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Abstract

This paper developed a stochastic programming model that integrated the most recent regula-
tion rules of the Spanish peninsular system for bilateral contracts in the day-ahead optimal bid
problem. Our model allows a price-taker generation company to decide the unit commitment
of the thermal and combined cycle programming units, the economic dispatch of the bilat-
eral contracts between all the programming units and the optimal sale bid by observing the
Spanish peninsular regulation. The model was solved using real data of a typical generation
company and a set of scenarios for the Spanish market price. The results are reported and
analyzed.

Keywords: Electricity spot-market - Short-term - Combined cycle units - Bilateral contracts
- Optimal bid - Stochastic programming

1 Introduction

Generation companies in liberalized electricity markets do not have a load of their own to satisfy,
but must bid their hourly generation to the market operator, who selects the lowest-price among
the biding companies to match the pool load. A specific generation company (GenCo) expects
to have most of its bids accepted, i.e., have them priced below the market price, determined
hourly by matching the lowest-price bids with the pool load. Liberalized electricity markets are
nowadays very sophisticated energy- and financial-transaction multimarkets where, around the
main electricity market, the so-called ”day-ahead” or ”spot” market, a portfolio of other financial
and physical markets as well as bilateral contracts (BCs) exist. Moreover, a generation company
operating in such a complex market can no longer optimize its medium- and short-term generation
planning decisions without considering the relation between those markets and the increasing
importance of the emission-free (wind power and hydro-generation) and low-emission technologies
(combined cycle).

∗This work was supported by the Ministry of Science and Technology of Spain through CICYT Project DPI2005-
09117-C02-01 (http://www-eio.upc.es/research/gnom/meccyt06-08/).
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Table 1: Generation of electricity in the Spanish Peninsular Electricity System (GWh)

2002 2003 2004 2005 2006 2007

Hydro 22.598 38.874 29.777 19.170 24.761 26.381
Nuclear 63.016 61.875 63.606 57.539 60.184 55.046
Coal 78.768 72.249 76.358 77.393 66.143 71.846
Fuel 16.474 8.027 7.697 10.013 5.841 2.384
CC 5.308 14.991 28.974 48.840 63.561 68.304

Subtotal 186.164 196.016 206.412 212.955 220.490 223.962

Self-consumption -8.420 -8.162 -8.649 -9.080 -8.719 -8.655

Cogeneration
and renewables 35.401 41.412 45.868 50.365 49.904 55.754

Total 213.145 229.266 243.631 254.240 261.675 271.061

The combined cycle (CC) units represent the majority of the new generating unit installations
across the globe. Their advantages are: a) High efficiency (can reach 60%, which is a 20 – 30%
improvement over that of the traditional single-cycle thermal plants); b) Fast response (can be quite
instrumental in facing rapid fluctuations in the power markets); c) Environmental friendliness (the
CO2 production of a natural gas fueled CC plant is much lower than that of other fossil-fueled
turbine technologies); and d) Compact and shorter installation time. For example, as of December
31, 2007, the total installed capacity in the Spanish Peninsular Electricity System was 85.959 MW
(this capacity has increased by 26.140 MW since 2002). This increase is chiefly attributed to the
commissioning of new CC, cogeneration, and renewable power plants, most of which comprised the
wind power. Currently, the installed capacity of CC units represents 24.38% of the total installed
capacity. Also, the total net generation in the Spanish Peninsular Electricity System reached 271
TWh (representing an increase of around 58 TWh over 2002), with 25% from coal plants, 24%
from CC plants, 21% from cogeneration and renewable plants, 20% from nuclear plants, 9% from
hydro plants and 1% from fuel plants (Table 1);

The BCs are agreements between a generation company and a qualified consumer to provide
a given amount of electrical energy at a stipulated price along with a delivering period. The
characteristics of the BC (energy, price and delivering period) are negotiated before the day-ahead
market, either in organized or non-organized markets. In the organized BC markets, the producers
and consumers send sell and purchase bids that are matched by the market operator. Examples of
organized BC markets are the CESUR (CESUR, 2008) and EPE (MEFF, 2008) auctions in Spain,
BelpexVPP auctions in Belgium (BELPEX, 2008), and the EDF’s capacity auctions in France
(EDF, 2008). In non-organized BC markets, the producers and consumers agree the amount,
price, and period of the energy delivered, in a private negotiation. In both cases, from the point
of the view of the generation company, a BC represents a scheduled load curve to be delivered,
chargeable at a fixed price.

Several researchers have proposed optimal bidding models in the day-ahead market for thermal
units under the price-taker assumption, with or without BC. Some researchers (Conejo and Arroyo,
2002) presented a mixed-integer programming model to optimize the production schedule of a single
unit with a simple bidding strategy. Furthermore, in another study (Gountis and Bakirtzis, 2004),
the approximation of step-wise bid curves by linear bid functions, based on the marginal costs was
considered, although in a context without BC. Also, in an earlier study (Ni et al, 2004), the concept
of price-power function, which is similar to the matched energy function defined in our study, was
used to derive the optimal bid curves of a hydro-thermal system under the assumption that the
spot prices for the day-ahead and reserve markets behave as a Markov Chain. The mixed-integer
stochastic programming model (Nowak et al, 2005) distinguishes the variables corresponding to
the bid energy and those representing the matched energy, though in a price-maker framework
and without BC. In another model (Shresta et al, 2004), very much related in some aspects to
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Figure 1: Representation of the system under study

the one presented in our study, a stochastic unit commitment problem with BC was solved by
maximizing the day-ahead market benefit. The stochasticity in the spot prices was introduced
through a set of scenarios, giving rise to a two-stage stochastic programming problem. In another
earlier study (Triki et al, 2005), the researchers presented a mixed-integer stochastic optimization
model for scheduling the thermal units, and the production plants were optimized in the presence
of stochastic market-clearing prices. Nevertheless, the two earlier models (Shresta et al, 2004;
Triki et al, 2005) failed to propose any explicit modelization of the optimal bid as we have done.
Furthermore, the general considerations about the bidding process in electricity markets can also
be obtained (Anderson and Philpott, 2002, 2003; Neame et al, 2003).

