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Abstract

The reorganization of the electricity industry in Spain completed a new step with the start-up of the Derivatives Market. One

main characteristic of MIBEL’s Derivatives Market is the existence of physical futures contracts; they imply the obligation to settle

physically the energy. The market regulation establishes the mechanism for including those physical futures in the day-ahead

bidding of the Generation Companies. The goal of this work is to optimize coordination between physical futures contracts and

the Day-Ahead bidding which follow this regulation. We propose a stochastic quadratic mixed-integer programming model which

maximizes the expected profits, taking into account futures contracts settlement. The model gives the simultaneous optimization

for the Day-Ahead Market bidding strategy and power planning production (unit commitment) for the thermal units of a price-taker

Generation Company. The uncertainty of the day-ahead market price is included in the stochastic model through a set of scenarios.

Implementation details and some first computational experiences for small real cases are presented.
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1. Introduction

In recent there has been a reorganization of the electricity

industry. The deregulation of the generation and distribution of

electricity carried out in most countries in Europe has changed

the problems that the generation companies (GenCo) have to

face. With the introduction of the Electricity Markets, the price

of electricity has become a significant risk factor. One of the

techniques for hedging against market-price risk is participa-

tion in futures markets (Deng and Oren, 2006) and, for this rea-

son, the creation of Derivatives Electricity Markets has been a

natural step in the deregulation process.
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On the Spanish mainland, the Electricity Market, which was

launched in 1998, includes a Day-Ahead Market, a Reserve

Market and a set of balancing and adjustment markets. As the

introduction of competition and the deregulation process did

not behave as expected, the Spanish market was improved in

2007 with the start-up of the Iberian Electricity Market (MI-

BEL) and some other new regulations. The MIBEL brings to-

gether the Spanish and Portuguese electricity systems and it

complements the previous Spanish Electricity Market with a

Derivatives Market. Generation companies can no longer op-

timize their short-term generation planning decisions without

considering the relationship between those markets.

Among the products that the Derivatives Market offers, we

will focus on the futures contracts. In the MIBEL Derivatives

Market, an average 2340GWh are traded monthly (Fig. 1). A

futures contract is an exchange-traded derivative that represents

agreements to buy/sell some underlying asset in the future at a

specified price (Hull, 2002). The main characteristics of a fu-
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Figure 1: MIBEL Futures contracts traded energy

tures contract are the asset; the contract size; the delivery ar-

rangements and period; and the characteristics of the price. In

contrast to other Electricity Derivatives Markets, the delivery

arrangements of the MIBEL futures contract offer a choice be-

tween a physical or financial settlement. Physical futures con-

tracts have cash settlement and physical delivery whereas finan-

cial contracts have cash settlement only. This physical delivery

option is the feature of the futures contract that interacts with

the GenCo day-ahead bidding process (OMEL, 2007).

In liberalized electricity markets, a GenCo must build an

hourly bid that is sent to the market operator, who selects the

lowest price among the bidding companies in order to match the

pool load. Some earlier studies give the optimal bidding quan-

tity once the expected distribution of the spot prices is known

(Shrestha et al., 2004; Triki et al., 2005) but do not propose any

explicit modelization of the optimal bid. Conejo et al. (2002)

proposes an optimal stepwise bidding strategy for a price-taker

GenCo based on the units characteristics, the expected spot

price, and the optimal generation. Furthermore, Gountis and

Bakirtzis (2004) considers the approximation of stepwise bid

curves by linear bid functions based on the marginal costs and

the optimal generation quantity. Nabona and Pages (2007) gives

a three stage procedure to build the optimal bid based on the op-

timal generation quantity and the zero-price bid. Also, Ni et al.

(2004) uses the concept of price-power function, which is sim-

ilar to the matched energy function used in our work, to derive

the optimal bid curves of a hydro-thermal system. Nowak et al.

(2005) and Fleten and Kristoffersen (2007) also distinguish be-

tween the variables representing the bid energy and those cor-

responding to the matched energy in the case of a price-taker

GenCo. In particular, Fleten and Kristoffersen (2007) has some

aspects that are very related to this work; it presents a stochas-

tic programming model to optimize the unit commitment and

the day-ahead bidding of a hydropower producer in the Nord

Pool. Finally, Heredia et al. (2008a) and Heredia et al. (2008b),

propose an optimal bid function similar to the one introduced

in this work where, instead of futures contracts, there are bilat-

eral contracts to be satisfied. Moreover, general considerations

about optimal bidding construction in electricity markets can

be obtained in Anderson and Philpott (2002) and Anderson and

Xu (2002). Neither of these studies mentioned includes futures

contracts.

Some different approaches to the inclusion of futures con-

tracts in the management of a GenCo can be found in the elec-

tricity market literature. Most of the literature defines forward

contracts as contracts with a physical settlement and futures

contracts as contracts with a financial settlement. The main

theoretical differences between these two kinds of derivatives

products is the level of standardization and the kind of market

where they are traded (Hull, 2002). We focus on the inclusion of

physical derivatives products in the short-term management of

a GenCo, other general considerations about futures contracts

can be found in many works, for instance, Hull (2002), Collins

(2002), Neuberger (1999) or Carlton (1984).

Prior to deregulation, Kaye et al. (1990) illustrates how phys-

ical and financial contracts can be used to hedge against the

risk of profit volatility, allowing for flexible responses to spot

price. After day-ahead and derivatives markets start-up, Bjor-

gan et al. (1999) presents a theoretical framework for the in-

tegration of futures contracts into the risk management of a

GenCo. Also, Chen et al. (2004) presents a bidding decision

making system for a GenCo taking into account the impacts

of several types of physical and financial contracts; this sys-

tem is based on a market-oriented unit commitment model, a
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probabilistic local marginal price simulator, and a multi-criteria

decision system. Furthermore, Conejo et al. (2008) optimizes

the forward physical contracts portfolio up to one year, taking

into account the day-ahead bidding; the objective of the study is

to protect against the pool price volatility through futures con-

tracts. Moreover, Guan et al. (2008) optimizes in a medium-

term horizon the generation asset allocation between different

derivatives products and the spot market, taking into account

short-term operating constraints; it considers the known price

of the contracts and forecasts the spot price. From another point

of view, Tanlapco et al. (2002) does a statistical study of the re-

duction in risk due to forward contracts; it is shown that, for

a GenCo, the electricity futures contracts are better to hedge

price risk than other related futures as crude oil or gas futures

contracts.

