
An interior-point approach for primal
block-angular problems

Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Jordi Girona 1–3, 08034 Barcelona (Catalonia, Spain)

jordi.castro@upc.edu
Research Report DR 2005-20

September 2005

Report available from http://www-eio.upc.es/~jcastro

An interior-point approach for primal block-angular

problems

Jordi Castro∗

Dept. of Statistics and Operations Research
Universitat Politècnica de Catalunya

Jordi Girona 1–3, 08034 Barcelona, Catalonia, Spain
jordi.castro@upc.edu

http://www-eio.upc.es/~jcastro

Abstract

Multicommodity flows belong to the class of primal block-angular prob-
lems. An efficient interior-point method was developed in the past for this
type of network optimization problems. It solved the normal equations,
using sparse Cholesky factorizations for the diagonal blocks, and a precon-
ditioned conjugate gradient for the linking constraints. In this work we
extend this procedure, showing that the preconditioner initially developed
for multicommodity flows applies to any primal block-angular problem,
although its efficiency depends of the particular linking constraints struc-
ture. We discuss under which conditions the preconditioner is effective.
The procedure is implemented in a user-friendly package under the MAT-
LAB environment, reporting computational results for four primal block-
angular problems: multicommodity flows, nonoriented multicommodity
flows, minimum-distance controlled tabular adjustment for statistical data
protection, and the minimum congestion problem. The results show that
this procedure is very promising for the efficient solution of large primal-
block angular problems.

Key words: interior-point methods, structured problems, normal equations,
preconditioned conjugate gradient, large-scale optimization

1 Introduction

Multicommodity flows are challenging linear programming problems and some
sets of instances, as the PDS ones, have been widely used in the past for the eval-
uation of general solvers [5, 6]. Interior-point methods were not considered an
efficient choice for this kind of problems until the specialized method of [7]. This

∗Work supported by the Spanish MCyT project TIC2003-00997.

1

approach was recognized as the most efficient interior-point method for gen-
eral multicommodity problems [4]. Although some of the formerly considered
difficult multicommodity models are today solved in seconds with extremely
efficient simplex implementations [4, 16], specialized interior-point algorithms
still provide the best performance for some recent multicommodity instances
[8, 9].

The purpose of this work is the extension of the specialized multicommodity
interior-point method of [7] to general primal block-angular problems. As in
the multicommodity case, the normal equations will be solved by a scheme that
combines Cholesky factorizations for the diagonal blocks, and a preconditioned
conjugate gradient (PCG) for the linking constraints. It will be shown that the
preconditioner initially developed for multicommodity flows can be applied to
any primal block-angular problem. However, unlike multicommodity flows, a
diagonal preconditioner can not be guaranteed for general block-angular prob-
lems; it depends of the particular linking constraints structure. In general this
will not be a significant drawback, since, for most problems, linking constraints
are sparse, resulting in sparse and efficient preconditioners.

Specialized interior-point methods have been applied in the past for block-
angular and more general block-bordered structures. The most significant at-
tempt is the OOPS system [13, 15]. This approach, tailored for parallel pro-
cessing, exploits the nested structure of the matrix constraints through a tree
representation, and solves the linear systems of equations at nodes of the tree by
Cholesky factorizations. It is worth to note that the procedure here described
could be used at those nodes associated to primal block-angular structures.

Although the procedure here described makes uses of PCG, it is signifi-
cantly different from other interior-point algorithms based on iterative solvers.
Iterative approaches solve the full set of rows and columns of either the normal
equations (see [12, 23] and references therein) or augmented system (see [2, 19]
and references therein) through PCG, whereas our method only applies PCG
for the rows and columns of normal equations associated to linking constraints.
Our approach aims at eliminating the complicating constraints from the normal
equations. In this sense, it can viewed as a decomposition approach.

The augmented system offers more freedom for direct and iterative solvers
[1], in particular for the solution of general quadratic and nonlinear problems
and the design of preconditioners. This was the choice, for instance, in the
iterative approaches of [2] and [19]. In particular, the latter states that iterative
solvers should be used for the augmented system. However, our method is, first,
not merely based on PCG, but also uses Cholesky factorizations; and, second,
its purpose is to eliminate the complicating linking constraints, making the
problem block separable, not to solve the full system by an iterative solver.
For instance, the approach of [19] solved PDS60 in 89000 seconds, whereas
ours required 6700 [7] in a machine twice slower (the ratio is thus close to 30).
Therefore, although our procedure uses the normal equations, for block-angular
problems seems to be a more efficient alternative.

An additional argument for using the normal equations in our approach is
that, for linear and separable quadratic problems, which are assumed in this
work, they are more efficient than the augmented system formulation, if solved

2

through direct methods in the absence of dense columns [24, Ch. 11]. As far as
we know, normal equations are still used in state-of-the-art commercial codes,
as CPLEX. Our method uses Cholesky factorizations for the diagonal blocks;
if they don’t contain dense columns, normal equations are a sensible choice.
If some dense column appears in the linking constraints submatrix, variable
splitting techniques can be used to reduce the fill-in of the preconditioner. An
example of such procedure will be shown in Subsection 6.3 for the minimum
congestion problem.

The structure of the paper is as follows. Section 2 presents the formulation
of the primal block-angular problem. Section 3 shows the structure of the nor-
mal equations for this problem. Section 4 describes the specialized procedure for
the solution of normal equations, combining sparse Cholesky factorizations and
PCG. This section also discusses under which conditions the preconditioner will
be effective. Section 5 gives details of the implementation developed under the
MATLAB environment. Finally, Section 6 compares the specialized approach
with the standard one based on Cholesky factorizations of normal equations,
using four classes of instances: multicommodity flows, nonoriented multicom-
modity flows, controlled tabular adjustment in statistical data protection, and
the minimum congestion problem.

