
Block coordinate descent decomposition for statistical
data protection using controlled tabular adjustment

José A. González, Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
c. Jordi Girona 1–3, 08034 Barcelona, Catalonia

jose.a.gonzalez@upc.edu, jordi.castro@upc.edu

Research Report UPC-DEIO DR 2009-10
October 2009

Report available from http://www-eio.upc.es/~jcastro

Block coordinate descent decomposition for statistical

data protection using controlled tabular adjustment

José A. González, Jordi Castro∗

Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya

c. Jordi Girona 1–3, 08034 Barcelona, Catalonia, Spain

jose.a.gonzalez@upc.edu, jordi.castro@upc.edu

Abstract

Tabular data is routinely released by national statistical agencies (NSA) to
disseminate aggregated information from some particular microdata. Prior to
publication, these tables have to be treated to preserve information without dis-
closing confidential details from specific respondents. This statistical disclosure
control problem is of main interest for any NSA. Most protection techniques
rely on the formulation of a large mathematical programming problem, whose
solution is computationally expensive even for tables of moderate size. One
of these techniques is controlled tabular adjustment (CTA). Although CTA is
more efficient than other protection methods, the resulting mixed integer lin-
ear problems (MILP) are still challenging. In this work an approach based on
block coordinate descent decomposition is designed and applied to large CTA
instances. This approach is compared with CPLEX, a state-of-the-art MILP
solver. Our results, from both synthetic and real tables with up to 200000 cells,
show that the new procedure has a better practical behaviour than a general
solver, providing better solutions within a specified time limit (which is required
by NSAs in real-world).

Keywords: statistical confidentiality; statistical disclosure control; controlled tabu-
lar adjustment; mixed integer linear programming; block coordinate descent; decom-
position techniques.

1 Introduction

National statistical agencies (NSAs) routinely disseminate both disaggregated (i.e.,
microdata or microfiles) and aggregated (i.e., tabular data) information. Tables are
generated by crossing two or more categorical variables of a particular microfile (i.e.,
a census), which results in sets of tables, usually with a large number of cells. NSAs

∗Corresponding author

1

r1 r2

...
51–99 ... 38Me 2Me ...

100–199 ... 70Me 80Me ...
...

(a)

r1 r2

...
51–99 ... 20 1 or 2 ...

100–199 ... 30 35 ...
...

(b)

Figure 1: Example of disclosure in tabular data. (a) Net profit per number of employees
and region. (b) Number of companies per number of employees and region. If there is only
one company with 51-99 employees in region r2, then any attacker knows the net profit of
this company. For two companies, any of them can deduce the other’s net profit, becoming

an internal attacker.

are obliged by law to guarantee that no particular information from any respondent
can be disclosed from the released information. The goal of the statistical disclosure
control field is to protect such sensitive information [20]. In this work we focus on
tabular data. Some of the state-of-the-art research in this field can be found in the
recent monographs [16, 17, 19, 31].

The motivation for this work originated in a project (in collaboration with the
NSAs of Germany and The Netherlands) funded by Eurostat, the Statistical Office
of the European Communities. The goal of that project was the safe dissemination
of European business statistics by Eurostat, which required the protection of tabular
data by a technique named controlled tabular adjustment (CTA), to be discussed
below. It was observed that, in spite of CTA being more efficient than other tabular
protection methods, the solution time required by a general solver to obtain a good
or close-to-optimal solution could be large. In practice, tabular data protection is
the last stage of the data cycle, and, in an attempt to meet publication deadlines,
NSAs require methods that find fast solutions to protect large tables [12]. This work
presents a procedure based on block coordinate descent (BCD) [4, 10] for the solution
of CTA formulated as a mixed integer linear problem (MILP). As it will be shown,
given a practical time limit (i.e., from some minutes to one hour), for some kinds of
tables—namely, hierarchical tables, which are of great practical interest for NSAs—,
BCD consistently provided better solutions than a general state-of-the-art solver, such
as CPLEX. For general tables, although the benefits of BCD were not so significant,
it was also the most efficient approach for the largest instances. Note that approaches
similar to BCD, namely branch-and-fix and fix-and-relax, have been used in other
large MILPs arising in stochastic programming [1, 15].