One of the earlier studies (Bjelogrlic, 2000) considered the CC units in the short-term resource
scheduling. The proposed algorithm was based on the assumption that the thermal subsystem of a
CC is modeled through input-output curves that are defined for all configurations and all steam load
ranges. A method (Lu and Shahidehpour, 2004) was presented to calculate the unit commitment of
CC units using dynamic programming and lagrangian relaxation applied to the security-constrained
short-term scheduling problem. Furthermore, the price-based unit commitment problem based on
the mixed-integer programming method for a generating company with thermal, CC, cascaded-
hydro, and pumped-storage units has also been presented (Li and Shahidehpour, 2005). None of
the earlier publications presented an explicit formulation of the optimal sale bid of the CC units
to the day-ahead market or any considerations about the BC.

Our study developed an stochastic mixed-integer quadratic programming model for a price-
taker GenCo with BC obligations to determine the optimal bidding strategy of a pool of thermal
and CC programming units in the day-ahead electricity market. The model allows a price-taker
GenCo to decide the unit commitment of its thermal and CC programming units, the economic
dispatch of the BC among the programming units, and the optimal bid for thermal and CC units.
The main contributions of this paper include: (a) a new model for the optimal bid function and
matched energy for thermal and CC units, (b) a new and detailed mixed-integer formulation of
the operation rules of the CC units and (c) the joint optimization of all the above-mentioned
factors together with the BC duties. The model was tested with real data of market prices and
programming units of a GenCo operating in the Spanish electricity market (OMEL, 2008).

In Section 2 of this paper, the stochastic programming model for the BC-constrained optimal
bid problem is presented, where the unit commitment and BC constraints are defined and the model
for the BC-constrained optimal bid function and equivalent constraints are given. In Section 3, the
stochastic processes involving day-ahead market clearing prices are characterized and a detailed
case study is solved and analyzed. Finally, in Section 4 some relevant conclusions are drawn.

2 The Stochastic Programming Model

Fig. 1 represents a price-taker GenCo possessing a set T of thermal units (coal, nuclear, fuel) and
a set C of CC units (a combustion turbine and a steam turbine). Both thermal and CC units bid
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to the i ∈ I = {1, 2, . . . , 24} hourly auctions of the day-ahead market (left-oriented arrows of Fig.
1). The stochasticity of the spot price λD

i , i ∈ I is represented by a set of S scenarios. The set BC
represents the portfolio of BC duties, with known energy (LBC

ij MWh) and price (λBC
ij e/MWh) for

each BC contract j ∈ BC and time period i ∈ I, that must be dispatched between the thermal and
CC units (right-oriented arrows of Fig. 1). The main information provided by the model (here
and now decisions or first-stage variables) for each period, i ∈ I, are the unit commitment of the
thermal and CC units (variables uit), the energy allocated to the portfolio of bilateral contracts by
each thermal and CC units (variables bit), and the optimal sale bid, expressed as a function of the
previous first-stage variables, which results in the second stage variables pM,s

it , the matched energy
(Section 2.3).

2.1 Thermal and Combined Cycle units operation

In the traditional thermal units (single-cycle thermal plants), the fuel (natural gas) and the com-
pressed air are mixed and burnt in a combustion chamber. The energy released during the com-
bustion is used to turn a combustion turbine that drives an electric generator (G1) to produce
electricity (Fig. 2). The air is a relatively non-problematic and inexpensive medium, which can be
used in modern gas turbine. In the CC units, the heat captured from the exhaust gas of combustion
turbine (CT) in the single cycle (which would otherwise be wasted), is used in the heat recovery
steam generator (HRSG) that is used to turn a steam turbine (ST), which consequently drives an
electric generator (G2) to produce additional electricity.

The CC units represent a combination of combustion and steam turbines within a power plant.
Typically, a CC unit consists of several CTs and an HRSG/ST set. Based on the different com-
binations of CTs and HRSG/ST, a CC unit can operate at multiple states or configurations. The
first two columns of Table 2 show the states of a CC unit with a CT and an HRSG/ST considered
in this study. The operational rules of a typical CC unit were formulated (Lu and Shahidehpour,
2004) with the help of the so-called pseudo units (PUs). As the thermal units, the PUs of each
CC unit have their own unique cost characteristics, real power generation limits, minimum on
time limits, etc., and can be viewed as a special set of non-independent or coupling single thermal
units. Contrary to the model proposed earlier (Lu and Shahidehpour, 2004), where each one of
the three states of the CC unit had its own PU, our formulation only considered two PUs, each
associated with states 1 and 2 of the CC. The on/off state of these two PUs uniquely determined
the state of the CC (see columns 3 and 5 of Table 2), and allowed (as it will be seen later) a correct
modelization of the operation of the state 0 without the need of an additional PU.