2 The primal block-angular problem

The primal block-angular formulation considered in this work is

min
k+1∑

i=1

(ciT xi + xiT Qix
i)

subject to




N1

N2

. . .
Nk

L1 L2 . . . Lk I







x1

x2

...
xk

xk+1




=




b1

b2

...
bk

bk+1




0 ≤ xi ≤ ui i = 1, . . . , k + 1.

(1)

Matrices Ni ∈ IRmi×ni and Li ∈ IRl×ni , i = 1, . . . , k define respectively the
block and linking constraints, k being the number of blocks. Vectors xi ∈
IRni , i = 1, . . . , k, are the variables for each block. xk+1 ∈ IRl are the slacks
of the linking constraints. bi ∈ IRmi , i = 1, . . . , k is the right-hand-side vector
for each block of constraints, whereas bk+1 ∈ IRl is for the linking constraints.
Upper bounds for each group of variables are defined by ui, i = 1, . . . , k + 1.
Note that this formulation considers the general form of linking constraints
bk+1 − uk+1 ≤ ∑k

i=1 Lix
i ≤ bk+1. ci ∈ IRni and Qi ∈ IRni×ni , i = 1, . . . , k are

the linear and quadratic costs for each group of variables. We also consider
linear and quadratic costs ck+1 ∈ IRl and Q ∈ IRl×l for the slacks. Since the

3

procedure to be developed uses the normal equations, we restrict for efficiency
to the separable case where Qi i = 1, . . . , k+1 are semidefinite positive diagonal
matrices. Note that any quadratic problem can be transformed to a separable
equivalent one, through the addition of extra variables and constraints. This
can significantly reduce the solution time for some instances [22, Ch.23]. (1) is
an optimization problem with m =

∑k
i=1 mi + l constraints and n =

∑k
i=1 ni + l

variables. We assume that, for some i, mi is allowed to be 0, i.e., problem (1)
includes more general situations where some group of variables only appears in
the linking constraints. For instance, if such group of variables corresponds to
block k, the matrix structure is




N1

N2

. . .
Nk−1

L1 L2 . . . Lk−1 Lk I




. (2)

This matches the formulation considered, for instance, in [15].

3 Structure of normal equations

Problem (1) can be written in standard form as

min cT x + 1
2xT Qx

Ax = b
x + s = u
x, s ≥ 0

(3)

where x, s, u ∈ IRn, Q ∈ IRn×n and b ∈ IRm. The dual of (3) is

max bT y − 1
2xT Qx− wT u

AT y −Qx + z − w = c
z, w ≥ 0

(4)

where y ∈ IRm and z, w ∈ IRn. For problem (1), vectors c, x, s, u, y, z, w and
matrix Q are made of k + 1 blocks.

Replacing inequalities in (3) by a logarithmic barrier with parameter µ, the
first order optimality conditions for the barrier problem, after some manipula-
tions and elimination of constraints x + s = u, are

rxz ≡ µe−XZe = 0
rsw ≡ µe− SWe = 0
rb ≡ b−Ax = 0
rc ≡ c− (AT y −Qx + z − w) = 0

(x, s, z, w) ≥ 0 ;

(5)

e ∈ IRn is a vector of 1’s, and matrices X, Z, S, W ∈ IRn×n are diagonal ma-
trices made from vectors x, z, s, w. The set of unique solutions of (5) for each

4

µ value is known as the central path, and when µ → 0 these solutions super-
linearly converge to those of (3) and (4) The nonlinear system (5) is usually
solved by a damped version of Newton’s method, reducing the µ parameter at
each iteration. This procedure is known as the path-following interior-point
algorithm. An excellent discussion about the theoretical properties of this and
other interior-point algorithms can be found in [24].

The linearization of (5), implicitly assuming that s = u − x, gives rises to
the following system of equations




A
−Q AT I −I
Z X
−W S







∆x
∆y
∆z
∆w


 =




rb

rc

rxz

rsw


 , (6)

right-hand-sides having been defined in (5). After the elimination of ∆w and
∆z from last two groups of equations of (6), as follows

∆z = X−1rxz −X−1Z∆x (7)
∆w = S−1rsw − S−1W∆x, (8)

we obtain the augmented system form
[

A
−Θ−1 AT

] [
∆x
∆y

]
=

[
rb

r

]
, (9)

where Θ and r are defined as

Θ = (Q + S−1W + X−1Z)−1 r = rc + S−1rsw −X−1rxz. (10)

Additional elimination of ∆x from last group of equations of (9) provides the
normal equations form:

(AΘAT)∆y = rb + AΘr (11)
∆x = Θ(AT ∆y − r). (12)

The Newton direction is computed using (7), (8), (11) and (12).
For linear and separable quadratic problems, Θ is a diagonal matrix, thus

(12) is easily computed. Exploiting the structure of A and Θ of the primal
block-angular problem (1), the matrix of system (11) can be recast as

AΘAT =




N1Θ1N
T
1 N1Θ1L

T
1

. . .
...