Although cell tables show aggregated data for several respondents, there is a risk
of disclosing individual information. The example of Fig. 1, from [5], shows a simple
case. The left table (a) reports the overall net profit of companies by number of
employees (row variable) and region (column variable), while table (b) provides the
number of companies. If there were only one company with 51–99 employees in
region r2, then any external attacker would know the net profit of this company. For

2

Table 1: Result for table “IndustryCode × Size → Var2”, from microdata file of τ -Argus
distribution.

Method #supp. #val. supp. CPU sec†

Hypercube 637 15494253 9
HiTas 528 9016562 15
Shortest-paths 538 8795130 4
Cutting planes 557 7830730 120∗

Cutting planes 483 7216286 622∗
† Results on a PC with one AMD Athlon 4400+ 64 bits dual core
∗ Time limit

two companies, either one of them could disclose the other’s net profit, becoming
an internal attacker. These cells which require protection are named sensitive cells.
Rules for detecting sensitive cells are beyond the scope of this work (see, e.g., [18] for
a recent discussion).

Several techniques are used to control the disclosure of sensitive cells. The most
widely used nonperturbative method (i.e., one which does not change cell values) is
the cell suppression problem (CSP). The controlled rounding problem (CRP), and the
recent controlled tabular adjustment (CTA) are the two more relevant perturbative
techniques. An excellent recent survey, mainly focused on CSP and CRP, can be
found in [30].

CSP protects the tables by removing some cell contents. It results in a difficult
combinatorial optimization problem which finds the optimal pattern (according to
some information loss criteria) of additional secondary cells to be removed for pro-
tecting sensitive cells (which are removed as well). This problem, initially formulated
in [25], has proven to be very difficult, and both exact [22] and heuristic [6, 11]
approaches have been developed. The main inconvenience of CSP for NSAs is the
impractical execution time required for real and general complex tables. To have a
clearer picture, Table 1 shows some results for a toy table obtained with τ -Argus,
the state-of-the-art package used by NSAs for the protection of tabular data [24].
This table is obtained from the microdata file accompanying the τ -Argus distribu-
tion, crossing categorical variables “industry code” and “size”, and using “var2” as
explanatory variable. The resulting CSP instance is solved with the four algorithms
implemented in τ -Argus: two heuristics which guarantee neither the optimality nor
the feasibility— i.e., cells may remain unprotected—(rows “Hypercube” [23] and “Hi-
Tas” [14] of Table 1); the feasible heuristic of [6], based on successive shortest-paths
(row “Shortest-paths”); and the exact procedure of [22] relying on Benders cutting
planes [3] (rows “Cutting planes”), using CPLEX for the subproblems. For this exact
approach time limits of 2 and 10 minutes were set. Columns “#supp.” and “#val.
supp.” provide information about the solution reported (number of suppressions,
and total value suppressed, respectively). The total value suppressed is the objective
function to be minimized. Column “CPU sec” provides the CPU time. The difficulty

3

Table 2: Sizes of MILPs associated to CSP, CRP and CTA.

Problem constraints continuous binary
CSP/CRP 2(m + 2n)s 2ns n

CTA m + 4s 2n s

of this small instance for the exact procedure can be seen. The fast execution of the
shortest-paths based heuristic provides an acceptable solution for NSAs, though not
optimal; unfortunately this heuristic is not valid for any kind of table [6].

On the other hand, CRP rounds cell values to the closest multiple of a fixed
integer rounding base. Table rounding techniques, initially introduced in [2], have
been proposed, e.g., in [26, 29]. For many NSAs, the main inconvenience of CRP
compared to CTA (discussed below), is that total or subtotal cells, usually associated
to national or regional level information, have to be modified to preserve the additivity
(thus the feasibility) of the table.