Let us define Pc, the set of PUs of the CC unit c ∈ C, and P = ∪c∈CPc, the complete set of
PUs. By Pc(j), we denote the PU associated with the state j ∈ {1, 2} of the CC unit c. Thus,
U = T ∪ P represents the complete set of units (thermal and pseudo). The on/off state of each
thermal and pseudo units at period i can be represented by the first-stage binary variables uit,
t ∈ U . Columns 4 and 6 of Table 2 illustrate the relation of the commitment binary variables of
the PUs, uiPc(1) and uiPc(2), with the state of the associated CC unit.
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Table 2: States of the CC unit and its associated Pseudo units

CC unit with a CT and HRSG/ST

State Composition Pseudounit 1 uiPc(1) Pseudounit 2 uiPc(2)

0 0CT+0HRSG/ST off 0 off 0
1 1CT+0HRSG/ST on 1 off 0
2 1CT+1HRSG/ST off 0 on 1

However, the operation of each thermal unit must guarantee the minimum up (ton
t ) and down

(tofft ) times. These conditions are introduced through the following set of constraints (Nabona and
Pages, 2007):

uit − u(i−1)t − eit + ait = 0 (a)

ait +
min{i+toff

t ,|I|}∑

j=i

ejt ≤ 1 (b)

eit +
min{i+ton

t ,|I|}∑

j=i+1

ajt ≤ 1 (c)

uit, ait, eit∈{0, 1} ∩ Kt





∀i ∈ I , ∀t ∈ T (1)

where Eq. (1a)-(1b) define the auxiliary binary variables ait and eit to be ait = 1 iff u(i−1)t = 1
and uit = 0, and eit = 1 iff u(i−1)t = 0 and uit = 1. The minimum up (ton

t ) and down (tofft ) times
are guaranteed by Eq. (1b)-(1c). The set Kt stands for the initial state of each unit.

Analogously, each PU t ∈ P has its own minimum up time, ton
t :

uit − u(i−1)t − eit + ait = 0 (a)

eit +
min{i+ton

t ,|I|}∑

j=i

ajt ≤ 1 (b)

uit, ait, eit∈{0, 1} ∩ Kt





∀i ∈ I , ∀t ∈ P (2)

Each CC unit also has a minimum down time, i.e., once shut down, the CC unit cannot be
started up before tC

c periods. Thus, we introduced the auxiliary variables uC
ic, aC

ic and eC
ic to

represent the on/off, shut-down, and start-up state, respectively, of the CC unit c ∈ C. As in the
case of the thermal and pseudo units, the following constraints formulate the minimum down time
condition for the CC units:

uC
ic − uC

(i−1)c − eC
ic + aC

ic = 0 (a)

aC

ic +
min{i+tC

c ,|I|}∑

j=i

eC

jc ≤ 1 (b)

uC
ic, a

C
ic, e

C
ic∈{0, 1} ∩ K̃C

t





∀i ∈ I , ∀c ∈ C (3)

where set K̃C
t stands for the initial state of each CC unit. In fact, variables uC

ic, aC
ic and eC

ic are not
necessary, because they can be expressed in terms of the binary variables of the PU of Pc with the
aid of the feasible transition rules defined in Fig. 3:

uC

ic = uiPc(1) + uiPc(2) ; eC

ic = eiPc(1) − aiPc(2) ; aC

ic = aiPc(1) − eiPc(2) (4)

and, the constraints (3) can be re-expressed in terms of the PU variables as:
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Figure 3: Feasible transitions of the CC unit with a CT and HRSG/ST

(
uiPc(1) + uiPc(2)

)− (
u(i−1)Pc(1) + u(i−1)Pc(2)

)
+

+
(
aiPc(1) − eiPC(1)

)− (
eiPc(2) − aiPC(2)

)
= 0 (a)

(
aiPc(1) − eiPc(2)

)
+

min{i+tC
c ,|I|}∑

j=i

ejPc(1) − ajPc(2) ≤ 1 (b)

uit, ait, eit ∈ KC
t





∀i ∈ I
∀c ∈ C (5)

with KC
t standing for conditions imposed by the initial state of the CC unit. The feasible transitions

rules (Fig. 3) impose additional constraints to the operation of the PUs associated to the same
CC unit, c ∈ C. First, the PUs in Pc are mutually exclusive (Eq. (6a)), i.e., only one of them
can be committed at a given period (a CC can only be in one state simultaneously). Second, the
change of the commitment of the PUs in Pc between periods i and i + 1 are limited to the feasible
transitions depicted in Fig. 3. These feasible transitions impose that, if the CC unit c is in state
0 at period i (uiPc(1) + uiPc(2) = 0), it cannot be in state 2 at period i + 1 (u(i+1)Pc(2) = 0) (Eq.
(6b)). Conversely, if uiPc(2) = 1, then u(i+1)Pc(1) + u(i+1)Pc(2) ≥ 1 (Eq. (6c)). The following set of
constraints formulates the specific operation rules of the CC units:

∑

m∈Pc

uim ≤ 1 (a)

u(i+1)Pc(2) ≤ uiPc(1) + uiPc(2) (b)

uiPc(2) ≤ u(i+1)Pc(1) + u(i+1)Pc(2) (c)





∀i ∈ I, ∀c ∈ C (6)

2.2 Bilateral Contracts Constraint

Consider that the GenCo has agreed to physically provide the energy amounts LBC
ij at hour i ∈ I

of day D for each one of the j ∈ BC bilateral contracts. This energy LBC
ij can be provided by any

programming unit U , both thermal and PUs:
∑

t∈U
bit =

∑

j∈BC
LBC

ij (a)

bit ∈ [0, pt] ∀t ∈ U (b)





∀i ∈ I (7)

where the total contribution of the committed unit t to the BC covering at period i is represented
by the variable bit. The system of constraints (1,2,5,6,7) defines the set Ω

Ω =
{

u ∈ {0, 1}|I|×|U|, b ∈ <|I|×|U| | [u, b] satisfies (1, 2, 5, 6, 7)
}

(8)

of all the feasible unit commitment and BC–dispatching solutions [u, b]. In the following section
the optimal sale bid for each feasible policy [u, b] is developed and the expression of the associated
matched energy is formulated.