NkΘkN
T
k NkΘkL

T
k

L1Θ1N
T
1 . . . LkΘkN

T
k Θk+1 +

∑k
i=1 LiΘiL

T
i




=

[
B C
CT D

]
,

(13)

5

B ∈ IRñ×ñ (ñ =
∑k

i=1 ni), C ∈ IRñ×l and D ∈ IRl×l being the blocks of AΘAT

and Θi, i = 1, . . . , k + 1, the submatrices of Θ associated to the k + 1 groups
of variables in (1), i.e., Θi = (Qi + S−1

i Wi + X−1
i Zi)−1. Denoting by g the

right-hand-side of (11), and appropriately partitioning g and ∆y, the normal
equations can be written as

[
B C
CT D

] [
∆y1

∆y2

]
=

[
g1

g2

]
. (14)

4 Solving the normal equations

Eliminating ∆y1 from the first group of equations of (14) we get

(D − CT B−1C)∆y2 = (g2 − CT B−1g1) (15)
B∆y1 = (g1 − C∆y2). (16)

System (16) is solved by performing one Cholesky factorization for each diag-
onal block NiΘiN

T
i , i = 1 . . . k, of B. System with matrix D − CT B−1C, the

Schur complement of (14), is solved by a PCG. The dimension of this system
is l, the number of linking constraints. The preconditioner obtained in [7] for
multicommodity flows, a particular class of primal block-angular problems, can
be applied to any primal block-angular problems, as shown by next result. Its
proof can be obtained from Theorem 1 and Propositions 3 and 4 of [7].

Proposition 1 If D is positive semidefinite, and D + CT B−1C is positive
semidefinite then the inverse of (D − CT B−1C) can be computed as

(D − CT B−1C)−1 =

(∞∑

i=0

(D−1(CT B−1C))i

)
D−1. (17)

The hypotheses of Proposition 1 are satisfied by any primal block-angular prob-
lem.

The preconditioner M−1, an approximation of (D − CT B−1C)−1, is thus
obtained by truncating the infinite power series (17) at some term h. Since
the preconditioner is used at each iteration of PCG for the solution of system
Mz = r (for some vectors z and r), increasing h by one means solving an
additional system with matrix B at each PCG iteration. Therefore, as a rule
of thumb, although it is problem dependent, h = 0 or h = 1 are reasonable
choices in practice, obtaining

M−1 = D−1 if h = 0
M−1 = (D−1(CT B−1C))D−1 if h = 1.

h = 0 has been used for all the computational results of this paper.
Up to now the above preconditioner has only been (successfully) applied to

linear and quadratic multicommodity problems. Although the expected per-
formance for a general primal block-angular matrix is problem dependent, the
effectiveness of the preconditioner is governed by next criteria:

6

• The spectral radius of D−1(CT B−1C)), which is always in [0, 1) (The-
orem 1 of [7]). The farthest from 1, the closer is M−1 to (D−CT B−1C)−1.
Although the particular behaviour of the spectral radius value is problem
dependent, in general it becomes closer to 1 as we approach the optimal
solution, because of the ill-conditioning of the Θ matrix.

• The structure of matrix D. At each PCG iteration, h + 1 systems
with matrix D must be solved. For multicommodity flows this is an
inexpensive step, since Li = I, i = 1, . . . , k, and then D is diagonal. For
a general problem, D depends of the structure of side constraints, and
we are forced to use a sparse Cholesky factorization (including row and
column permutation, and symbolic factorization stages). If the fill-in of D
is large the preconditioner can be computationally expensive. Procedures
devised to avoid fill-in for AΘAT [1] can also be applied for D to improve
the efficiency of the preconditioner. An example of linking constraints
with a dense column is presented in Subsection 6.3 for the minimum
congestion problem; in that case a dense D matrix is avoided by variable
splitting.

• The structure of matrices NiΘiN
T
i , i = 1, . . . , k of B. Denoting by

t the number of PCG iterations, the solution of (15) and (16) requires
2+ t(1+h) systems with matrix B. Although the numerical factorization
is performed only once, the large number of backsolve steps can be very
expensive if the fill-in is significant. Again, this is problem dependent,
and general procedures devised for AΘAT can be applied to NiΘiN

T
i .

• Products Cv and CT v, for some vector v. Denoting by t the number
of PCG iterations, the number of such products is 2+t(1+h). From (13),
these operations involve matrix-vector products with Ni, NT

i , Li and LT
i ,

i = 1, . . . , k. In general, they can be highly tuned for each particular prob-
lem, exploiting the matrix structure. This is done, for instance, for multi-
commodity flows, where Ni are node-arc incidence matrices, and Li = I.
The use of generic programming and virtual functions, common tools in
object-oriented programming languages as C++, can be very effective for
the implementation of these operations. Therefore, the execution time
spent in these computations should not be significant, compared to the
time needed for systems with B and D. However, this rule does not hold
in our MATLAB implementation, where the Cholesky factorizations for
B and D are performed through precompiled routines, and operations
Cv and CT v are done within the MATLAB interpreted language. As dis-
cussed below, this is the reason we only use the time spent in precompiled
Cholesky routines for the computational results.

5 Implementation details

The specialized interior-point algorithm described in previous sections has been
implemented under the MATLAB environment. The code has been designed as

7

a generic solver, named PRBLOCK IP, which can be hooked to a front-end for
each particular primal block-angular problem to be solved. The generic solver
receives from the front-end:

• c ∈ IRn: the linear costs vector.

• Q ∈ IRn: the quadratic costs vector.

• u ∈ IRn: the upper bounds vector.

• b ∈ IRm: the right-hand-side vector.

• N : using the overloading capabilites of MATLAB, N can be a list of
matrices Ni ∈ IRmi×ni i = 1, . . . , k, or a single matrix; in the latter case
Ni = N for all i, and a single row ordering and symbolic factorization is
required.