CTA was introduced as an alternative for overcoming some of the drawbacks of
previous approaches [5, 13]. The aim of CTA is to find the closest safe and feasible
table to the original one, i.e., the minimum distance table satisfying either some upper
or lower protection levels for each sensitive cell. It results in a MILP, but much more
smaller than those of previous approaches. Table 2 shows the dimensions (constraints,
continuous and binary variables) of the CSP, CRP and CTA MILPs, where n is the
number of table cells (s being sensitive) and m the number of linear table relations.
For instance, note that for a medium-sized table of 4000 cells, 1000 sensitive cells, and
2500 constraints, the size of the CSP/CRP problems is 21 million constraints, and
8 million continuous and 4000 binary variables, respectively. Those problems cannot
be dealt with by standard solvers. For this same example, CTA formulates a MILP
of 6500 constraints, 8000 continuous and 1000 binary variables, within the limits
of state-of-the-art branch-and-cut codes. In spite of the lesser dimension of CTA
problems, real-world instances continue to be challenging and may require several
hours of execution for an optimal solution (or quasi optimal, e.g., with optimality
gaps below 5%). In practice, however, NSAs do not require such optimal solutions,
and good, feasible approximate solutions are enough. Indeed, the “true” unknown
values of some of the parameters of the CTA model are adjusted by NSAs, and
there is therefore no need for an optimal solution. BCD provided good approximate
solutions faster than exact procedures for CTA, thus being a promising approach in
real applications.

In practice, BCD behaves best when the MILP variables may be clustered, and
clusters are loosely coupled. For this reason in this work we mainly focus on hierarchi-
cal tables. Hierarchical tables are obtained by crossing groups of categorical variables,
and some of them have a hierarchical structure, i.e., some tables are subtables of other
tables. Hierarchical tables are of very practical interest for NSAs. The simplest hi-
erarchical table is obtained by crossing two categorical variables, one of them being
hierarchical; this particular case is known as 1H2D tables. Figure 2 illustrates a small
1H2D table: rows R1 and R3 (related, e.g., to state level information) are decomposed

4

C1 C2 C3

R1

R2

R3

C1 C2 C3

5

8

7

11 10

3

10 4

14

7

21

12

16 14

11

12 20

8

40 39 42

20 24 28

20

38

40

24 28

38

39 42

40

R13

R12

R33

R32

R31

R11

Figure 2: Example of 1H2D table: the row factor in the left table splits into one subtable
per row (only two are shown). Rows may be different at each subtable, but columns are the

same as in the parent table.

into two subtables (whose rows are, for example, related to region level information);
rows of these two subtables could be subsequently decomposed (e.g., for city level
information). 1H2D tables can be viewed as a tree of subtables. Note, however, that
BCD is not tailored to hierarchical tables. Indeed, in this work it was also applied to
general complex tables, though the most successful results were obtained for hierar-
chical tables. This is partly explained by the inherent block structure of hierarchical
tables. Some attempts for extracting the block structure of general tables were made
[7], but in general, the resulting blocks were far too coupled for complex instances.

The structure of the paper is as follows. Section 2 outlines the general MILP
formulation of CTA. Section 3 introduces the BCD procedure for CTA. Section 4
provides some implementation details and reports the computational results using a
set of synthetic and real world tables.

2 Formulation of CTA as a MILP

Any instance of CTA, either with one table or a number of tables, can be represented
by the following elements:

• An array of cells ai, i = 1, . . . , n, satisfying a set of m linear relations Aa = b,
a ∈ R

n being the vector of ai’s, b ∈ R
m the right-hand-side term of the linear

relations (usually b = 0), and A ∈ R
m×n the cell relations matrix. Note that

rows of A are made of 1’s, 0’s and a single −1 (associated to the marginal or
total cell value).

