,ξh+1

[

h
∑

t=2

cxt +

h+1
∑

t=2

(

kzt + kv(n+
v,t + n−

v,t)
)

]

subject to
l ≤ xt−1 ≤ u

bt = bt−1 + xt−1 + ξt + y+
t − y−

t

l ≤ bt ≤ u

y+
t ≤ Mzt

y−
t ≤ Mzt

y+
t ≤ n+

v,tv

y−
t ≤ n−

v,tv

zt ∈ {0, 1}, y+
t ≥ 0, y−

t ≥ 0
n+

v,t ∈ N, n−
v,t ∈ N























































t = 2, . . . , h + 1

b1 = 0.

(20)

ξt, t = 2, . . . , h + 1 are the demands for the t-th stage. bt, t = 1, . . . , h is the
amount of money in the ATM at stage t prior to decision xt (initially b1 = 0,
though any other value could be used). Unlike previous models, the amount
of money refilled or extracted, y+

t and y−
t , is bounded by different n+

v,t, n
−
v,t

variables. This allows the inclusion of both variables y+
t and y−

t in the money
balance equations. If necessary, dependency of random variables between stages
could be added to (20), i.e. ξt+1|(t,t−1,...,1).

The above problem can not be solved through a special algorithm, as we did
in Subsection 3.1, and we are forced to use the deterministic equivalent formu-
lation. Although in theory any number h of refill operations can be considered,
we will restrict to a three-stage situation, i.e., h = 2. This is the current practice
in Spain for weekly periods, where refill operations are scheduled by some banks
for Tuesday and Friday. The deterministic equivalent of this three-stage model
is given by

13



Table 2: Solution of (21) for pseudo-randomly generated instances
s2 s3 s x∗ MIP iter. B&B nodes CPU
50 20 1000 133 1219 0 0.14
50 50 2500 133 2161 367 10.87
75 50 3750 121 18431 12638 316.99

100 50 5000 124 11426 6631 602.3†

† stopped by CPU time limit, with a relative optimality gap of 0.006

min
x

s
∑

i=1

pi

(

3
∑

t=2

(

cxt−1i
+ kzti

+ kv(n
+
v,ti

+ n−
v,ti

)
)

)

subject to
l ≤ xt−1i

≤ u

bti
= bt−1i

+ xt−1i
+ ξti

+ y+
ti
− y−

ti

l ≤ bti
≤ u

y+
ti
≤ Mzti

y−
ti
≤ Mzti

y+
ti
≤ n+

v,ti
v

y−
ti
≤ n−

v,ti
v

zti
∈ {0, 1}, y+

ti
≥ 0, y−

ti
≥ 0

n+
v,ti

∈ N, n−
v,ti

∈ N























































t = 2, 3
i = 1, . . . , s

b1i
= 0 i = 1, . . . , s

additional nonanticipativity constraints.

(21)

As usual, nonanticipativity constraints force same decisions at stage t for scenar-
ios with a common history up to stage t−1 (e.g., for x1 they could be x11 = x1j

for all s ≥ j > 1). Problem (21) has 2s binary, 4s integer and 8s continuous
variables, such that s =

∑s2

i=1 s3i
, s2 and s3i

being the different values of ξ2 and
ξ3|2i

.
Table 2 shows the computational results for some instances. As for Table 1,

we used the realistic values (expressed in 1000’s e) l = 20, u = 140, c = 0.00025
(related to an annual interest rate of 3%), k = 0.02, kv = 0.03 and v = 6.
The different values for ξ2 and ξ3 were randomly generated from the same two
theoretical distributions, a normal of µ = −65 and σ = 20 for ξ2, and µ = −80
and σ = 15 for ξ3, since we have no access to real-world —thus confidential—
values. The runs were performed on a PC with one AMD Athlon 4400+ 64
bits dual core processor, using the AMPL modelling language and the solver
CPLEX 9.1. For each instance, Table 2 shows the number of values for ξ2

(column s2, which corresponds to the number of nodes of the second stage in
the scenario tree), number of values for ξ3 (column s3), number of scenarios
(s = s2 · s3 in these runs), optimal first stage decision in 1000’s e (x∗), number
of overall simplex iterations (MIP iter.), the number of branch-and-bound nodes
explored (B&B nodes) and the overall CPU time (CPU). Compared to those of

14



previous sections, this model is computationally more expensive. However it is
still possible to obtain optimal or near-optimal solutions to small and mid-size
problems in seconds or minutes of CPU.