• L: as before, L is an overloaded parameter, which can be a list of matrices
Li ∈ IRl×ni i = 1, . . . , k, or a single matrix (and thus Li = L for all i).

PRBLOCK IP implements a standard path-following algorithm, which solves
the normal equations either through a Cholesky factorization, or through the
specialized procedure. For efficiency reasons, Cholesky factorizations are per-
formed through external precompiled routines. In particular, the code uses the
Ng-Peyton sparse Cholesky package [18], hooked to MATLAB for the LIPSOL
package [25]. Ng-Peyton Cholesky package implements the minimum degree or-
dering heuristic for the row and columns permutations of normal equations, and
exploits the memory hierarchy through the use of supernodes. PRBLOCK IP is
about 1800 lines, aside from the precompiled Ng-Peyton Cholesky package and
front-ends for each particular problem. It can be obtained for research purposes
from http://www-eio.upc.es/~jcastro/prblock ip.html. The distribution
includes also a SCILAB version, a free MATLAB-like environment.

Although a MATLAB implementation is far less efficient that an equivalent
C/C++ one, it provides a user-friendly environment for testing the suitability
of the specialized algorithm for any primal block-angular problem. Front-ends
are easily developed within MATLAB. Looking at the CPU time of precom-
piled Cholesky routines, which is automatically provided by PRBLOCK IP, we
can forecast the performance of the specialized block-angular interior-point al-
gorithm compared to a standard one (see Section 6 for details). If the results
are satisfactory, it is worth to spend time on an ad-hoc implementation for this
kind of problems. Up to now, such an ad-hoc code is only available for mul-
ticommodity flows [7]. The development of a generic C++ class, with virtual
functions that exploit the structure of any block-angular problem is out of the
scope of this work and among the further tasks to be done.

Some additional features of the package are:

• The path-following algorithm implemented does not compute Mehrotra’s
predictor-corrector or higher-order directions. As observed in [7], for the
particular case of multicommodity flows, the reduction in number of itera-
tions is not worthwhile, due to the increase of execution time per iteration

8

for applying twice the PCG. However, in the computational results we also
compare the specialized procedure with the native MATLAB interior-
point solver, which is based on LIPSOL and makes use of Mehrotra’s
direction. As it will be shown in Section 6, the specialized procedure is
competitive with Cholesky based procedures, whether they rely on New-
ton or Mehrotra directions.

• The angle criteria of [20] is used as stopping rule for the PCG. At iteration
i of the interior-point method, we consider that the jth PCG iterate ∆yj

2

solves (15) if the angle of (D −CT B−1C)∆yj
2 and g2 −CT B−1g1 is close

to 1. This rule is implemented as:

1− cos
(
(D − CT B−1C)∆yj

2, g2 − CT B−1g1

)
< εi, (18)

εi being the PCG tolerance parameter. This tolerance is dynamically
updated as

εi = 0.95εi−1, (19)

which guarantees better ∆y2 directions as we get closer to the solution. By
default PRBLOCK IP uses an initial tolerance of ε0 = 10−2 and ε0 = 10−3

for respectively linear and quadratic problems.

• The initial dimension of system (15) is l, the number of linking constraints.
Early detection of inactive linking constraints, initially suggested in [14],
may significantly reduce the number of PCG iterations, and was very effec-
tive in practice for multicommodity flows [7]. The inactivation procedure
of PRBLOCK IP is only performed when we are close to the optimal solu-
tion, i.e., when |p−d|/(1+ |p|) < 1, p and d being respectively the primal
and dual objective functions. The linking constraint i is considered inac-
tive if (i) its slack xk+1

i is far from bounds; (ii) its slack xk+1
i does not

intervene in the objective function; (iii) the upper bound of the slack uk+1
i

is far enough from 0 (to avoid the removal of active constraints); (iv) and
its Lagrange multiplier yk+1

i is close to 0. This is implemented as:

(i) 9/10uk+1
i > xk+1

i > 1/10uk+1
i

(ii) (ck+1
i = 0) ∧ (Qk+1ii

= 0)
(iii) uk+1

i > 1/10
(iv) |yk+1

i | < 1/100.

Note that, unlike general Cholesky solvers, the removal of mutual capacity
constraints does not imply any additional symbolic refactorization with
PCG.

• As we approach an optimal point, system (15) becomes more ill-conditioned,
and PCG may provide inaccurate solutions. When this happens, PRBLOCK IP
switches to the solution of normal equations (14) by a Cholesky factoriza-
tion. This is done when we are close enough to the optimal point, and the
duality gap increases from one iteration to the next. If we define the gap
at iteration i as gapi = |pi−di|/(1+ |pi|), pi and di being respectively the

9

Table 1: Percentage of overall execution time spent in computation of ∆y (in-
cluding Cholesky and PCG), and in Cholesky-related procedures

Instance k mi ni % ∆y % Cholesky
PDS10 11 1398 4792 84.3 74.3
PDS20 11 2856 10858 89.4 79.6
Mnetgen 64-64 64 63 511 65.3 41.3
Mnetgen 128-64 64 127 1171 83.2 59.6

primal and dual objective functions, the code switches to the Cholesky
factorization of normal equations if

(gapi < 1/2) and (gapi > 1.05gapi−1). (20)

6 Computational evaluation

We tested the specialized algorithm with four classes of primal block-angular
problems: multicommodity problems, nonoriented multicommodity problems,
minimum-distance controlled tabular adjustment, and the minimum congestion
problem. It is worth to note that for some of the above problems there are more
efficient algorithms than our specialized approach. Our purpose is to compare
the specialized algorithm with a general interior-point one. Minimum-distance
controlled tabular adjustment instances are quadratic problems; the remain-
ing instances are linear ones. They are presented in the following subsections.
For each instance we provide results with PRBLOCK IP solving the normal
equations (14) with both the specialized procedure and through a Cholesky
factorization. For the linear instances we also provide results with LINPROG,
the linear optimization solver of MATLAB, which is based on LIPSOL [25] and
computes Mehrotra’s predictor-corrector directions through Cholesky factoriza-
tions. All runs were carried out on a HP-LC2000 server with Intel Xeon 933
MHz processors and 2 Gb of main memory.