Heredia, Rider, Corchero - E-prints UPC - http://hdl.handle.net/2117/2282 7

2.3 Optimal bid function and equivalent matched energy constraints

In the MIBEL, a simple sale bid of unit t for the ith day-ahead market consists on a step-wise
non-decreasing curve defined with up to 10 power(MWh)/price(e/MWh) blocks

(pB

itk, λB

itk) , k = 1, . . . , 10 (9)

However, after the market clearing all the blocks with a bid price λB

itk not greater than the clearing
price λD

i will be accepted (matched), which implies that the matched energy

pM

it (λ
D

i ) =
∑

k | λB
itk≤λD

i

pB

itk (10)

should be generated and rewarded at price λD
i , and the rest blocks of Eq. (9) will be neglected. The

MIBEL’s rules state that each GenCo must notify the scheduling of the BCs (first-stage variables
bit) to the system and market operator, at the most 25 minutes before the closure of the day-ahead
market. This implies that, at the point of the decision-making procedure where the GenCo must
decide its optimal bid (9), the scheduling variables of BC’s, bit, are fixed and can be viewed as
constant parameters. Subsequently, in this situation, the problem that the GenCo faces is that
of maximizing its day-ahead market’s benefit for a given BC’s dispatched energy. The objective
of this section is to develop the optimal bid function, λB∗

it (pB
it), that gives the optimal bid price,

λB
it, at which the capacity generation, pB

it must be bid to maximize the benefit from the pool for
a given BC’s dispatched-energy bit. To ease the modelization, we considered λB∗

it (pB
it) as a general

function, not necessarily step-wise. This is a common simplified representation of the true sale bid
(9) used by several authors (e.g., (Gountis and Bakirtzis, 2004)). Furthermore, it is always possible
to adapt a posteriori the resulting optimal bid function to the step-wise representation (9).

The optimal bid function could be developed under the the following assumptions:

Assumption 1. The GenCo is a price-taker, i.e., the day-ahead clearing price λD
i does not depend

on the GenCo’s bidding.

Assumption 2. The unit t (thermal or PU) has been committed (uit = 1).

Assumption 3. To guarantee the commitment of the unit t in the operational programming re-
sulting from the clearing of the day-ahead market, the unit t would bid its minimum generation
output p

t
at zero price (instrumental bid).

Assumption 4. To respect the MIBEL rules, the total contribution of unit t to the BC covering
must be excluded from the bid.

Assumption 5. The probability function of the clearing-price random variable λD
i has been dis-

cretized in a set of scenarios S with associated clearing price λD,s
i and probability P s, s ∈ S.

Assumption 4 implies that the non-negative bid energy pB
it must be upper bounded by (pt−bit).

By assuming the quadratic thermal generation costs, CG(p) = cb
t+cl

tp+cq
t (p)2, the benefits obtained

from the day-ahead market as a function of the matched energy pM,s
it (the amount of energy that the

thermal unit t has to produce as a result of the market-clearing mechanism) for a given dispatched
BC energy bit, under scenario s will be:

BD,s
it (pM,s

it , bit) = λD,s
i pM,s

it − [
CG(pM,s

it + bit)− CG(bit)
]

= λD,s
i pM,s

it − cl
tp

M,s
it − cq

t (p
M,s
it )2 − 2cq

tp
M,s
it bit (11)

The expression of the optimal bid function is established by the following theorem:

Theorem 1. If assumptions 1-4 hold true, then the expression:

λB∗
it (pB

it, bit)=

{
0 if 0≤pB

it≤ [p
t
−bit]+

2cq
t (pB

it+bit)+cl
t if [p

t
−bit]+ <pB

it≤pt−bit

∀i ∈ I , ∀t ∈ U (12)

with [a−b]+ = max{0, a−b}, is the optimal bid function of unit t for the day-ahead market i in the
sense that, for any given value bit, if function (12) is bid, the matched energy pM,s

it corresponding
to any scenario s with market price λD,s

i , maximizes the day-ahead benefit function (11)
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Figure 4: Matched bid energy function pM,s
it as a function of the clearing market price λD,s

i corre-
sponding to the optimal bid function (12)

Proof. The first block of the optimal bid function λB∗
it (pB

it, bit) = 0 for pB
it ≤ [p

t
− bit]+ is the

instrumental bid needed to guarantee assumptions 3 and 4.
To observe the optimality of the second part of the bid function, we must maximize the day-

ahead benefit function (11) with respect to the matched energy pM,s
it into the interval:

pM.s
it ∈

]
[p

t
− bit]+ , pt − bit

]

The matched energy that maximizes the day-ahead benefit function can be easily defined as:

pM,s
it (bit) = argsuppM,s

it

{
BD,s

it (pM,s
it , bit) | [p

t
− bit]+ < pM,s

it ≤ pt − bit

}
(13)

which can be obtained using:

pM,s
it (bit) =





[p
t
− bit]+ if p∗,sit ≤ max{p

t
, bit} (a)

p∗,sit − bit if p∗,sit ∈]max{p
t
, bit}, pt[ (b)

pt − bit if p∗,sit ≥ pt (c)

∀i ∈ I
∀t ∈ U
∀s ∈ S

(14)

where p∗,sit =
(
λD,s

i − cl
t

)
/2cq

t ,i.e., the unconstrained maximum of the benefit function (11) when
bit = 0, is a constant parameter that only depends on the scenario, period and unit.