4 Cash management in the compensation of credit
card transactions

In the Spanish system there is a central agent that daily records all the banks
credit card transactions and performs the payments from some accounts owned
by these banks. Banks must guarantee a certain amount for such payments
in their particular account. If the account becomes empty the central agent
performs the remaining payments, lending money to the bank at a high inter-
est. Otherwise, if the bank decides to maintain a large amount of money in the
account, it causes an excess of overstock costs associated with interest rates.
That problem can be seen as an inventory problem with stochastic demands, in
particular as a newsvendor problem. However, we will consider a stochastic pro-
gramming formulation, which is more general and can be easily accommodated
to extra constraints and nonlinear cost functions. The information required for
the model is:

• Historical data m1, m2, . . . , mt of the daily credit card payments made
by the bank customers during last t days. As in Section 3, from this
data we generate the empirical probability distribution ξ of values ξi and
probabilities pi, i = 1, . . . , s, which is the maximum likelihood estimate of
the real cdf. We will also differentiate depending on the type of day.

• l ≥ 0, u > 0 (l < u): minimum and maximum capacity of money in the
account (set 0 and ∞ if not applicable).

• c1 ≥ 0: Cost per e in the account, due to interest rates.

• c2 > 0: Cost per e lent by the central agent (c2 > c1).

Let x be the amount of money in the account, and let y+ be the money
lent by the central agent and y− the residual money in the account after the
payments. These are respectively the first and second-stage decisions. The
formulation is

min
x

c1x + Eξ[Q(x, ξ)]

subject to l ≤ x ≤ u
(22)

where
Q(x, ξ) = min

y+,y−
c2y

+

subject to x + y+ − y− = ξ

y+ ≥ 0, y− ≥ 0.

(23)

15



This is a two-stage stochastic problem with simple recourse. The solution of (23)
is y+∗

= max{ξ − x, 0}, y−∗
= max{x − ξ, 0}. The recourse function can thus

be easily computed as Q(x) = Eξ[c2y
+∗

]. Alternatively, we can use a general
expression of Q(x) for simple recourse problems where the only stochastic term
is the right-hand side of the second-stage problem [1, p. 93]. Applying this
expression of Q(x) in (22) we obtain

min
x

g(x) = c1x + c2

(

ξ̄ − x + F (x)x −
∫

ξ≤x
ξf(ξ)dξ

)

subject to l ≤ x ≤ u,
(24)

f(ξ) and ξ̄ being respectively the density function and the expected value of the
daily payments. (24) is an optimization problem of one variable with simple
bounds. If ξ is continuous, g(x) is a convex continuous function of derivative

g′(x) = c1 + c2(F (x) − 1). (25)

If bounds are inactive, the optimal solution satisfies g′(x∗) = 0. If ξ is dis-
crete then F (ξ) has discontinuities at points ξi, i = 1, . . . , s, and g(x) is convex
piecewise linear and its subdifferential is

∂g(x) =
{

π|c1 + c2(F (x) − 1) ≤ π ≤ c1 + c2(F
+(x) − 1)

}

, (26)

where F+(x) = limξ↓x F (ξ). If bounds are inactive, a point x∗ such that 0 ∈
∂f(x∗) is optimum. Therefore, either for a continuous or discrete distribution,
the solution is:

x∗ =







l if F (l) > 1 − c1

c2
≥ 0

u if F (u) < 1 − c1

c2
≤ 1

F−1(1 − c1

c2
) otherwise.

(27)

For a discrete distribution given by the sample m1, m2, . . . , mt, which is the
usual case in practice, the quantile F−1(1 − c1

c2
) is computed by first sorting in

ascendent order the above data, obtaining m(1), m(2), . . . , m(t), and then finding

the position i =
⌈

t(1 − c1

c2
) − 1

⌉

. The solution is

x∗ = m(i+1). (28)

If we allow interpolation then we can alternatively use

x∗ = m(i) + (t(1 −
c1

c2
) − i)(m(i+1) − m(i)). (29)

In some numerical tests performed, the extensive form of (22–23) solved with a
linear programming code provided the first solution (28). Note that, if bounds l

and u are not active, the solution F−1(1− c1

c2
) is equivalent to F−1( cu

co+cu
), which

we would have obtained by considering an inventory problem with stochastic de-
mands, and understock and overstock costs cu = c2−c1 and co = c1, respectively
[14, Ch. 17]. However, the stochastic programming approach is more versatile,

16



allowing lower and upper bounds l and u, and even the solution of generaliza-
tions of the problem. A realistic one would be to consider a convex or piecewise
linear objective function in (23), i.e., the larger the value of y+—money lent
by the central agent—, the larger the interest rates or penalization applied. In
this case we can solve the deterministic equivalent of the new stochastic model,
which is a linear programming problem.