Being an interpreted language, the overall execution time required by MAT-
LAB is meaningless. We only consider the execution time spent in the external
precompiled Ng-Peyton Cholesky routines (including minimum degree order-
ing, symbolic factorization, numerical factorization, and numerical solution).
For the runs with LINPROG we provide the overall execution time, since it
uses internal Cholesky MATLAB routines. We observed that, when solving the
normal equations by a Cholesky factorization, the relative difference between
the time spent in Cholesky factorizations and the overall execution time is less
than a 1% for large instances. However, when solving (14) by the specialized
procedure, the execution time was many times (e.g., 60 times for large instances)
the time spent in all Cholesky factorizations (including those required for the
PCG). This behaviour is due to the interpreted nature of the MATLAB lan-
guage. In a C/C++ implementation, the time spent in the solution of (15) by
PCG (excluding Cholesky factorizations) is a small fraction of the overall time,
and much less than the time required by Cholesky factorizations. For instance,

10

Table 2: Dimensions of multicommodity instances
Oriented Nonoriented

Instance k m′ n′ m n m n

PDS1 11 125 372 1450 4167 1462 8271
PDS5 11 685 2325 7938 25978 8088 51703
PDS10 11 1398 4792 16192 53526 16547 106593
PDS15 11 2124 7756 24634 86586 25176 172444

M32-32 32 31 486 1353 15913 1353 31465
M64-64 64 63 511 4403 33075 4419 65795
M128-64 64 127 1171 8988 75804 9024 150784
M128-128 128 127 1204 17188 155044 17215 309183

Table 1 reports results obtained with the C implementation of the specialized
procedure for multicommodity flows of [7]. For four of the instances of next
subsections, the table provides the dimensions (number of blocks k, and number
of rows mi and columns ni of all blocks), the percentage of overall execution
time spent in the computation of ∆y (which includes both PCG and Cholesky),
and the percentage of overall execution time spent only in Cholesky-related pro-
cedures. These two figures would get closer for larger instances. They would
also approach 100%. Therefore, the time spent in Cholesky procedures can be
used to forecast the overall execution time of the specialized algorithm. From
Table 1 we see that, even for the smallest instances, the overall execution time
will be, as much, about twice the Cholesky time.

6.1 Oriented and nonoriented multicommodity problems

Oriented multicommodity flow problems match the general primal block-angular
formulation (1) with Ni = N and Li = I for all i = 1, . . . , k. N ∈ IRm′×n′ is
a node-arc incidence matrix, of m′ + 1 nodes (one node is removed to guar-
antee full row-rank) and n′ arcs. Blocks are denoted as commodities in this
problem. Vectors bi, i = 1, . . . , k are the supply-demands at the nodes for each
commodity, and bk+1 is the mutual capacity of arcs. l, the number of linking
constraints, is n′. The code of [7] is a particular and efficient C implementation
of PRBLOCK IP for multicommodity flows.

We considered a subset of the PDS [6] and Mnetgen [17] instances. These are
standard multicommodity problems, widely used in the literature. They can be
retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.
Table 2 shows the dimensions of these instances: number of blocks (k), con-
straints and variables for each block (m′ and n′), and overall number of con-
straints and variables of the linear problem (m and n, oriented columns).
A preprocessing removed inactive linking constraints; therefore, l < n′, and
m < km′ + n′ and n < (k + 1)n′ in Table 2.

Nonoriented multicommodity problems allow flow in both directions on each
arc. They are also primal block-angular problems with Ni = [N − N] and

11

Table 3: Results for oriented multicommodity instances
PRBLOCK IP LINPROG

PCG+Chol Chol
Instance Iter CPU Iter CPU Iter CPU
PDS1 34 2.5 34 0.6 23 4.4
PDS5 51 22 48 64 40 264
PDS10 68 75 62 790 46 2021
PDS15 76 188 81 4624 54 6365

M32-32 44 7.6 29 44 21 184
M64-64 54 22 39 1744 27 2762
M128-64 58 55 47 31397 31 38869
M128-128 74 111 60 247044 36 188640

Table 4: Results for nonoriented multicommodity instances
PRBLOCK IP LINPROG

PCG+Chol Chol
Instance Iter CPU Iter CPU Iter CPU
PDS1 31 1.2 26 0.5 24 9
PDS5 47 17 39 66 43 309
PDS10 56 92 47 651 60 2852
PDS15 83 1034 53 2813 61 6994

M32-32 64 39 31 49 23 189
M64-64 62 33 40 1914 27 1643
M128-64 71 105 49 31294 32 35704
M128-128 74 130 61 227612 39 168633

Li = [I − I] for all i = 1, . . . , k. As before, N ∈ IRm′×n′ is a node-arc
incidence matrix, of m′+1 nodes and n′ arcs. A description of other specialized
algorithms for this problem can be found in [11]. Since, as far as we know, there
is no standard set of nonoriented multicommodity problems, we generated them
from the previous multicommodity instances. The overall number of constraints
and variables is reported in last two columns of Table 2.