As stated above, we are dealing with a new electricity fu-

tures contract situation due to the MIBEL definition of physical

futures contracts, hence, as far as we know, there is no previous

work dealing with the short-term management of the GenCo

which includes the coordination between day-ahead bidding strate-

gies and physical futures settlement. The MIBEL regulation

(OMEL, 2007) describes the coordination between this physical

futures contracts portfolio and the Day-Ahead bidding mecha-

nism of the GenCo. That regulation obliges the GenCo to deter-

mine its generation scheduling in order to be able to cover those

obligations and to determine its optimal offer, taking into ac-

count those futures contracts. Following the idea that the partic-

ipation in the Spot and the Derivatives Markets has to be studied

jointly, the main objective of this work is to build a stochastic

programming model which includes the coordination between

physical futures contracts and Day-Ahead Market bidding fol-

lowing the MIBEL rules. In other words, we want to see how

the inclusion of futures contracts in the model affects the short

term strategies of the GenCo in the Day-Ahead Market.

In section 2, the stochastic programming model for the co-

ordination between day-ahead bidding and the physical futures

contract portfolio -taking into account thermal unit operational

constraints- is presented. In section 3, the optimal bid function

is developed and its properties are described. In section 4, a

detailed case study is solved and analyzed. Finally, in section

5, some relevant conclusions are presented.

2. Model

2.1. Coordination between Day-Ahead and Derivatives Mar-

kets

As stated above, the MIBEL regulation (OMEL, 2007) de-

scribes the coordination between the physical futures contracts

portfolio and the Day-Ahead bidding mechanism (Fig. 2). This

coordination is structured in the following three phases:

1. For every derivatives contract in which the GenCo is inter-

ested, it has to define the Term Contract Units (UCP in the

MIBEL’s notation) which are virtual units allowed to be

offered in the Derivatives Market. Each UCP is formed by

the subset of the physical units of the GenCo which will

generate the energy to cover the corresponding contract.

For each contract, a physical unit can only participate in

one virtual UCP.

2. Two days before the delivery date the GenCo receives from

the Derivatives Market Operator, OMIP (OMIP, 2008) the

quantity that every UCP has to produce in order to cover

the matched futures contracts. This information is also

sent to the Day-Ahead Market Operator, OMEL (OMEL,

2008).

3. OMEL demands that every GenCo commit the quantity

designated to futures contracts through the Day-Ahead Mar-

ket bidding of the physical units that form each UCP. This

commitment is made by the so called instrumental price

offer, that is, a sale offer with a bid price of 0e/MWh (also

called price acceptant).

That regulation implies that the GenCo has to determine its

unit commitment in order to be able to cover those obligations

and it has to determine its optimal bid by taking into account

those instrumental price offers. Due to the algorithm the mar-

ket operator uses to clear the Day-Ahead Market, all instrumen-

tal price offers will be matched (i.e. accepted) in the clearing
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Figure 2: Representation of the system under study at period i

process, that is, this energy shall be produced and will be remu-

nerated at the spot price.

Following MIBEL’s rules, if we are optimizing today we

focus on tomorrow’s Day-Ahead Market because we have to

submit tomorrow’s bidding. Thus, the optimization horizon is

at 24-hour intervals; this set of intervals is denoted as I. The

proposed short-term bidding strategies are addressed to a price-

taker GenCo. The generation units to be considered are the

thermal units with participation in the auction process. The rel-

evant parameters of a thermal unit are:

• quadratic generation costs with constant, linear and quadratic

coefficients, cb
t (e), cl

t (e/MWh) and cq
t (e/MWh) re-

spectively, for the tth unit.

• Pt and Pt the upper and lower bound, respectively, on the

energy generation (MWh) of a committed unit t.

• start-up, con
t , and shut-down, co f f

t , costs (e) for the tth

unit. e

• minimum operation and minimum idle time, minon
t and

mino f f
t respectively, for the tth unit., i.e., the minimum

number of hours that the unit must remain in operation

once it is started up and the minimum number of hours

that the unit must remain idle once it has been shut down

before being started up again, respectively.

2.2. First stage binary variables and thermal units operation

constraints

The formulation of the start-up and shut-down processes

follows Nabona and Pages (2007). Let uit ∈ {0,1} be a first-

stage binary variable expressing the off-on operating status of

the tth unit over the ith interval (uit = 1 if committed, uit = 0

if uncommitted). The values of uit and u(i+1)t must obey cer-

tain operating rules ini order to take into account the constraints

of the minimum in service and idle time. It is necessary to in-

troduce two extra binary variables eit and ait for each uit . Let

eit ∈ {0,1} be a start-up indicator for the tth unit. It has a value

of one in all intervals i where the tth unit has changed from

u(i−1)t = 0 to uit = 1, and zero elsewhere. Similarly, ait ∈ {0,1}
is a shut-down indicator for the tth unit. It should have a value

of one in all intervals i where u(i−1)t = 1 to uit = 0, and zero

otherwise. The following three sets of constraints unambigu-

ously model the commitment variable uit and the star-up and

shut-down variables eit and ait :

uit +u(i−1)t − eit +ait = 0 ∀i ∈ I, ∀t ∈ T (1)

eit +
min{i+ton

t ,|I|}
∑
k=i

akt ≤ 1 ∀i ∈ I, ∀t ∈ T (2)

ait +
min{i+to f f

t ,|I|}
∑

k=i+1
ekt ≤ 1 ∀i ∈ I, ∀t ∈ T (3)

2.3. First stage continuous variables and futures contracts cov-

ering constraints

Let qit be the first-stage variable standing for the energy of

the instrumental price offer, that is, the energy bid by unit t to

the ith day-ahead market at 0e/MWh. If variable fit j represents

the energy of the jth futures contract allocated to thermal unit t

at period i, then the following constraints must be satisfied:

∑
t∈Tj

fit j = L j ∀i ∈ I, ∀ j ∈ F (4)

qit ≥ ∑
∀ j∈Ft

fit j ∀i ∈ ∀t ∈ T (5)

Ptuit ≤ qit ≤ Ptuit ∀i ∈ I ∀t ∈ T (6)

fit j ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀ j ∈ F (7)
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where the known parameters Ft , Tj and L j are, respectively, the

subset of contracts in which unit t participates, the set of ther-

mal units that participates in contract j (the units in all the UCPs

that participate in the contract j) and the energy that has to be

settled for contract j. Constraint (4) ensures that the energy

of the jth futures contracts L j will be completely dispatched

among all the committed units of its associated UCPs. Con-

straints (5) formulate the MIBEL’s rule that forces the energy

of the future contracts to be bid through the instrumental price

offer. The lower bound qit ≥ Ptuit prevents committed ther-

mal units from being matched below their minimum generation

limit.