• A vector w ∈ R
n of positive weights for the deviations of cell values, used in the

definition of the objective function.

• A lower and upper bound for each cell i = 1, . . . , n, respectively lxi
and uxi

,
which are considered to be known by any data attacker. If no previous knowledge
is assumed for cell i then lxi

= 0 (lxi
= −∞ if a ≥ 0 is not required) and

uxi
= +∞ can be used.

• A set P = {i1, i2, . . . , is} ⊆ {1, . . . , n} of indices of s sensitive or confidential
cells.

5

• A lower and upper protection level for each confidential cell i ∈ P, respectively
lpli and upli, such that the released values x ∈ R

n must satisfy either xi ≥
ai + upli or xi ≤ ai − lpli.

CTA attempts to find the closest safe values x, according to some distance L, that
makes the released table safe. This involves the solution of the following optimization
problem:

min
x

||x − a||L

subject to Ax = b

lx ≤ x ≤ ux

xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P.

(1)

Problem (1) can also be formulated in terms of deviations from the current cell values.
Defining

z = x − a, lz = lx − a, uz = ux − a, (2)

and using the L1 distance weighted by w, (1) can be recast as:

min
z

n
∑

i=1

wi|zi|

subject to Az = 0
lz ≤ z ≤ uz

zi ≤ −lpli or zi ≥ upli i ∈ P,

(3)

z ∈ R
n being the vector of deviations. Since w > 0, introducing variables z+, z− ∈ R

n

so that z = z+−z−, the absolute values may be written as |z| = z++z−. Considering
a vector of binary variables y ∈ {0, 1}s for the “or” constraints, problem (3) is finally
written as a MILP:

min
z+,z−,y

n
∑

i=1

wi(z
+

i + z−i) (4a)

subject to A(z+ − z−) = 0 (4b)

0 ≤ z+ ≤ uz, 0 ≤ z− ≤ −lz (4c)

y ∈ {0, 1}s (4d)

upli yi ≤ z+

i ≤ uzi
yi

lpli(1 − yi) ≤ z−i ≤ −lzi(1 − yi)

}

i ∈ P (4e)

When yi = 1 the constraints mean upli ≤ z+

i ≤ uzi
and z−i = 0, thus the protection

sense is “upper”; when yi = 0 we get z+

i = 0 and lpli ≤ z−i ≤ −lzi
, thus the protection

sense is “lower”.

3 The block coordinate descent approach for CTA

Block coordinate descent (BCD) solves a sequence of subproblems, each of them opti-
mizing the objective function over a subset of variables while the remaining variables

6

are kept fixed. This is iteratively repeated until no improvement in the objective func-
tion is achieved, e.g., the difference between some (e.g., two) consecutive objective
functions is less than a specified optimality tolerance. Convergence of this algorithm
is only guaranteed for convex problems where each optimization subproblem has a
unique optimizer [4, Prop. 2.7.1] (note that strict convexity satisfies this require-
ment). Although MILP formulations do not guarantee convergence, BCD usually
behaves properly in practical, complex applications [10, 28].

For the particular case of CTA, unless the number of sensitive cells s is small, in
general optimal solutions require computationally prohibitive executions. BCD may
provide good approximate solutions by optimizing at each iteration the protection
sense (either “lower” or “upper”) of a subset of sensitive cells, and the deviations for
all the cells. The protection senses of the remaining sensitive cells are kept constant
to the optimal values of previous iterations. Partitioning the binary variables y of
(4a)–(4e) in k blocks, and denoting yj,i as the fixed values of block j at inner iteration
i, the algorithm is roughly as follows:

Step 0 Initialization. Set outer iteration counter: t = 0. Set initial values, hopefully
feasible, to y.

Step 1 t = t + 1. Set inner iteration counter i = 0. Partition y into k blocks:
y = {y1,i, . . . , yk,i}, not necessarily of the same size.