Let us now analyze the expression of the matched energy associated with the bid (12) for all the
possible values of the clearing market price λD,s

i . The following three cases can be distinguished
(see Fig 4):





λD,s
i ≤ λB

it (a)

λD,s
i ∈ ] λB

it , λ
B

it [ (b)

λD,s
i ≥ λ

B

it (c)

where λB

it and λ
B

it are the threshold prices:

λB

it = 2cq
t

(
[p

t
− bit]+ + bit

)
+ cl

t ; λ
B

it = 2cq
tpt + cl

t (15)

It can be easily observed that cases (15a), (b), and (c) are equivalent to cases (14a), (b), and
(c), respectively,i.e.,

λD,s
i ≤ λB

it ⇐⇒ p∗,sit ≤ max{p
t
, bit} (16)

λD,s
i ∈ ] λB

it , λ
B

it[ ⇐⇒ p∗,sit ∈] max{p
t
, bit}, pt[ (17)

λD,s
i ≥ λ

B

it ⇐⇒ p∗,sit ≥ pt (18)
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Let us now observe the expression of the matched energy associated with the three cases (15a),
(b), and (c), which also coincides with the optimal matched energy, pM,s

it , for the three cases of Eq.
(14):

Case (15a) : If the market clearing price λD,s
i is below the minimum non-instrumental bid price

λB

it (see λ̃D,s
it in Fig. 4), then only the instrumental part of the bid (12) is accepted and the

matched energy will be [p
t
− bit]+,i.e, the same amount as in case (14a).

Case (15b) : When the market clearing price λD,s
i is strictly between the threshold prices (see

λ̂D,s
it in Fig. 4), only the bid energy with a bid price less than or equal to this clearing price

will be accepted (matched). The matched energy obtained from the expression of the optimal
bid function in this case is

(
λD,s

i − cl
t

)
/2cq

t−bit, which is the same expression as in case (14b).

Case (15c) : If the market clearing price λD,s
i is above the maximum bid price λ

B

it (see λ̆D,s
it in

Fig. 4)then the maximum generation bid (pt− bit) is matched, which is the same amount as
in case (14c).

Subsequently, it has been proved that if the proposed function (12) is bid to the day-ahead market,
then the resulting matched energy will maximize the day-ahead benefit function (11)

When bit = 0 (the committed unit t does not contribute to the BC covering), our problem re-
duces to the classical self-commitment problem discussed by several authors (Gountis and Bakirtzis,
2004; Conejo and Arroyo, 2002). In this case, it is well known that the optimal-bid strategy for a
price-taker GenCo consists of an instrumental bid up to the operational minimum limit, p

t
, and

the rest of the plant capacity at the marginal price, 2cq
tpit + cl

t. This optimal policy corresponds
to the particular case bit = 0 of the generalized optimal-bid function (12). The matched energy for
this particular case will be called the BC-free day-ahead matched energy, and can be represented
by pD,s

it :

pD,s
it ≡ pM,s

it (0) =





p
t

if p∗,sit ≤ p
t

(a)

p∗,sit if p∗,sit ∈]p
t
, pt[ (b)

pt if p∗,sit ≥ pt (c)

∀i ∈ I
∀t ∈ U
∀s ∈ S

(19)

where pD,s
it is a constant parameter of the model for a fixed thermal t, period i, and scenario s,

and can be used to develop a simplified expression of the optimal matched energy pM,s
it (bit).

Proposition 1. The optimal matched energy function (14) can be expressed as:

pM,s
it (bit) =

[
pD,s

it − bit

]+ ∀i ∈ I , ∀t ∈ U , ∀s ∈ S (20)

with the constant parameter pD,s
it defined in Eq. (19).

Proof. To observe the equivalence of Eq. (14) and Eq. (20), the three cases (14a), (b), and (c) can
be analyzed:

Case (14a) : This is the case where p∗,sit ≤ max{p
t
, bit}. If max{p

t
, bit} = p

t
then,

p∗,sit ≤ p
t
⇒ pD,s

it = p
t
⇒ [pD,s

it − bit]+ = [p
t
− bit]+ = pM,s

it (bit) (21)

Conversely, if max{p
t
, bit} = bit, then either p∗,sit ≤ p

t
, which has just been analyzed, or

p
t
< p∗,sit ≤ bit. In this last case, as bit ≤ pt, Eq. (19) sets pD,s

it = p∗,sit , and both [pD,s
it − bit]+

and [p
t
− bit]+ take the value of zero.