Tables 3 and 4 show the results obtained with PRBLOCK IP and LIN-
PROG (a.k.a. LIPSOL) for respectively oriented and nonoriented multicom-
modity problems. The columns show the number of interior-point iterations
(”Iter”) and CPU time (”CPU”) for PRBLOCK IP with the specialized pro-
cedure (”PCG+Chol”) and with the standard one based on the Cholesky fac-
torization of normal equations (”Chol”), and for LINPROG. For LINPROG we
provide the overall execution time; for options ”PCG+Chol” and ”Chol” we pro-
vide the CPU time spent in Cholesky routines. Although in a efficient C/C++
implementation the overall execution time of option ”PCG+Chol” might be

12

about twice the CPU time reported in these tables (mainly for the Mnetgen
instances, as discussed above), the specialized procedure is much more efficient
than the standard one. Note that either for oriented or nonoriented multicom-
modity problems, the structure of matrix D is diagonal, and thus computations
with the preconditioner are inexpensive.

6.2 Minimum-distance controlled tabular adjustment problems

Minimum-distance controlled tabular adjustment (CTA for short) is a recent
technique for the protection of statistical tabular data [9, 10]. This is a main
concern of National Statistical Institutes, which must guarantee that individual
information can not be disclosed from released data. Tabular data is obtained
by crossing two or more variables of a file of microdata, e.g., city, age, and
profession. The Cartesian product of values for these variables provide a set
of cells. For each cell the table reports the number of individuals (frequency
tables), or information about another variable, e.g., average salary (magnitude
tables).

Cell values a = (ai), i = 1, . . . , n, n being the number of cells, must verify
some linear relations Aa = b. For instance, for a three-dimensional table of
r + 1, c + 1 and k + 1 categories for, respectively, the first, second and third
variable (last category corresponds to marginal values), the linear relations are

r∑

i1=1

ai1i2i3 = a(r+1)i2i3 i2 = 1 . . . c, i3 = 1 . . . k (21)

c∑

i2=1

ai1i2i3 = ai1(c+1)i3 i1 = 1 . . . r, i3 = 1 . . . k (22)

k∑

i3=1

ai1i2i3 = ai1i2(k+1) i1 = 1 . . . r, i2 = 1 . . . c. (23)

Given a subset of cells P ⊆ {1, . . . , n} to be protected, and lower and upper
protection levels lpli and upli for i ∈ P, the purpose of CTA is to find the closest
safe values x = (xi), i = 1, . . . , n, according to some distance L, that makes the
released table safe. This involves the solution of the following optimization
problem

min
x

||x− a||L
subject to Ax = b

ai ≤ xi ≤ ai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P,

(24)

ai and ai being lower and upper bounds for each cell i = 1, . . . , n, which are
considered known by any data-attacker. In practice L1 or L2 are used, respec-
tively obtaining either a linear or a quadratic optimization problem. The results
reported in this subsection correspond to L2.

Exploiting the structure of matrix A, (24) can be formulated as a primal
block-angular problem (1). The simplest case correspond to the linear rela-
tions (21–23) of a three-dimensional table. Appropriately reordering (21–22)

13

Table 5: Dimensions of minimum-distance tabular adjustment instances
Instance k m′ n′ m n

CTA-15-15-10 10 29 225 515 2475
CTA-15-15-25 25 29 225 950 5850
CTA-25-25-25 25 49 625 1850 16250
CTA-50-25-25 25 74 1250 3100 32500
CTA-50-50-50 50 99 2500 7450 127500

Table 6: Results for minimum-distance tabular adjustment instances
PRBLOCK IP

PCG+Chol Chol
Instance Iter CPU Iter CPU
CTA-15-15-10 7 0.2 7 0.2
CTA-15-15-25 7 0.3 7 4
CTA-25-25-25 8 0.5 8 42
CTA-50-25-25 7 0.8 8 77
CTA-50-50-50 7 2.7 7 2595

we obtain k blocks of m′ = c + r constraints (indeed one is redundant and can
be removed) and n′ = cr variables. All blocks have the same structure; thus
Ni = N ∈ IRm′×n′ , i = 1, . . . , k, in (1). Block i is related to the cells of category
i of third variable. Equations (23) are the l = cr linking constraints, and are
defined with Li = I, i = 1, . . . , k, in (1). More details can be found in [9].

We generated five three-dimensional CTA instances with a random genera-
tor of synthetic tables. It can be retrieved from http://www-eio.upc.es/-
~jcastro/CTA 3Dtables.html. Table 5 reports the dimensions of each in-
stance, which are denoted as CTA-c-r-k. The meaning of the columns is the
same that in Table 2. Table 6 shows the results obtained only with PRBLOCK IP,
since LINPROG can not deal with quadratic problems. The meaning of the
columns is the same that in Tables 3 and 4. Clearly, for CTA problems, ex-
ploiting the problem structure through our procedure is extremely more efficient
than solving the normal equations by Cholesky factorizations. It is worth to
note that general interior-point solvers have shown to be more efficient than
simplex implementations for both linear and quadratic variants of CTA [10].