2.4. Second stage variables: matched energy

The formulation of the objective function of the present

model will include variables representing the value of the matched

energy for the committed thermal unit t on the ith day-ahead

market. For the moment, the matched energy will be loosely

defined as the accepted energy in the clearing process; that is,

the energy that the thermal t should generate at period i and that

will be rewarded at the clearing price. This matched energy,

which plays a central role in our model, is uniquely determined

by the sale bid and the clearing price. A sale bid in the MIBEL’s

day-ahead market consists of a stepwise non-decreasing curve

defined by up to 10 energy (MWh)-price(e/MWh) blocks. As

usual in this kind of work (see Gountis and Bakirtzis (2004))

we will consider a simplified modelization of the true sale bid

through the so called bid function λ b
it , not necessarily stepwise:

Definition 1 (Bid function). A bid function for the thermal unit

t is a non-decreasing function defined over the interval [0,Pt ]

that gives, for any feasible value of the bid energy pb
it , the asked

price per MWh from the day-ahead market:

λ b
it : [0,Pt ] −→ ℜ+∪0

pb
it 7−→ λ b

it (pb
it)

(8)

For a given bid function λ b
it the matched energy associated to

the clearing price λ d
i , pm

it is defined through the matched energy

function

Definition 2 (Matched energy function). The matched energy

associated to the bid function λ b
it is defined as the maximum bid

energy with an asked price not greater than the clearing price

λ d
i , and is represented by the function:

pm
it (λ

d
i ) def= max{pb

it ∈ [0,Pt ] |λ b
it (pb

it)≤ λ d
i } (9)

The clearing price λ d
i is a random variable that will be mod-

eled through a set of scenarios S with associated spot prices

λ d,s = {λ d,s
1 , . . . ,λ d,s

I } and probabilities Ps = P(λ d,s), s ∈ S.

Each one of these scenarios has, for each period i, a correspond-

ing matched energy that will be represented in the model by

the second stage variable ps
it . Although our model will be de-

veloped without any assumption on the specific expression of

the bid function λ b
it it is necessary, for the sake of the model’s

consistency, to assume the existence of a bid function with a

matched energy function (9) that agrees with the optimal value

of variables ps
it , i.e.:

Assumption 1. For any thermal unit t committed at period i

there exists a bid function λ b
it such that:

pm
it (λ

d,s
i ) = ps∗

it ∀s ∈ S (10)

with ps∗
it the optimal value of variable ps

it

Notice that the existence of such a bid function is not evident, as

all scenarios must prove simultaneously equal (10). The proof

of existence and the analytical expression of a bid function λ b
it

satisfying (10) (optimal bid) will be developed in section 3.

The matched energy ps
it is related to the rest of the first stage

variable through the following set of constraints:

ps
it ≤ Ptuit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (11)

ps
it ≥ qit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (12)

qit ≥ Ptuit ∀i ∈ I, ∀t ∈ T (13)

This set of constraints substitutes the bounds on qit defined in

(6).

2.5. Objective function

The expected value of the benefit function B can be ex-

pressed as:

5



Eλ d

[
B(u,a,e, p;λ d

i )
]

=

∑
∀i∈I

∑
∀ j∈F

(
λ f

j −λ d
i

)
L j (14)

−∑
∀i∈I

∑
∀t∈T

[
con

t eit + cof f
t ait

]
(15)

+ ∑
∀i∈I

∑
∀t∈T

∑
∀s∈S

Ps
[
λ d,s

i ps
it

−
(

cb
t uit + cl

t ps
it+cq

t (ps
it)

2
)]

(16)

where:

(14) is a constant term, which would be excluded from the op-

timization, and corresponds to the incomes of the futures

contracts. Futures contracts are settled by differences,

i.e., each futures contract has daily cash settlement of the

price differences between the market reference price λ d
i

and the futures settlement price λ f
j .

(15) is the on/off fixed cost of the unit commitment of the ther-

mal units. This term is deterministic and does not depend

on the realization of the random variable λ d
i .

(16) represents the expected value of the benefit from the day-

ahead market, where Ps is the probability of scenario s.

The first term, λ d,s
i ps

it , computes the incomes from the

day-ahead market due to a value ps
it of the matched en-

ergy, while the term between parentheses corresponds

to the expression of the quadratic generation costs. Of

course, cb
t uit could have been added to the deterministic

term (15), as it doesn’t depend on the scenario, but it has

been conserved in (16) for the sake of clarity.

All the functions appearing in Eqs. (15) and (16) are linear

except the term (16), which is concave quadratic (cq
t ≥ 0, see

Table 4.1).

2.6. The Day-Ahead Bid with Futures Contracts problem

The full model developed in the preceding sections, the so-

called Day-Ahead Bid with Futures Contracts problem can be

formulated as:

(DABFC) :

minimize
p,q, f ,a,e,u

∑
∀i∈I

∑
∀t∈T

(
con

t eit + co f f
t ait + cb

t uit

+ ∑
s∈S

Ps
[
(cl

t −λ d,s
i )ps

it + cq
t (ps

ti)
2
])

(17)

s.t.

∑
t∈U j

fit j = L j ∀i ∈ I, ∀ j ∈ F (18)

qit ≥ ∑
j∈Ft

fit j ∀i ∈ I, ∀t ∈ T (19)

uit +u(i−1)t − eit +ait = 0 ∀i ∈ I, ∀t ∈ T (20)

eit +
min{i+ton

t ,|I|}
∑
k=i

akt ≤ 1 ∀i ∈ I, ∀t ∈ T (21)

ait +
min{i+to f f

t ,|I|}
∑

k=i+1
ekt ≤ 1 ∀i ∈ I, ∀t ∈ T (22)

ps
it ≤ Ptuit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (23)

ps
it ≥ qit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (24)

qit ≥ Ptuit ∀i ∈ I, ∀t ∈ T (25)

fit j ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀ j ∈ F (26)

uit ,ait ,eit ∈ {0,1} ∀i ∈ I, ∀t ∈ T (27)

In the next sections the properties of the optimal solutions

of the (DABFC) problem will be studied.

3. Optimal Bid

The preceding model (17)-(27) is built on the assumption

1, which presumes the existence of a bid function λ b
it with a

matched energy function consistent with the optimal solution

of the (DABFC) problem, i.e.:

pm
it (λ

d,s
i ) = ps∗

it ∀s ∈ S (28)

The objective of this section is the development of such a bid

function, called the optimal bid function λ b∗
it (pb

it). In order

to derive this optimal bid function, the properties of the opti-

mal solutions of the problem (17)-(27) will be studied in the

next section and used to derive the expression of the optimal

matched energy ps∗
it in terms of the instrumental energy bid q∗it .
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3.1. Optimal matched energy

Let x∗′ = [u∗,a∗,e∗, p∗,q∗, f ∗]′ represent the optimal solu-

tion of the (DABFC) problem. Fixing the binary variables to its

optimal value u∗, a∗ and e∗ in the formulation of the (DABFC)

problem, we obtain the following convex quadratic continuous

problem:

(DABFC∗) :

minimize
p,q, f

∑
∀i∈I

∑
∀t∈T ∗oni

∑
s∈S

Ps
[
(cl

t −λ d,s
i )ps

it + cq
t (ps

it)
2
]

(29)

s.t.