Case (14b) : In this case, p∗,sit ∈]p
t
, pt[ and through Eq. (19), pD,s

it = p∗,sit . The matched energy
is: [

pD,s
it − bit

]+ =
[
p∗,sit − bit

]+ = |p∗,sit > bit| = p∗,sit − bit = pM,s
it (bit) (22)

Case (14c) : Finally, when p∗,sit ≥ pt, Eq. (19) sets pD,s
it = pt, and consequently,

[
pD,s

it − bit

]+ = [pt − bit]
+ = |bit ≤ pt| = p− bit = pM,s

it (bit) (23)
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Figure 5: The matched energy function pM,s
it for a fixed spot price λD,s

i

Proposition 1 sets that for a committed unit t (uit = 1) that bids the function (12) to the
ith day-ahead market, the matched energy at scenario s will be

[
pD,s

it − bit

]+. However, if the
unit is uncommitted (uit = 0), then the bid does not exist and the matched energy becomes zero.
The matched energy can be then expressed through the matched energy function as a function of
variables bit and uit:

pM,s
it (bit, uit)=

{ [
pD,s

it − bit

]+ if uit = 1

0 if uit = 0
∀i ∈ I, ∀t ∈ U , ∀s ∈ S (24)

Fig. 5 represents the function pM,s
it (bit, uit) (thick line and dot). However, this non-differentiable

expression cannot be included in the optimization model as it is. To formulate an equivalent mixed-
integer linear formulation, we introduced the auxiliary binary zs

it and continuous vs
it variables (see

Fig 5). In this formulation, zs
it = 1 whenever bit ≥ pD,s

it and zs
it = 0 otherwise, while vs

it will be
always defined as vs

it =
[
bit − pD,s

it

]+. With the help of these auxiliary variables, expression (24)
can be transformed into the following equivalent mixed-integer linear system:

pM,s
it = pD,s

it uit + vs
it − bit (a)

pD,s
it (zs

it+uit−1)≤bit (b)

bit≤pD,s
it (1−zs

it)+pt(z
s
it+uit−1) (c)

pD,s
it (1−zs

it)≥pM,s
it (d)

pD,s
it (1−zs

it)≤pD,s
it uit (e)

vs
it≤(pt−pD,s

it )(zs
it+uit−1) (f)

pM,s
it ∈ [0, pD,s

it ] (g)

vs
it ∈ [0, pt − pD,s

it ] (h)

zs
it∈{0, 1} (i)





∀i ∈ I
∀t ∈ U
∀s ∈ S

(25)
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The following proposition establishes the equivalence between the function (24) and the system
(25) over the set Ω of all the feasible unit commitment and BC-dispatching solutions:

Proposition 2. The system (25) and the function (24) are equivalent in the sense that for every
feasible solution, [u, b] ∈ Ω, the value of the matched energy variable pM,s

it at every feasible solution
of the system (25) satisfies function (24).

Proof. First, let us consider the solution of system (25) for all the feasible solutions in Ω with
uit = 0. As the parameter pD,s

it is always non-negative, by Eq. (25e), zs
it = 1, and Eq. (25d),

together with the bounds of Eq. (25g) sets pM,s
it = 0. Analogously, Eq. (25c) and Eq. (25f),

together with the bounds Eq. (7b) and Eq. (25h) zeroes the values of bit and vs
it, respectively.

The remaining equations, Eq. (25a) and Eq. (25b), result in the redundant relations pM,s
it = 0 and

bit ≥ 0, respectively.
Second, let us analyze system (25) for all the feasible solutions in Ω with uit = 1. For all these

solutions, system (24) reduces to:

pM,s
it = pD,s

it + vs
it − bit (a)

pD,s
it zs

it≤bit (b)

bit≤pD,s
it (1−zs

it)+ptz
s
it (c)

pD,s
it (1−zs

it)≥pM,s
it (d)

pD,s
it (1−zs

it)≤pD,s
it (e)

vs
it≤(pt−pD,s

it )zs
it (f)

pM,s
it ∈ [0, pD,s

it ] (g)

vs
it ∈ [0, pt − pD,s

it ] (h)

zs
it∈{0, 1} (i)





∀i ∈ I
∀t ∈ U
∀s ∈ S

(26)

The set of the feasible solutions of Ω with uit = 1 can be partitioned depending on the value
of variable bit. For those solutions in Ω with uit = 1 and bit ≤ pD,s

it , Eq. (26b) sets zs
it = 0.

Subsequently, Eq. (26f) together with the bounds (26h) sets vs
it ≤ 0, and by Eq. (26a), pM,s

it =
pD,s

it − bit, which coincides with the value given by the function (24) for uit = 1 and bit ≤ pD,s
it .

Equations (26c), (26d), and (26e) derive redundant expressions. Conversely, for those solutions in
Ω with uit = 1 and bit > pD,s

it , Eq. (26c) sets zs
it = 1. Subsequently, Eq. (26d), together with

the lower bound defined in Eq. (26g), sets pM,s
it = 0, accordingly with the value of the matched

energy defined by function (24). The remaining equations (26a), (26b), (26e), and (26f) provide
redundant constraints.