6.3 Minimum congestion problems

The minimum congestion problem is equivalent to the maximum concurrent flow
one. In the literature both problems are usually seen as one, and denoted as the
maximum concurrent flow problem [21, 3]. These problems arise in practical
applications of telecommunications networks. The maximum concurrent flow
problem is defined on, usually, infeasible nonoriented multicommodity networks
of k commodities, m′ + 1 nodes, and n′ arcs, i.e., total flow to be sent from
sources to destinations exceeds the arc capacities. The purpose of the problem

14

is to determine the maximum concurrent flow (or throughput) that can be
transported. On the other hand the minimum congestion problem finds the
minimum increment in arc capacities that makes the problem feasible, i.e., all
multicommodity flows can be sent from origins to destinations. The minimum
congestion problem can be formulated as

min max{y1, . . . , yn′}
subject to Nxi+ −Nxi− = bi i = 1, . . . , k

k∑

i=1

(xi+

j + xi−
j) ≤ yjuj j = 1, . . . , n′

xi+ , xi− ≥ 0 i = 1, . . . , k
yj ≥ 0 j = 1, . . . , n′,

(25)

N ∈ IRm′×n′ being the network matrix, xi+ ∈ IRn′ and xi− ∈ IRn′ the nonori-
ented flows of commodity i for respectively the forward and backward directions,
u ∈ IRn′ the arc capacities (no individual commodity capacities are considered),
bi ∈ IRm′

the supply-demands for commodity i, and yj the fraction of the ca-
pacity of arc j that has to be increased.

Considering a new variable z ∈ IR, (25) can be written as the following
linear problem

min z

subject to Nxi+ −Nxi− = bi i = 1, . . . , k
k∑

i=1

(xi+

j + xi−
j)− yjuj ≤ 0 j = 1, . . . , n′

yj − z ≤ 0 j = 1, . . . , n′

xi+ , xi− ≥ 0 i = 1, . . . , k
yj ≥ 0 j = 1, . . . , n′.

(26)

(25) is a primal block-angular problem. Its constraints matrix structure, which
matches (29), is

x1+
x1− x2+

x2− . . . xk+
xk− z y



N −N
N −N

. . .
N −N

I I I I . . . I I −U I
−e I I




,
(27)

e ∈ IRn′ being a vector of 1’s. Formulation (26) has a dense column in the
second group of linking constraints, due to the e vector in (29). Therefore,
matrix D in (14) will show a dense submatrix of n′×n′ nonzero elements. Even
for h = 0, the preconditioner can be expected to be computationally expensive.

A second more efficient formulation is obtained by considering zj , j = 1, . . . , n′

15

Table 7: Dimensions of minimum congestion instances, formulation (26)

Instance k
k∑

i=1

mi

k∑

i=1

ni m n

M32-32 34 992 31591 1964 32563
M64-64 66 4032 65920 5054 66942
M128-64 66 8128 151060 10470 153402
M128-128 130 16256 309429 18664 311837

Table 8: Dimensions of minimum congestion instances, formulation (28)

Instance k
k∑

i=1

mi

k∑

i=1

ni m n

M32-32 34 992 32076 2449 33533
M64-64 66 4032 66430 5564 67962
M128-64 66 8128 152230 11640 155742
M128-128 130 16256 310632 19867 314243

for each arc, and imposing n′ − 1 constraints zj = zj+1. This second model is

min z1

subject to Nxi+ −Nxi− = bi i = 1, . . . , k
k∑

i=1

(xi+

j + xi−
j)− yjuj ≤ 0 j = 1, . . . , n′

yj − zj ≤ 0 j = 1, . . . , n′

zj − zj+1 = 0 j = 1, . . . , n′ − 1
xi+ , xi− ≥ 0 i = 1, . . . , k
yj ≥ 0 j = 1, . . . , n′.

(28)

The constraints matrix structure of (28) is

x1+
x1− x2+

x2− . . . xk+
xk− z y



N −N
N −N

. . .
N −N

I I I I . . . I I −U I
−I I I
T I




,
(29)

T ∈ IR(n′−1)×n′ being a banded matrix, with a main diagonal of 1’s, and a
diagonal above the main diagonal of −1’s. Although the dimension of linking
constraints increases by n′ − 1 compared to previous formulation, the fill-in of
D is significantly reduced, improving the performance of the overall procedure.

16

Table 9: Results for minimum congestion instances, formulation (26)
PRBLOCK IP LINPROG

PCG+Chol Chol
Instance Iter CPU Iter CPU Iter CPU
M32-32 24 (2) 29 22 194 45 279
M64-64 25 (0) 25 21 1682 16 1250
M128-64 27 (8) 8549 23 27847 20 19779
M128-128 31 (11) 48429 24 116115 (1) —
(1) Not enough memory

Table 10: Results for minimum congestion instances, formulation (28)
PRBLOCK IP LINPROG

PCG+Chol Chol
Instance Iter CPU Iter CPU Iter CPU
M32-32 27 (2) 7 24 57 32 302
M64-64 28 (5) 67 24 358 23 703
M128-64 30 (7) 3481 25 14043 39 16016
M128-128 34 (12) 10541 26 24804 (1) —
(1) Problem did not converge

We generated minimum congestion instances from the Mnetgen ones of Sub-
section 6.1, increasing the supplies and demands by a factor of two. Tables 7
and 8 show the dimensions of these instances, for each formulation. Columns∑k

i=1 mi and
∑k

i=1 ni show the number of constraints and variables of the diag-
onal blocks part. The remaining columns have the same meaning as in previous
tables. Tables 9 and 10 provide the computational results. The meaning of the
columns is the same as in previous tables. Numbers in brackets for the first col-
umn ”Iter” mean the number of interior-point iterations with normal equations
solved by Cholesky factorizations (i.e., the rule (20) was satisfied). It is clear
that the second formulation is much more efficient than the first one. We also
see that the CPU time of the specialized algorithm seems to be much higher
than for previous instances. However, this is due to the significant number of
iterations performed with Cholesky factorizations of normal equations. From
columns ”Iter” and ”CPU” of option ”Chol”, we can estimate the time per
interior-point iteration using a direct solution of normal equations. Using this
value and the numbers in brackets, we conclude that the specialized procedure
was very efficient for the first interior-point iterations.