∑
t|t∈Tj∩T ∗oni

fit j = L j ∀i ∈ I, ∀ j ∈ F (30)

qit ≥ ∑
j∈Ft

fit j ∀i ∈ I, ∀t ∈ T ∗oni
(31)

ps
it ≤ Pt ∀i ∈ I, ∀t ∈ T ∗oni

, ∀s ∈ S (32)

ps
it ≥ qit ∀i ∈ I, ∀t ∈ T ∗oni

, ∀s ∈ S (33)

qit ≥ Pt ∀i ∈ I, ∀t ∈ T ∗oni
(34)

fit j ≥ 0 ∀i ∈ I, ∀t ∈ T ∗oni
, ∀ j ∈ F (35)

with T ∗oni
:= {t ∈ T |u∗it = 1}. Obviously, the optimal solution of

this continuous problem should coincide with the optimal value

of the continuous variables of the original (DABFC) problem,

p∗, q∗ and f ∗. The (DABFC∗) problem is separable by inter-

vals, being the problem associated with the ith time interval in

standard form (Luenberger (2004)):

(DABFC∗i ) :

minimize
pi,qi, fi

∑
∀t∈T ∗oni

∑
s∈S

Ps
[
(cl

t −λ d,s
i )ps

it + cq
t (ps

it)
2
]

(36)

s.t.

∑
t|t∈Tj∩T ∗oni

fit j−L j = 0 ∀ j ∈ F (πi j) (37)

∑
j∈Ft

fit j−qit ≤ 0 ∀t ∈ T ∗oni
(µ̃it) (38)

ps
it −Pt ≤ 0 ∀t ∈ T ∗oni

, ∀s ∈ S (µs
it) (39)

qit − ps
it ≤ 0 ∀t ∈ T ∗oni

, ∀s ∈ S (µ̂s
it) (40)

Pt −qit ≤ 0 ∀t ∈ T ∗oni
(µ

it
) (41)

− fit j ≤ 0 ∀t ∈ T ∗oni
, ∀ j ∈ F (µ̆it j) (42)

where π , µ̃ , µ , µ̂ , µ and µ̆ represent the Lagrange multiplier

associated with each constraint.

The Karush-Kuhn-Tucker conditions of the (DABFC∗i ) prob-

lem can be expressed as:

Ps
[(

cl
t −λ d,s

i

)
+2cq

t ps∗
it

]
+

+µs
it − µ̂s

it = 0 ∀t ∈ T ∗oni
, ∀s ∈ S (43)

−µ̃it −µ
it
+ ∑
∀s∈S

µ̂s
it = 0 ∀t ∈ T ∗oni

(44)

µ̃it +πi j− µ̆it j = 0 ∀t ∈ T ∗oni
, ∀ j ∈ Ft (45)

µ̃it

(
∑
j∈Ft

fit j−q∗it

)
= 0 ∀t ∈ T ∗oni

(46)

µs
it
(

ps∗
it −Pt

)
= 0 ∀t ∈ T ∗oni

, ∀s ∈ S (47)

µ
it
(Pt −q∗it) = 0 ∀t ∈ T ∗oni

(48)

µ̂s
it (q

∗
it − ps∗

it ) = 0 ∀t ∈ T ∗oni
, ∀s ∈ S (49)

µ̆it j f ∗it j = 0 ∀t ∈ T ∗oni
, ∀ j ∈ F (50)

µ̃it , µs
it , µ

it
, µ̂s

it , µ̆it j ≥ 0 ∀t ∈ T ∗oni
, ∀ j ∈ F, ∀s ∈ S (51)

The (DABFC∗i ) problem is convex (cq
t ≥ 0) and then the

system (43)-(51) represents the necessary and sufficient opti-

mality conditions of the (DABFC∗i ) problem and, consequently,

of the (DABFC∗) problem. Therefore the solution set of the

preceding KKT system defines the value of variables ps
it , qit

7



and fit j over the optimal solution of the (DABFC) problem as-

sociated with T ∗oni
. The following lemma states this result:

Lemma 1. Let x∗′ = [u∗,a∗,e∗, p∗,q∗, f ∗]′ be an optimal solu-

tion of the (DABFC) problem. Then, for any x∗ there exists

Lagrange multipliers, µ̃ , µ , µ̂ , µ and µ̆ such that the value

of variables p∗, q∗ and f ∗ satisfy the KKT system (43)-(51).

Conversely, for any solution p∗, q∗ and f ∗ of the KKT system

(43)-(51) associated with T ∗oni
the correspondent solution x∗ is

optimal for the (DABFC) problem.

The fact that any solution of the (DABFC) problem must satisfy

the system (43)-(51) will be exploited in the next two lemmas to

derive the expressions of the optimal matched energy associated

to scenario s:

Lemma 2 (Optimal matched energy, quadratic costs). Let x∗

be an optimal solution of the (DABFC) problem. Then, for any

unit t with quadratic convex generation cost (i.e. cq
t > 0) com-

mitted at period i (i.e. t ∈ T ∗oni
), the optimal value of the matched

energy ps∗
it can be expressed as:

ps∗
it = max{q∗it , pd,s

it } (52)

where pd,s
it is the constant parameter

pd,s
it =





Pt if θ s
it ≤ Pt

θ s
it if Pt ≤ θ s

it ≤ Pt

Pt if θ s
it ≥ Pt

(53)

with

θ s
it =

(
λ d,s

i − cl
t

)
/2cq

t (54)

Proof As lemma 1 establishes, any optimal solution of the (DABFC)

problem must satisfy the KKT system (43)-(51). As ct
q > 0,

equation (43) allows variable ps∗
it to be expressed as:

ps∗
it =

λ d,s
i − cl

t

2cq
t

+
µ̂s

it −µs
it

2cq
t Ps = θ s

it +
µ̂s

it −µs
it

2cq
t Ps (55)

To derive the relationships (52), the solution of the KKT system

will be analyzed in the following five cases, among which any

optimal solution of the (DABFC) problem could be classified:

(a) Pt < q∗it = ps∗
it = Pt : This is a trivial case, because, by def-

inition (53), pd,s
it ≤ Pt , and then ps∗

it = max{q∗it = Pt , pd,s
it ≤

Pt}= Pt .