Proposition 2 assures that: (a) every feasible solution of Ω satisfies the equivalent matched-
energy constraints (25) and (b) the value of variable pM,s

it represents the true value of the matched
energy function (24). Finally, modelization of the thermal units and PUs must include the following
set of constraints that define the total generation output of thermal unit t at each time period i
and scenario s:

ps
it = pM,s

it + bit ∀i ∈ I, ∀t ∈ U , ∀s ∈ S (27)

2.4 Objective function

The expected value of the benefit function B can be expressed as:
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EλD [B(u, a, e, p, pM ; λD

i )] =∑

∀i∈I

∑

∀j∈BC
λBC

ij LBC

ij (28)

−
∑

∀i∈I

∑

∀t∈T

[
con
t eit + coff

t ait + cb
tuit

]
(29)

−
∑

∀i∈I

∑

∀c∈C

[
con
Pc(1)

(
eiPc(1) − aiPc(2)

)
+ con

Pc(2)
eiPc(2) +

∑

∀t∈Pc

cb
tuit

]
(30)

+
∑

∀i∈I

∑

∀t∈U

∑

∀s∈S
P s

[
λD,s

i pM,s
it −cl

tp
s
it−cq

t (p
s
it)

2
]

(31)

The term (28) is constant and corresponds to the BC profit. The term (29) is the on/off fixed cost
of the unit commitment of the thermal units. The CC’s start-up and fixed generation costs are
formulated in term (30). In this formulation, as in (Lu and Shahidehpour, 2004), only start-up
costs are associated to the PU, and no cost is associated to the transition from state 2 to state
1. Both terms (29) and (30) are deterministics and does not depend on the realization of the
random variable λD. Finally, expression (31) represents the expected value of the benefit from the
day-ahead market for thermal and CC units, where P s is the probability of scenario s. Usually,
the generation cost functions of the PUs are represented as piece-wise linear functions, but in this
study, they were modeled as quadratic functions as done in a couple of earlier studies (Lu and
Shahidehpour, 2004; Li and Shahidehpour, 2005). All the functions appearing in Eqs. (29) and
(31) are linear except the generation costs in Eq. (31), which are concave quadratic (cq

t ≥ 0, see
Tables 3 and 4).

2.5 Final model

The final model developed in the previous sections is as follows:





max EλD [B(u, a, e, p, pM ; λD)]
s.t. :

Eq. (1) Thermal unit commitment constraints
Eq. (2, 5, 6) Combined cycle unit commitment const.
Eq. (7) Bilateral contracts dispatching const.
Eq. (25) Optimal matched energy equivalent const.
Eq. (27) Definition of the total unit’s generation ps

it

(32)

The deterministic equivalent of the two-stage stochastic problem (32) is a mixed, continuous-binary
concave quadratic maximization problem with linear constraints that can be solved with the help
of standard optimization software, as illustrated in the following section.

3 Test and Results

The model (32) has been tested using real data of a typical generation company and market prices
for the Spanish Peninsular Electricity System (OMEL, 2008) and the results are reported in this
section. The day under study is Monday, May 05 2008, in the electricity market of mainland Spain.
3 bilateral contracts, 4 thermal units, 2 combined cycle units with a CT and a HRSG/ST and 24
hours of study were used in the tests. The characteristics of the thermal and CC units and BCs are
shown in Table 3, 4 and 5, respectively. The parameter st0t stands for the number of hours the unit
has been on (st0t > 0) or off (st0t < 0) previous to the first optimization period. ton

t = tofft = 3h
for all the thermal units. The minimum off time for both CC units (parameter tCc in Eq. 3) was
set to 3 hours, and also both CC units was considered shut-down for 3 hours previous to the first
optimization period. The model (32) has been implemented in AMPL (Fourer et al, 2003) and
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Table 3: Operational Characteristics of the Thermal Units

t cb
t cl

t cq
t p

t
pt st0t con

t coff
t

e e/MWh e/MWh2 MW MW hr e e

1 151.08 40.37 0.015 160.0 350.0 +3 412.80 412.80
2 554.21 36.50 0.023 250.0 563.2 +3 803.75 803.75
3 327.02 28.85 0.036 160.0 370.7 -2 438.40 438.40
4 197.93 36.91 0.020 160.0 364.1 -1 419.20 419.20

Table 4: Operational Characteristics of the Combined Cycle Units

c Pc cb
t cl

t cq
t p

t
pt st0t con

t ton
t

e e/MWh e/MWh2 MW MW hr e hr

1 5 151.08 50.37 0.023 160.0 350.0 –2 803.75 2
1 6 224.21 32.50 0.035 250.0 563.2 –2 412.80 2
2 7 163.11 55.58 0.019 90.0 350.0 –2 320.50 2
2 8 245.32 31.10 0.022 220.0 700.0 –2 510.83 2

Table 5: Characteristics of the Bilateral Contracts

j LBC
j=1...24 λBC

j=1...24

MW e/MWh

1 200 75
2 150 73
3 250 78
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Table 6: Optimization Characteristics of the Study Case

Constraints Real Binary E(Benefits) CPU
variables variables e s

31927 9915 5240 850.058 893

Table 7: Stochastic Programming Indicators

Monday, May 05, 2008

RP 850.058e
EEV 830.695e
VSS 19.363e

solved with CPLEX (CPLEX, 2008) (default options) using a SunFire X2200 with two dual core
AMD Opteron 2222 processors at 3 GHz and 32 Gb of RAM memory.

In order to test the two-stage stochastic model (32) a characterization of the market price λD

through a set of scenarios is required, where each scenario λD,s = [λD,s
1 , . . . , λD,s

24 ] is composed by
a set of 24 hourly market prices. A set of 25 scenarios has been used, obtained as the result of
the application of a scenario reduction algorithm (Gröwe-Kuska et al, 2003) to the complete set of
history data available from June 2007 to the day under study. A summary of the characteristics
of the optimization problem and its solution is shown in Table 6. In Table 7 the usual stochas-
tic programming indicators needed to evaluate the goodness of the stochastic approximation are
reported (Birge and Louveaux, 1997). VSS, the measure of the advantage of using the stochas-
tic programming model instead of the deterministic one, shows that is is possible to increase the
expected benefits in 19.363e (2.33%) by using the stochastic optimal solution.