7 Conclusions

From the computational results of this work it can be concluded that the spe-
cialized interior-point algorithm initially developed for multicommodity flows is
a very efficient tool for the solution of general primal block-angular problems.

17

Although the behaviour of the preconditioner is problem dependent, the spe-
cialized algorithm was more efficient than the Cholesky factorization of normal
equations for the four classes of instances tested. Several tasks are still to be
done. The most significant are: the development of an efficient C/C++ re-
placement to the current MATLAB implementation; improving the efficiency
of PCG by adaptive selection of h, the number of terms in the preconditioner;
adaptive selection of either Newton or higher-order directions, according to the
quality of the preconditioner at each interior-point iteration; specialization of
the procedure for other classes of primal block-angular problems; and the in-
clusion of the procedure in a more general framework for structured problems
through interior-point solvers.

References

[1] E. D. Andersen, J. Gondzio, C. Mészáros and X. Xu, Implementation of
interior point methods for large scale linear programming, in T. Terlaky
(ed.), Interior Point Methods in Mathematical Programming, Kluwer: Dor-
drecht, pp. 189–252, 1996.

[2] L. Bergamaschi, J. Gondzio and G. Zilli, Preconditioning indefinite systems
in interior point methods for optimization, Computational Optimization
and Applications, 28, pp. 149–171, 2004.

[3] D. Bienstock and O. Raskina, Asymptotic analysis of the flow deviation
method for the maximum concurrent flow problem, Mathematical Program-
ming, 91, pp. 479–492, 2002.

[4] R. E. Bixby, Solving real-world linear programs: a decade and more of
progress, Operations Research, 50, pp. 3–15, 2002.

[5] R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling, MIP:
Theory and practice—Closing the gap, in M.J.D. Powell and S. Scholtes
(eds.), System Modelling and Optimization. Methods, Theory and Applica-
tions, Kluwer: Boston, pp. 19–49, 2000.

[6] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann,
An empirical evaluation of the KORBX algorithms for military airlift ap-
plications, Operations Research, 38, pp. 240–248, 1990.

[7] J. Castro, A specialized interior-point algorithm for multicommodity net-
work flows, SIAM Journal on Optimization, 10, pp. 852–877, 2000.

[8] J. Castro, Solving difficult multicommodity problems through a specialized
interior-point algorithm, Annals of Operations Research, 124, pp. 35–48,
2003.

[9] J. Castro, Quadratic interior-point methods in statistical disclosure con-
trol, Computational Management Science, 2, pp. 107–121, 2005.

18

[10] J. Castro, Minimum-distance controlled perturbation methods for large-
scale tabular data protection, European Journal of Operational Research,
in press, 2006.

[11] P. Chardaire and A. Lisser, Simplex and interior point specialized algo-
rithms for solving nonoriented multicommodity flow problems, Operations
Research, 50, pp. 260–276, 2002.

[12] P. Chin, Iterative algorithm for solving linear programming from engineer-
ing applications, PhD Thesis, University of Waterloo, 1995.

[13] J. Gondzio and A. Grothey, Exploiting structure in parallel implementation
of interior point methods for optimization, School of Mathematics, The
University of Edinburgh, Technical Report MS-04-004, 2005.

[14] J. Gondzio and M. Makowski, Solving a class of LP problems with a
primal-dual logarithmic barrier method, European Journal of Operational
Research, 80, pp. 184–192, 1995.

[15] J. Gondzio and R. Sarkissian, Parallel Interior Point Solver for Structured
Linear Programs, Mathematical Programming, 96, pp. 561–584, 2003.

[16] J. Mamer and R. McBride, A decomposition bases pricing procedure for
large scale linear programs: an application to the linear multicommodity
flow problem, Management Science 46, pp. 693–709, 2000.

[17] A. Ali and J.L. Kennington, Mnetgen program documentation, Techni-
cal Report 77003, Department of Industrial Engineering and Operations
Research, Southern Methodist University, Dallas, TX, 1977.

[18] E. Ng and B.W. Peyton, Block sparse Cholesky algorithms on ad-
vanced uniprocessor computers SIAM Journal on Scientific Computing,
14, pp. 1034–1056, 1993.

[19] A.R.L. Oliveira and D.C. Sorensen, A new class of preconditioners for large-
scale linear systems from interior point methods for linear programming,
Linear Algebra and its Applications, 394, pp. 1–24, 2005.

[20] M.G.C. Resende and G. Veiga, An implementation of the dual affine scal-
ing algorithm for minimum-cost flow on bipartite uncapacitated networks,
SIAM Journal on Optimization, 3, pp. 516–537, 1993.

[21] F. Shahrokhi and D.W. Matula, The maximum concurrent flow problem,
Journal of the ACM, 37, pp. 318–334, 1990.

[22] R.J. Vanderbei, Linear Programming: Foundations and Extensions,
Kluwer: Boston, 1996.

[23] W. Wang and D.P. O’Leary, Adaptive use of iterative methods in predictor-
corrector interior point methods for linear programming, Numerical Algo-
rithms, 25, pp. 387–406, 2000.

19

[24] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM: Philadelphia,
1996.

[25] Y. Zhang, Solving large-scale linear programs by interior-point methods
under the MATLAB environment, Optimization Methods and Software,
10, pp. 1–31, 1998.

20