(b) Pt ≤ q∗it < ps∗
it = Pt : Condition (49) gives µ̂s

it = 0 that, to-

gether with the non-negativity of the lagrange multipliers

µs
it and equation (55) sets Pt ≤ θ s

it and, by definition (53),

pd,s
it = Pt . Then ps∗

it = max{q∗it < Pt , pd,s
it = Pt}= Pt

(c) Pt ≤ q∗it < ps∗
it < Pt : In this case, conditions (47) and (49)

give µs
it = µ̂s

it = 0, that, together with equation (55) gives

ps∗
it = θ s

it < Pt . Then, by definition (53), pd,s
it = θ s

it > q∗it
and ps∗

it = max{q∗it , pd,s
it = θ s

it > q∗it}= pd,s
it

(d) Pt < q∗it = ps∗
it < Pt : In this case, condition (47) forces

µs
it = 0 which, in combination with equation (55) and con-

dition µ̂s
it ≥ 0 gives ps∗

it = q∗it ≥ θ s
it . Definition (53) sets a

value of pd,s
it that will be either θ s

it or Pt being in both cases

less than q∗it , and then ps∗
it = max{q∗it , pd,s

it ≤ q∗it}= q∗it
(e) Pt = q∗it = ps∗

it < Pt : Condition (47) sets µs
it = 0 which,

by taking into account equation (55) and µ̂s
it ≥ 0, provides

ps∗
it = Pt ≥ θ s

it . Then, by definition (53), pd,s
it = Pt , and

ps∗
it = max{q∗it = Pt , pd,s

it = Pt}= Pt ¤

Before developing an analogous lemma for those thermal

units with linear generation costs, it is necessary to introduce

the following assumption:

Assumption 2. For every t ∈ T with ct
q = 0, λ d,s

i 6= cl
t ∀i ∈ I

and s ∈ S.

This assumption is not a severe restriction to our model, as for

real instances of the problem it can always be accomplished

by perturbing, if necessary, the price λ d,s
i , with a small amount

ε ≈ 0 without any practical consequence.

Lemma 3 (Optimal matched energy, linear costs). Let x∗ be

an optimal solution of the (DABFC) problem. If assumption 2

holds, then for any unit t with linear generation cost (i.e. cq
t =

0) committed at period i (i.e. t ∈ T ∗oni
), the optimal value of the

matched energy ps∗
it can be expressed as:

ps∗
it =





q∗it if λ d,s
i < cl

t

Pt if λ d,s
i > cl

t

(56)
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Proof As lemma 1 sets forth, any optimal solution of the (DABFC)

problem must satisfy the KKT system (43)-(51). When cq
t = 0

equation (43) can be expressed as:

µ̂s
it −µs

it = Ps
(

cl
t −λ d,s

i

)
(57)

with Ps the probability of scenario s. There are two possible

cases:

(a) λ d,s
i < cl

t : in this case equation (57) impllies that µ̂s
it > µs

it

which gives rise to two different situations. In the first one

µ̂s
it > µs

it > 0, that, together with equations (47) and (49)

gives ps∗
it = q∗it = Pt . In the second one µ̂s

it > µs
it = 0 and

the same KKT conditions forces ps∗
it = q∗it ≤ Pt

(b) λ d,s
i > cl

t : now equation (57) sets µs
it > µ̂s

it , which again

defines only two possibilities. In the first one the strict

inequalities of µs
it > µ̂s

it > 0 hold and, considering equa-

tions (47) and (49), set ps∗
it = q∗it = Pt . In the second one,

µs
it > µ̂s

it = 0 which, after equations (47) and (49), allows

the matched energy to be expressed as ps∗
it = Pt ≥ q∗it . ¤

Lemmas 2 and 3 establish the expressions of the optimal

matched energy variable for any spot price λ d,s
i at any optimal

solution of the (DABFC) problem. The bid strategies consis-

tent with such a matched energy will be developed in the next

section.

3.2. Optimal bid function

In section 2.4 the concepts of bid and matched energy func-

tions were introduced. The matched energy function associated

with a given bid function λ b
it was defined as

pm
it (λ d

i ) def= max{pb
it ∈ [0,Pt ] |λ b

it (pb
it)≤ λ d

i }

Assumption 1 supposes the existence of a bid function, coher-

ent with the (DABFC) problem, in the sense expressed in the

following definition:

Definition 3 (Bid functions’s optimality conditions). Let x∗′ =

[u∗,a∗,e∗, p∗,q∗, f ∗]′ be an optimal solution of the (DABFC)

problem. The bid function λ b∗
it of a thermal unit t committed at

period i (i.e. t ∈ T ∗oni
) is said to be optimal w.r.t. the (DABFC)

problem and solution x∗ if the value of the matched energy func-

tion associated to any scenario’s clearing price λ d,s
i , pm

it (λ
d,s
i ),

coincides with the optimal matched energy ps∗
it given by expres-

sions (52) and (56).

The equivalence pm
it (λ

d,s
i ) ≡ ps∗

it assures us that, if a GenCo

submits systematically optimal bid functions to the day-ahead

market, the expected value of the benefits will be maximized,

as long as the actual behaviour of the clearing price λ d
i has

been captured by the set of scenarios S. The next lemma de-

velops the expression of the optimal bid function associated to

the (DABFC) problem:

Lemma 4 (Optimal bid function). Let x∗′ = [u∗,a∗,e∗, p∗,q∗, f ∗]′

be an optimal solution of the (DABFC) problem and t any ther-

mal unit committed on period i at the optimal solution (i.e.

t ∈ T ∗oni
). Then:

(i) If the generation cost is quadratic convex, the bid function:

λ bq∗
it (pb

it) =





0 if pb
it ≤ q∗it

2cq
t pb

it + cl
t if q∗it < pb

it ≤ Pt

(58)

is optimal w.r.t. the (DABFC) problem and the optimum

x∗.

(ii) If the generation cost is linear and assumption 1 holds, the

bid function:

λ bl∗
it (pb

it) =





0 if pb
it ≤ q∗it

cl
t if q∗it < pb

it ≤ Pt

(59)

is optimal w.r.t. the (DABFC) problem and the optimum

x∗.