Step 1.1 i := i + 1. Solve (4a)–(4e) with respect to block yi,i, taking into
account that yj,i is fixed for j 6= i. Let yi,i+1 = (yi,i)∗ (the point at the
optimum). Let yj,i+1 = yj,i for j 6= i.

Step 1.2 If i < k go to Step 1.1.

Step 3 If solution at outer iteration t is better than for t − 1, then go to Step 1.
Otherwise stop, and return the current optimal solution.

At each major iteration a partitioning of variables y is needed, possibly different:
indeed different strategies can be considered between consecutive major iterations,
e.g., reversing the order of blocks, changing the blocks, etc. Note that the original
problem (4a)–(4e) is solved if only one block of variables is considered. Therefore,
although BCD is a heuristic approach, it is easily switched to an optimal approach
by setting k = 1 at Step 1 for some advanced t. The subproblems of Step 1.1 may be
solved by any method; we used the branch-and-cut solver of CPLEX.

Using a true partition of the sensitive cells means that each cell has just one chance
of being “upper” or “lower” protected at each major iteration. However, this is not
strictly needed, and in practice some sensitive cells could belong to more than one
block. In this case the decision variables associated to these cells would be determined
more than once for some t.

Several criteria can be used to decide how to divide the cells into the blocks. Two
strategies have been tested, which can be viewed as a framework whose implementa-
tion would admit many possibilities. The first strategy (named random-BCD) divides
P randomly into a number of blocks, keeping their sizes as similar as possible. The

7

0

0.1 0.2

0.1.1 0.1.2 0.2.1 0.2.2

Level 1

Level 2

Level 3

Figure 3: Example of the tree structure of a 1H2D table, variables being partitioned by
levels. Boxes refer to the set of sensitive variables in a subtable. Groups of boxes closed by
dashed or dotted lines form a block of variables to be optimized together in the first major

iteration.

partition is obtained by shuffling the variables such that different blocks are considered
at major iterations.

The second strategy (that will be referred to as tree-BCD) is tailored for 1H2D
hierarchical tables, exploiting the tree structure of these kinds of tables. In the first
major iteration, the sensitive cells are partitioned according to their level: the first
group is composed of all the variables of cells in the main table (level 1, or table 0,
as seen in Figure 3); then, the second group takes the variables in the next level (0.1,
0.2, and so on); the third group considers all the variables in level 3 (0.1.1, 0.1.2,
etc), and so forth until the deepest level. Once the first major iteration is finished,
the second one builds overlapping blocks of cells: the first group now includes level 1
and level 2; the second group, level 2 and level 3, etc. A third major iteration makes
groups from three consecutive levels. The last major iteration would include all the
levels in one group, as a pure CTA problem; if the time limit has not been reached
yet, it could benefit from a warm-start from previous solutions.

The previous breadth-first strategy was compared with a depth-first strategy, also
implemented. In the latter, blocks were formed with all the subtables from the root to
a leaf, taking only one subtable per level. Note that the derived blocks are significantly
overlapped. This strategy was not satisfactory, and their results will not be reported
in the computational results of Section 4.

One of the main drawbacks of BCD is that dual information for the whole (4a)–(4e)
problem is not obtained, and thus the stopping rule only focuses on improvements
between consecutive iterations. Note, however, that CTA is a minimum distance
problem (1) and that zero is a readily available lower bound. Another main drawback
of BCD is that it may not be able to obtain a feasible solution, unless an initial set
of feasible either “upper” or “lower” protection senses for y are set at Step 0. For
complex and large instances, looking for an initial feasible pattern of protection senses
for y is a hard problem (theoretically, as hard as finding the optimal solution). The
next subsection describes a heuristic strategy that in practice was very useful.