5 Conclusions

Several banking activities currently performed in some institutions simply by
simulation, experience or trial and error, can effectively be optimized by stochas-
tic programming techniques. In this work we focused on models for two partic-
ular activities: cash management in ATMs and in the compensation of credit
card transactions. For basic models of both problems we provided very efficient
procedures for computing the best decision ahead of an uncertain money de-
mand. For extensions of the ATM model (i.e., short and mid-term problems
with fixed and staircase costs) the MILP deterministic equivalent formulations
were solved.

The models for cash management in ATMs and compensation of credit card
transactions considered can be extended in several ways to fit the particular
bank reality. For instance, the cash management models for ATMs could deal
with situations where only some type of bills (e.g., 20e) are exhausted. In this
case there is likely no need to refill the ATM, but the bank incurs costs due to
dissatisfaction of customers, who are forced to get multiples of, e.g., 50e. Both
problems can also be extended with nonlinear or piecewise linear cost objective
functions in the second stage. For some of these extensions it can even be
possible to obtain a specialized solution procedure, as those presented in this
work. Otherwise, we must solve the extensive form of the problem, as we did
for the two-stage and multistage cash management models with staircase costs.
This could mean a larger, but hopefully yet reasonable, solution time. However,
this is not a main drawback, since decisions in this context are not taken in
real-time, but periodically.

6 Acknowledgments

The author is indebted to the staff of the Spanish division of a worldwide bank,
who suggested and detailed the problems dealt with in this work. We have been
asked to maintain confidential both the names of the persons and the bank. The
author also thanks two anonymous referees whose suggestions clearly improved
the presentation of the work. This work has been partially supported by the
Spanish MEC grant MTM2006-05550.

17



References

[1] J.R. Birge, F. Louveaux. 1997. Introduction to Stochastic Programming,
Springer, New York.

[2] G.B. Dantzig, G. Infanger. 1993. Multi-stage stochastic linear programs for
portfolio optimization, Annals of Operations Research 45 59-76.

[3] B. Efron, R.J. Tibshirani. 1993. An Introductoin to the Bootstrap, Chap-
man & Hall, London.

[4] F. Gardin, R. Power, E. Martinelli. 1995. Liquidity management with fuzzy
qualitative constraints, Decision Support Systems 15(2) 147–156.

[5] B. Golub, M. Holmer, R. McKendall, L. Pohlman, S.A. Zenios. 1995.
Stochastic programming models for money management, European Journal
of Operations Research, 85(2) 282–296.

[6] J. Gondzio, R. Kouwenberg. 2001. High performance computing for asset
liability management, Operations Research 49(6) 879–891.

[7] J.G. Kallberg, R.W. White, W.T. Ziemba. 1982. Short term financial plan-
ning under uncertainty, Management Science, 28 670–682.

[8] P. Kall, S.W. Wallace. 1994. Stochastic Programming, Wiley, Chich-
ester. Available electronically from http://www.unizh.ch/ior/Pages/-

Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf.

[9] R. Kouwenberg, S.A. Zenios. 2006. Stochastic programming models for as-
set liability management, in: Stavros Zenios and Bill Ziemba (eds.), Hand-
book of Asset and Liability Management, series Handbooks in Finance,
Elsevier, 253–303.

[10] W.K. Klein Haneveld, M.H. van der Vlerk. 1999. Stochastic integer pro-
gramming: General models and algorithms, Annals of Operations Research
85 39–57.

[11] D.C. Novak, C.T. Ragsdale. 2003. A decision support methodology for
stochastic multi-criteria linear programming using spreadsheets, Decision
Support Systems 36(1) 99–116.

[12] Transoft Inc. 2004. OptiCa$h. http://www.transoftinc.com/opticash.htm.

[13] Wincor/Nixdorf. 2004. ProCash Analyzer. http://www.-

wincor-nixdorf.com/internet/us/Products/Software/Banking/-

CashAnalyzer/index.html.

[14] W.L. Winston. 1994. Operations Research. Applications and Algorithms,
3rd ed., Duxbury Press, Belmont.

18



[15] L.-Y. Yu, X.-D. Ji, S.Y. Wang. 2003. Stochastic programming models in
financial optimization: A survey, Advanced Modeling and Optimization
5(1) 1–26.

[16] S. A. Zenios, W.T. Ziemba. 2006, 2007. Handbook of Asset and Liability
Management, Vols. 1 and 2, series Handbooks in Finance, Elsevier.

[17] W.T. Ziemba, J.M. Mulvey. 1998. Worlwide asset and Liability Modelling,
Cambridge University Press.

19