Proof We will consider first part (i) of the lemma. To illustrate

the proof, the expression (58) has been represented graphically

in Fig.3(a). It can be easily verified that the matched energy

function associated to the bid function λ bq∗
it is (Fig.3(b)):

pm∗
it (λ d

i ) =





q∗it if λ d
i ≤ λ it

(
λ d

i − cl
t
)
/2cq

t if λ it < λ d
i ≤ λ it

Pt if λ d
i > λ it

(60)
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where the threshold prices λ it and λ it are defined as:

λ it = 2cq
t q∗it + cl

t ; λ it = 2cq
t Pt + cl

t (61)

To prove the part (i) of the lemma it is only necessary to demon-

strate that pm∗
it (λ d,s

i )≡ ps∗
it , where ps∗

it is the value of the optimal

matched energy at scenario s, given by (52). First notice that, if

λ d
i = λ d,s

i , the spot price at scenario s, then the matched energy

function (60) can be rewritten as:

pm∗
it (λ d,s

i ) =





q∗it if λ d,s
i ≤ λ it

θ s
it if λ it < λ d,s

i ≤ λ it

Pt if λ d,s
i > λ it

(62)

where θ s
it is the parameter defined in equation (54). Now, the

equivalence pm∗
it (λ d,s

i )≡ ps∗
it = max{q∗it , pd,s

it } can be easily ver-

ified for the three cases of expression (62) (please, refer to Fig.

3(b) for a graphical interpretation of these three cases):

(a) If, for some k ∈ S, λ d,k
i ≤ λ it then θ s

it ≤ q∗it and, by defi-

nition (53), pd,k
it = max{θ k

it ,Pt}, which will always be less

than or equal to q∗it . Then, we can write that pm∗
it (λ d,k

i ) =

q∗it = max{q∗it , pd,k
it ≤ q∗it}= pk∗

it .

(b) If, for some l ∈ S, λ it < λ d,l
i ≤ λ it then q∗it < θ l

it ≤ Pt

which, by definition (53), gives pd,l
it = θ l

it and pm∗
it (λ d,l

i ) =

θ l
it = max{q∗it , pd,l

it = θ l
it > q∗it}= pl∗

it

(c) If, for some r ∈ S, λ d,r
i > λ it then θ r

it > Pt which, together

with definition (53), sets pd,r
it = Pt and: pm∗

it (λ d,r
i ) = Pt =

max{q∗it , pd,r
it = Pt > q∗it}= pr∗

it

To demonstrate the equivalence pm∗
it (λ d,s

i ) ≡ ps∗
it when cl

t = 0

(part (ii) of the lemma), observe that the optimal matched en-

ergy function associated to the optimal bid function λ bl∗
it is:

pm∗
it (λ d

i ) =





q∗it if λ d
i ≤ cl

t

Pt if λ d
i > cl

t

(63)

which is represented in Fig. 4(b). Under assumption 2 it be-

comes evident that expression (63) is equivalent to expression

(56), and then, pm∗
it (λ d,s

i )≡ ps∗
it ∀s ∈ S ¤

As mentioned before, the (DABFC) problem assures us that,

if the optimal bids (58)-(59) are submitted to the day-ahead

λ bq∗
it (pb

it)

pm∗
it (λ d,s

i )

λ b
it

Pt

Pt

q∗it

q∗it

Pt

Pt
pb

it

pm
it

θ l
it

θ k
it

θ r
it

λ d,k
i

λ it

λ it

λ d,l
i

λ it

λ itλ d,r
i

λ d,s
i

(a) (b)

Figure 3: Optimal bid function λ bq∗
it (pb

it) (a) and associated matched energy

function pm∗
it (λ d,s

i ) (b) for units with quadratic generation costs.

market, the expected value of the benefit function (??) will be

maximized. There are two important considerations about these

optimal bid functions. The first one is that the optimal bid func-

tions (58)-(59) represent to some extent a generalization of the

classical self-commitment problem treated by several authors

(Conejo et al. (2002), Gountis and Bakirtzis (2004)). Effec-

tively, if the thermal unit t doesn’t contribute to covering futures

contracts at period i (i.e., q∗it = 0), then the optimal bid function

offers the complete production of the thermal plant pb
it at its

true marginal cost, 2cq
t pb

it +cl
t or cl

t depending on the generation

costs functions. Second, the true bid function required by the

market’s operator in the MIBEL is a stepwise non-decreasing

function. The optimal bid function (59) satisfies this condition,

but (58) is not stepwise. This is an approximation commonly

adopted in the literature (see Gountis and Bakirtzis (2004)) and

does not represent a serious limitation on the practical interest

of the model, because it is always possible to built a posteriori

a stepwise approximation of the resulting optimal bid (58).

4. Numerical examples

The model (17)-(26) has been tested with real data of a

Spanish GenCo and MIBEL market prices. The model has been

implemented in AMPL (Fourer et al., 2003) and solved with

CPLEX (CPLEX, 2008) using a SunFire X2200 with two dual

core AMD Opteron 2222 processors at 3 GHz and 32 Gb of

10



λ bl∗
it (pb

it)

pm∗
it (λ d,s

it )λ b
it

cl
t

cl
tPt

Pt

q∗it

q∗it

Pt

Pt

pb
it λ d,k

i λ d,r
i

λ d,s
i

pm
it

(a) (b)

Figure 4: Optimal bid function λ bq∗
it (pb

it) (a) and associated matched energy

function pm∗
it (λ d,s

i ) (b) for units with linear generation costs.

RAM memory.

4.1. Data sources

All the data of this work is public and it has been either

downloaded directly from the indicated web pages or calculated

by using some other public data. The sources for all data used

in the case studies are:

• Market data: the Day-Ahead Market price has been avail-

able at OMEL’s site (OMEL, 2008) since January 1998

until today. In this work we use the data from January

1st , 2004 to October 23th,2007. Generic data about the

quantities and clearing prices of the futures contracts is

available at OMIP’s site (OMIP, 2008), this data has been

used to define some examples of futures contracts.

• Generation Company data: the information about the

thermal units in the study belongs to a GenCo that bids

daily in the Day-Ahead Market and also participates in

the Derivatives Market (Table 1). Most of the information

about the generation units is available at the CNE’s site

(CNE, 2008).

4.2. Construction of the set of scenarios

The optimization model presented in this work is stochastic

due to the presence of a random variable, the Day-Ahead Mar-

ket price (see Section 2). This random variable has the charac-

teristics of a financial time series and, in order to be introduced

t cb
t cl

t cq
t pt pt con

t co f f
t

e e/MWh e/MWh2 MW MW e e

1 151.08 40.37 0.015 160.0 350.0 412.80 412.80

2 554.21 36.50 0.023 250.0 563.2 803.75 803.75

3 97.56 43.88 0.000 80.0 284.2 244.80 244.80

4 327.02 28.85 0.036 160.0 370.7 438.40 438.40

5 64.97 45.80 0.000 30.0 65.0 100.20 100.20

6 366.08 -13.72 0.274 60.0 166.4 188.40 188.40

7 197.93 36.91 0.020 160.0 364.1 419.20 419.20

8 66.46 55.74 0.000 110.0 313.6 1298.88 1298.88

9 372.14 105.08 0.000 90.0 350.0 1315.44 1315.44

Table 1: Operational characteristics of the thermal units

in the stochastic model, it has to be discretized on a scenario

tree. In particular, the model presented in this work is a two-

stage stochastic problem and, for this kind of model, a set of

individual scenarios with its corresponding probabilities is suf-

ficient . In this work, we have observed the following steps in

order to obtain the required scenario set:

1. Time series model: the Spanish Day-Ahead Market price

presents the following characteristics: high frequency, non-

constant mean and variance, multiple seasonality, calendar

effect, high volatility and high presence of picks (Nogales

et al., 2002), which are the common characteristics of a

financial time series. The market price has been charac-

terized by an auto-regressive integrated moving average

model. We work with the log scale of the price in order to

avoid the nonconstant variance, specifically:

ln(λ d)∼ ARIMA(5,0,2)(8,0,1)24(3,0,3)168

The model is fitted based on the data from 2004 to 2007.