8

3.1 Finding a feasible starting point. The SAT method

There are several general approaches for finding an initial point in MILP problems
(e.g., variable and node selection, feasibility pump, etc.). Many of them can be found
in [9], and are implemented in state-of-the-art solvers. An obvious approach for
starting BCD with a feasible point would be to run any of those solvers until the first
feasible solution for constraints (4b)–(4e) is found. However, this approach would not
exploit the particular structure of CTA. To avoid this lack of exploitation, a particular
strategy was developed, which has proven to be successful in most instances. In short,
this approach consists of two phases: first, the set of constraints Az = 0 is scanned
to locate those involving sensitive cells, and each constraint of this subset is analyzed
to identify possible infeasible combinations for protection senses y of sensitive cells;
and second, all the forbidden combinations are compiled together, and an assignment
is sought so that none of these combinations is present. For example, assuming cell
values are nonnegative, if one of the original table relations is

12 + 34 + 45 + 127 = 2010,

where the subindex denotes the cell index, and the lower and upper protection levels
of sensitive cells 4 and 7 are respectively lpl4 = upl4 = 2 and lpl7 = upl7 = 4, then
y4 = y7 = 1 (i.e., “upper” protection sense for sensitive cells 4 and 7) is a forbidden
solution. Indeed, note that in the protected table this relation would then be

x2 + 5 + x5 + 16 = 20,

which is infeasible since (x2, x5) ≥ 0. The above two phases are outlined below.
The first phase exploits the particular structure of the table relations. Since a table

can be described through linear combinations of the cell contents, after rearranging
terms, constraint j of Az = 0 of (3) can be recast as

∑

i∈Ij

mijzi =
∑

i∈I′

j

−mijzi, (5)

where Ij ⊆ P and I ′j ⊆ P are respectively the sets of sensitive and nonsensitive cells in
constraint j, and coefficients mij are either 1 or −1. Next, lower bounds are computed
for each side of (5). The right-hand side is not depending on y, and therefore bounds
are

∑

i∈I′
j
:

mij>0

−mij(uxi
− ai) +

∑

i∈I′
j
:

mij<0

mij(ai − lxi
)

≤
∑

i∈I′

j

−mijzi ≤

∑

i∈I′
j
:

mij>0

mij(ai − lxi
) +

∑

i∈I′
j
:

mij<0

−mij(uxi
− ai).

(6)

9

For some assignment of y, the bounds of the left-hand side are
∑

i∈Ij :yi=0,

mij>0

−mij(ai − lxi
) +

∑

i∈Ij :yi=0,

mij<0

−mij lpli +
∑

i∈Ij :yi=1,

mij>0

mijupli +
∑

i∈Ij :yi=1,

mij<0

mij(uxi
− ai)

≤
∑

i∈Ij

mijzi ≤

∑

i∈Ij :yi=0,

mij>0

−mij lpli +
∑

i∈Ij :yi=0,

mij<0

−mij(ai − lxi
) +

∑

i∈Ij :yi=1,

mij>0

mij(uxi
− ai) +

∑

i∈Ij :yi=1,

mij<0

mijupli.

(7)
The procedure consists of searching for any y so that the bounds of both sides mis-
match (i.e., either the lower bound of the left-hand side is greater than the upper
bound of the right-hand side, or the upper bound of the left-hand side is less than the
lower bound of the right-hand side). At present, mismatching between (6) and (7) is
exhaustively searched. Although the matrix A is very sparse and there are usually few
sensitive variables at each constraint, the number of combinations to check is 2|Ij |, so
the search is prohibitive even for moderate |Ij |. Some procedure to drastically reduce
the effective number of combinations to be explored is a matter of further research. In
the current version a limit (e.g., 20) is set on the number of sensitive cells to consider,
although this means that some infeasible combinations are not detected.