The optimal unit commitment of thermal and CC units is shown in Fig. 6. The three states or
configurations of the CC units are represented as white (state 0), gray (state 1, Pc(1)) and black
(state 2, Pc(2)) hourly blocks. Notice how the operation of the CC units obey the minimum up
time and the feasible transition rules expressed by Eq. (2) and Eq. (6) respectively. When started-
up, both CC units stay in state 1 longer than the minimum on time ton

t = 2 before switching to
the state 2, where they remain for the rest of the optimization period.

Fig. 7 shows the aggregated economic dispatch of the three BCs (600MWh) by the thermal
(white bars) and the CC (black bars) units. It can be observed that, depending on the period, the
portfolio of BC is covered exclusively by the thermal units (periods 1,2,10,15,19 and 24), or by a
combination of thermal and CC units (the rest of the periods).

The optimal bid functions (12) for the thermal and CC units are represented in Fig. 8 and Fig.
9 respectively, where bi...k represents the value of bit at the different periods i, and b∗ corresponds

Hour
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Figure 6: The unit commitment of thermal and CC units.
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to the rest of periods not explicitly indicated. To help the understanding of this graphics, let us
analyze the most simple case, the thermal unit T4, which is committed all the periods, except the
first one. First, observe the piecewise discontinuous thick line, with a first block going from 0 to the
minimum output p, and a second block between p and p, with a slope equal to the marginal cost of
the thermal unit 2cq

4. Both blocks correspond, respectively, to the two blocks defining the optimal
bid function (12). After the development of Section 2.3 we know that this thick line represents the
optimal bid function only in those periods where bit = 0, (periods i ∈ {2, 9, 11−14, 16, 18, 20−23}
for the thermal unit T4). Moreover, for those periods where bit > 0, the optimal bid function
corresponds to the part of the thick line between the auxiliary second vertical axis shown in Fig.
8 located at bit, and pt. In the case of the thermal unit T4, bi,4 = p

4
= 160MW for periods

i ∈ {3 − 8, 15}, bi,4 = 130MW for period i = 17 and bi,4 = 30MW for periods i ∈ {10, 19, 24}.
Although bi,4 ≤ p

4
∀i in the case of the thermal unit T4, this could not be the case for other

thermal units: see for instance the optimal bid function of thermal unit T3, where bi,3 = 190MW
∀i ∈ {2− 5, 15} and b22,3 = 221.5MW, both values above the minimum generation p

3
= 160MW.

The optimal bid functions of the remaining thermal units of Fig. 8 can be interpreted in a similar
way.

Let us now focus our attention on the optimal bid functions of the CC units (Fig. 9). First
observe how each CC has two different sets of optimal bid functions, depending on the state of
the CC unit at each period i. The CC unit 1 would send the optimal bid functions CC1-P1(1) at
periods 5,6 and 7, where this CC unit is in state 1 (gray blocks of Fig. 6), and the optimal bid
functions CC1-P1(2) at the rest of the periods (black blocks of Fig. 6). The same happens with
the second CC unit, CC2. Please notice that the optimal bid function of each state of the same
CC unit has its own slope, which corresponds to the marginal cost of each PU.

4 Conclusions

This study provides a procedure for a price-taker generation company operating under the most
recent regulations of the Iberic Electricity Market to optimally manage a pool of thermal and
combined cycle units. The proposed technique is built within the versatile decision framework
provided by the stochastic programming methodology. A two-stage stochastic mixed-quadratic
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programming problem has been proposed to decide the optimal unit commitment and sale bid to
the day-ahead market, and the optimal economic dispatch of the bilateral contracts for all the
thermal and combined cycle units observing the MIBEL regulation. The objective of the producer
is to maximize the expected profit from its involvement in the spot market. The most relevant
contributions of this study include: (a) the integration of a new model for the combined cycle
units with the thermal units and the bilateral contracts covering and (b) a new modelization of the
optimal sale bid for both thermal and combined cycle units, with respect to the dispatched energy
of the bilateral contracts. The set of scenarios representing the uncertainty of the spot prices
has been built by applying reduction techniques to the tree obtained from the actual data of the
MIBEL system. The model was implemented and solved with commercial optimization packages
and tested with real data of a Spanish generation company and market prices. The results of the
computational experiments show the validity of the presented model and its applicability to real
problems.
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for her support in the elaboration of several parts of this paper.

References

Anderson EJ, Philpott AB (2002) Optimal offer construction in electricity markets. Mathematics
of Operations Research 27(1):82–100

Anderson EJ, Philpott AB (2003) Using supply functions for offering market generation into an
electricity market. Operations Research 50(3):477–489

BELPEX (2008) Belgium virtual power plant auctions. http://www.belpexvpp.be/. Accessed 30
september 2008

Birge JR, Louveaux F (1997) Introduction to Stochastic Programming. New York: Springer-Verlag

Bjelogrlic MR (2000) Inclusion of combined cycle plants into optimal resource scheduling. Proc
2000 IEEE PES Summer Meeting pp 189–195

CESUR (2008) Spain cesur bilateral contracts auctions. http://www.subastascesur.omel.es/. Ac-
cessed 30 september 2008

Conejo NFJ A J, Arroyo JM (2002) Price-taker bidding strategy under price uncertainty. IEEE
Trans Power Syst 17(4):1081–1088

CPLEX (2008) CPLEX optimization subroutine library guide and reference. Version 11.0. CPLEX
Division, ILOG Inc., Incline Village, NV, USA
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