The coefficients are estimated by maximum likelihood es-

timation.

2. Scenario generation: one of the most usual mechanisms

for this discretization is the simulation of prices scenar-

ios for the day in study (Kaut and Wallace, 2003). Thus,

once the model has been fitted we generate 300 simulated

scenarios for the 24 hours of the day in study.

3. Scenario reduction: a set of decision variables is required

11



|S| c.v. CPU(s) E(benefits)(e) ‖xs−x150‖
‖x150‖

10 3360 13 1350830 0.3350

20 5760 55 1085240 0.2997

30 8160 112 1093900 0.2913

40 10560 216 1081010 0.1821

50 12960 444 1107110 0.1764

75 18960 2100 1087860 0.0712

100 24960 3319 1089280 0.0712

150 36960 4244 1084880

|I|= 24; |T |= 9; b.v. = 720

Table 2: Results for different number of scenarios

for each scenario, so the reduction of the number of sce-

narios will reduce the dimension of the problem and ease

the computational resolution. Following the algorithm de-

scribed in Growe-Kuska et al. (2003), the set of scenarios

has been reduced preserving at maximum the characteris-

tics of the simulated set.

In stochastic programming models, the number of scenar-

ios is a critical decision. We deal with this problem by in-

creasing the number of scenarios until the stabilization of the

objective function optimal value. The original tree has 300 sce-

narios that have been reduced to sets of 150, 100, 75, 50, 40,

30, 20 and 10 scenarios. In table 2 the main parameters of

each test are summarized: number of scenarios (S), number of

binary variables (b.v.), number of continuous variables (c.v.),

CPU time in seconds (CPU(s)), the value of the expected ben-

efits (E(benefits)(e)), and the difference in the first stage vari-

ables value between the reduced set and the one with 150 sce-

narios, given in fraction of unit ( ‖xs−x150‖
‖x150‖ where xs = [q∗, u∗]′

∀s ∈ S). The value of E(benefits) only considers the benefit

from the day-ahead market (terms (16) and (15)), ignoring the

constant futures contracts income (14), and corresponds to mi-

nus the objective function of the (DABFC) problem. It can be

observed how the CPU time increases with the number of sce-

narios because of the proportional relationship between them

and the number of continuous variables (the number of binary

variables is independent of the number of scenarios). It can be

seen also the stabilization of the value of the objective function
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Figure 5: (a) Expected benefits for each reduced set of scenarios (b) First stage

variables convergence evaluated as ‖xs−x150‖
‖x150‖ , xs = [q∗, u∗]′ ∀s ∈ S

when the number of scenarios grows (Fig. 5(a)) and the con-

vergence to zero of the difference in the optimal value of the

first stage decision variables between each reduced set and the

largest one (Fig. 5(b)). Both values converge from approxi-

mately 75 scenarios and the computational time is acceptable.

Any increase in the number of scenarios from 75 to 100 does

not improve the optimal solution accuracy enough to justify the

50% increase in the CPU time. Therefore 75 will be the selected

number of scenarios for the computational tests.

4.3. Computational results

A set of computational tests has been performed in order

to validate the proposed modeling of the day-ahead bid with

futures contracts problem. The instances used in the test have

3 bilateral contracts, 9 thermal and 24 hourly. The computa-

tional tests are done changing the quantity of energy allocated

to physical futures contracts in order to study its influence in

the results. The status of the units before the first interval is

fixed as all open, allowing them to be closed or remain opened

at hour 1; this is done in order to give more freedom to the unit

commitment.

The quantity allocated to futures contracts is confidential

and therefore there is no real public data for the units in the

study. The set of computational tests presented is based on

12



%P E(benefits)

5 1823170

40 1107110

75 -2800460

|I|= 24; |T |= 10; |S|= 75;

c.v. = 720; b.v. = 12960

Table 3: Dependency of the day-ahead market benefits with the fraction of the

total generation capacity allocated to futures contracts.
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Figure 6: Optimal offer for unit 1 at hour 12

the percentage of the total energy generation capacity that the

GenCo has allocated in futures contracts, %P = ∑∀ j∈F L j/∑∀t∈T Pt

. For this case study, we include the 9 available units distributed

in one or more of the 3 UCPs created, each of them correspond-

ing to one futures contract. In table 3 the main parameters of the

computational test are summarized for three different values of

%P: 5%, 40% and 75%. The computational time for the 3 cases

is approximately the same but the value of the expected benefits

differs. Observe that when %P = 75% the GenCo experiences

a loss in the day-ahead market, which should be compensated

with the futures contracts incomes (14).

Figure 6 shows the optimal bid function for unit 1 at in-

terval 12, λ bq∗
12,1(pb

12,1) (sec. 3, equation (58)), for the differ-

ent values of %P considered. The plot represents an adapta-

tion of the optimal bid function provided by the model to the

real bid function that the GenCo has to submit to the MIBEL

Day- Ahead Market operator. This real bid function is com-

posed of ten pairs (energy, price) with increasing price (points
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Figure 7: Optimal instrumental price bid energy q∗it for each unit and interval

(a)) that can be represented as a stepwise increasing curve start-

ing at the point defined by the instrumental price offer (q∗12,1,0).

The following steps are constructed by following the optimal

bid function, in a way that the coordinates of the points (a)

are (pb
12,1,λ

bq∗
12,1(pb

12,1)), with the values of the bid energy pb
12,1

evenly distributed between q∗12,1 and P12. Notice that for the

first case (solid line) the unit has no energy allocated to futures

contracts so the instrumental offer’s energy is the minimum op-

erational limit (160MW) because, as the unit is committed, the

matched energy has to be at least this quantity. For the other

two cases the energy allocated to futures contracts is 186MW

(dotted line) and 256MW (dashed line). In the following analy-

sis, the percentage of available energy used for physical futures

contracts will be fixed at 40%.