In the second phase all the infeasible combinations for y detected in the first
phase are collected, and a solution that avoids all of them is looked for. Note that
avoiding all these infeasible combinations is a necessary but not a sufficient condition
for an initial feasible point. However, in practice, the resulting solution was generally
feasible. This problem is known as the Boolean Satisfiability (SAT), and it consists of
determining a satisfying variable assignment for a Boolean function, or determining
that no such assignment exists. The subject of practical SAT solvers has received
considerable research attention, with many algorithms proposed and implemented,
e.g. GRASP [27] and SATO [32]. The solver used in this work was MiniSAT [21], an
open-source implementation of SAT techniques.

In general, a solver operates on problems specified in conjunctive normal form.
This form consists of the logical “and” of one or more clauses (related to one infeasible
combination), which themselves consist of the logical “or” of one or more literals
(related to y variables). For instance, suppose that three combinations have been
detected as infeasible:

(1) y1 = 1, y2 = 0, y3 = 1, y4 = 1 ⇒ y1 ∧ ¬y2 ∧ y3 ∧ y4

(2) y3 = 1, y2 = 1, y4 = 1 ⇒ y3 ∧ y2 ∧ y4

(3) y5 = 1, y2 = 0, y1 = 1 ⇒ y5 ∧ ¬y2 ∧ y1.

None of these combinations is desired, so we seek for an assignment of y in such a way
that all of them are false. Equivalently, we can negate them to find an assignment
satisfying (as true) all clauses:

(¬y1 ∨ y2 ∨ ¬y3 ∨ ¬y4) ∧ (¬y3 ∨ ¬y2 ∨ ¬y4) ∧ (¬y5 ∨ y2 ∨ ¬y1).

10

This expression can be satisfied with (¬y1 ∧ ¬y3), or numerically y1 = 0 and y3 = 0.
This condition is sufficient for the SAT problem, so the other variables can take any
value.

Once a solution of the corresponding SAT problem is available, the problem (4a)-
(4e), with y fixed, can be checked to determine if there exists a feasible solution for
z+ and z− . Though the assignment obtained by y does not guarantee the feasibility
of the constraints without sensitive variables, it was usually found that SAT returned
a feasible point, so that BCD was ready to start. In those few cases where the SAT
assignment failed, other starting y values were found by a MILP solver, stopping at
the first feasible point. The unsuccessful SAT values of y were used as a warm-start
for the MILP solver.

4 Computational results

4.1 Implementation

The BCD approach (including the SAT heuristic for the binary initial point) was
implemented in C++. The code allows the user to switch between random-BCD,
tree-BCD (only breadth-first strategy, the most efficient option), and the solution of
CTA by branch-and-cut (BCD subproblems are solved with this same branch-and-
cut). The optimizer used was CPLEX version 11.

The BCD variants may be tuned with some parameters chosen by the user. The
most significant parameters are the total time limit (also applicable to the branch-
and-cut option); the time limit for each subproblem; the optimality gap for each
subproblem; and the number of blocks (subproblems) to be considered. Note that
a time limit is required by NSAs for data publication deadlines in the real-world.
The random-BCD variant is also affected by the randomness of the blocks selection.
After exploring the effect of these factors with several instances, it can be concluded
that BCD is barely sensitive both to random variability and the user adjustments of
parameters. No significant differences were found if the optimality gap of subproblems
is set to values between 1% to 10% (with lower gaps, subproblems may achieve better
solutions, but they take more time, so fewer subproblems can be solved due to the
overall time limit). For the total time limit, the larger it is, the better the solution
found; for the subproblem time limit, it should be large enough to improve the initial
provided solution, but not too large to avoid that most of the total time is spent on
too few subproblems.

With regard to the number of blocks in the random strategy, it was observed that
it is inadvisable to take a large number, since each subproblem would consider too few
sensitive variables at once, which is unlikely to improve the previous solution. In our
tests, values from 2 to 40 blocks were chosen, noticing that low numbers (say, below
10) are preferable, with no significant differences between them. However, in general
it is recommended to take more than three or four blocks —or even more, depending
on the table size— since lower numbers lead to large subproblems that could take as
much time as the original problem.