Figure 7 shows variable q∗it , the instrumental price bid, en-

ergy for each unit and interval. The values shown in the or-

dinate axis are the minimum and maximum power capacity of

each unit. This instrumental price bid can be either the quan-

tity allocated to futures contracts or the minimum operational

limit of the unit. Fig. 7 also represents the unit commitment,
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Figure 8: Economic dispatch of each futures contracts, fit j

because if the unit is not producing the minimum operational

limit it means the unit is off. We can see that unit 5 starts-up at

10 a.m. and units 2, 8 and 9 start-up after 6 p.m. This behavior

is related to the prices structure because in the MIBEL the high-

est prices are at noon and in the evening, the peak hours being

after 6 p.m.

Figure 8 represents variable f ∗it j, the optimal economic dis-

patch of each futures contract. This representation shows how

the contract is settled among the different units of each UCP.

Three kinds of physical futures contracts have been considered,

200 MWh in a weekly contract, 500 MWh in a monthly con-

tract and 500 MWh in a yearly contract. It can be observed

that every unit of a given UCP contributes to the corresponding

futures contract in at least one interval. Notice how in the off-

peak hours (lower clearing prices), if possible, each contract is

settled by the cheapest unit in the UCP, for example unit 7 in

the yearly contract or unit 6 in the monthly contract. Specif-

ically, as unit 7 cannot generate all the energy needed for the

yearly contract, unit 3 has to contribute covering the rest of the

contract. For this reason the weekly contract is not fully cov-

ered by unit 3, which is the cheapest one, but by unit 1, since

unit 3 is generating for the yearly contract. In the case of the

monthly contract, since the maximum power capacity of unit

6 is insufficient, the contract must be covered with the help of

the next cheapest unit, unit 4. The results of the peak hours are

not as easily interpretable because day-ahead market incomes

are greater and its relation with production costs allows all the

units to participate both in futures contracts and day-ahead bid-

ding.

Figure 9 shows the optimal bid curves for each committed

thermal unit at hour 12. The numerical values shown in the

abscissa axis indicate the minimum and maximum power ca-

pacity. The first interval is always the instrumental price bid,

which is indicated in parenthesis as (price, quantity). Units 3,

5 and 9 have linear generation costs and its real bid coincides

with the optimal bid function λ bl∗
it expressed in equation (59).

The rest of the units have quadratic generation costs and the

function represented corresponds to the adaptation of the opti-

mal bid functions λ bq∗
it (equation (58) to the real stepwise bid

function built as in figure 6. Notice that there are some thermal

units that have qit greater than the minimum power capacity,

specifically units 3, 4, 6 and 7, this fact is a direct consequence

of the participation of these units in the futures contract being

covered.

5. Conclusions

This work has developed a new quadratic mixed-integer sto-

chastic programming model, for the optimal Day-Ahead Bid

with Future Contracts problem (DABFC). The optimal solution

of our model determines the unit commitment of the thermal

units, the optimal instrumental price bidding strategy for the

generation company and the economic dispatch of the commit-

ted futures contracts for each hour so as to maximize the ben-

efits arising from the Day-Ahead Market while satisfying the

thermal operational constraints and the MIBEL’s rules concern-

ing the integration of the energy of the Physical Futures Con-
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Figure 9: Bidding curve for each unit at hour 23

tract in the Day-Ahead market. As a result of the study of the

properties of the optimal solution of the (DABFC) problem, the

proposed model also provides the analytical expression of the

optimal bid functions that ensures the maximization of the long

run expected benefits. The expression for the optimal bid func-

tions represents a generalization of the marginal cost bid func-

tion for those utilities that must integrate the settled energy of

the physical futures contracts within their bid to the Day-Ahead

Market obeying the MIBEL regulation. The model was imple-

mented and solved with real data of MIBEL market prices and

a Spanish generation company with participation in the deriva-

tives and day-ahead markets. The results of the computational

tests validate the model and show the influence in the optimal

bidding strategy of the generation company of the participation

in physical futures contract.

A. Notation

A.1. Parameters

cb
t , cl

t , cq
t : constant, linear and quadratic coefficients of the genera-

tion cost function of unit t.

co f f
t , con

t : shut-down and start-up cost of unit t.

F : set of futures contracts.

Ft : set of futures contracts in which unit t participates.

L j: due settled energy of contract j.

λ d= {λ d
1 , . . . ,λ d

i , . . . ,λ d
I }: clearing prices of the |I| Day-Ahead

Markets.

λ d,s= {λ d,s
1 , . . . ,λ d,s

i , . . . ,λ d,s
I }: clearing prices of the |I| Day-Ahead

Markets for scenario s.

λ f
j : settlement price of futures contract j.

λ it , λ it : threshold prices used in the definition of the optimal matched

energy function pm∗
it .

mino f f
t , minon

t : operational minimum idle and in service time of unit t.

Ps= P[λ d = λ d,s]: probability of scenario s.

Pt , Pt : lower and upper bound on the energy generation of a com-

mitted unit t.

pd,s
it : auxiliary parameter used in the definition of the optimal matched

energy ps∗
it of unit t at interval i and scenario s.

S: set of scenarios.

T : set of thermal units.

Tj: set of thermal units that participates in contract j.

T ∗oni
: set of committed units at interval i over the optimal solution.

θ s
it : auxiliary parameter used in the definition of the optimal matched

energy ps∗
it of unit t at interval i and scenario s.

A.2. Variables and multipliers

ait : binary variable indicating the shutting-down of unit t at interval

i

eit : binary variable to indicate the turning-on of unit t at interval i.

uit : binary variable representing the on-off operating status of the

unit t at interval i.

fit j: continuous variable representing the energy of the future con-

tract j allocated to thermal unit t at interval i.

ps
it : continuous variable of scenario s for the matched energy of unit

t at interval i.

qit : continuous variable standing for the energy of the instrumental

price offer of unit t at interval i

π: Lagrange multiplier of the future contracts energy dispatching

constraints (37).

µ̃: Lagrange multiplier of the instrumental price offer constraints

(38).
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µ , µ̂ and µ : Lagrange multipliers of the bounding and coupling

constraints (39)-(41).

µ̆: Lagrange multipliers of the non-negativity of variables f .

A.3. Functions

B: Day-Ahead and Futures Market benefit function.

λ b
it (pb

it): bid function of unit t at the ith spot market.

λ bq∗
it (pb

it), λ lq∗
it (pb

it): optimal bid function at the ith spot market for a unit t

with quadratic generation cost.

pm
it (λ

d
i ): matched energy function providing the matched energy of unit

t at interval i associated to a given bid function λ b
it for a fixed

clearing price λ .

pm∗
it (λ d

i ): matched energy function associated to the optimal bid function

λ bq∗
it or λ bl∗

it .

Units: costs and prices are ine/MWh and energy terms in MWh.
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