11

Table 3: Characteristics of tables

instance n |P| m N. coef.
table 11 20280 973 1560 41314
table 12 21476 2062 1684 43784
table 13 36806 3345 5832 76087
table 14 5388 224 1474 11346
table 15 26884 2443 3368 54681
table 16 52063 4732 6900 106282
table 17 16852 1531 2390 34551
table 18 8316 755 1339 17204
table 21 126362 12324 5501 255102
table 22 43365 4128 3577 88221
table 23 71640 10442 3430 144684
table 24 166248 12927 7966 335808
table 25 55620 4323 2877 112536
table 26 209456 16110 12164 422994
table 27 65241 4744 7240 131780
table 28 88164 6854 4321 178164
hier13x13x13d 2197 108 3549 11661
hier16 3564 224 5484 19996
ninenew 6546 858 7340 32920
nine12 10399 1178 11362 52624

4.2 Test instances

The BCD approach was tested using both 1H2D (hierarchical) and general complex ta-
bles. Real-world tables are provided by NSAs as a set of equations, without providing
information about the particular inherent structure (which is difficult to be extracted
by general procedures [7]). Hierarchical tables were thus obtained by a generator of
1H2D synthetic tables. Some of the parameters of the generator controlling the dimen-
sions of the table are: mean number of rows in a table; number of columns per sub-
table; depth of hierarchical tree; minimum and maximum number of rows with hier-
archies for each table; and probability for a cell to be marked as sensitive. The random
generator is available from http://www-eio.upc.es/~jcastro/generators_csp.html.
A set of 16 representative and large 1H2D tables was generated. Their main dimen-
sions are reported in Table 3. Columns n, |P|, m and “N. coef.” show, respectively,
the number of cells, sensitive cells, table linear relations (i.e., rows of matrix A), and
nonzero coefficient of matrix A. The last eight 1H2D tables are somewhat larger than
the first eight. The depth of the hierarchical tree of each instance is six, but tables
16 and 17 (five) and table 18 (four).

For the general tables, four of the most complex instances of CSPLIB (a library of
tabular data protection instances [22], available from http://webpages.ull.es/users/casc/#CSPlib:)
were considered. Their dimensions are also reported in Table 3.

12

http://www-eio.upc.es/~jcastro/generators_csp.html
http://webpages.ull.es/users/casc/#CSPlib:

4.3 Results

The two BCD variants, random-BCD and tree-BCD, and the state-of-the-art branch-
and-cut of CPLEX were compared using the previous set of instances. All the exe-
cutions were carried out on a Linux Dell PowerEdge 6950 server with four dual core
AMD Opteron 8222 3.0 GHZ processors (without exploitation of parallelism capa-
bilities) and 64 GB of RAM. For the 1H2D tables, the sequence of feasible solutions
obtained for each method was recorded, until the time limit was reached. Our goal
was to show that, in the case of early interruption of the optimization process, the
quality of the best solution reached using BCD was similar or better than the best
solution provided by CPLEX branch-and-cut. The evolution of the feasible solutions
obtained is shown in Figures 4 for the smaller instances, and 5 for the larger ones. In
those figures, lines “BCD” refer to random-BCD, “Tree” to tree-BCD and “B& Cut”
to branch-and-cut solutions.

For the instances of Figure 4, the total time limit was set to two hours. For the two
BCD variants, the subproblem time limit was one hour. In all cases but the smallest
table 14, branch-and-cut exhausted the time limit without reaching an optimality gap
of 5% (table 14 took less than 15 minutes to be solved, but it is significantly smaller
than the rest). In some cases the total running time was somewhat superior to two
hours (as in table 16), because tree-BCD subproblems exhausted the subproblem
time limit, thus exceeding the total time of two hours. This is because tree-BCD
solves a short sequence of subproblems with increasing difficulty. In the first major
iterations an optimal solution to the subproblems may quickly be found; in the last
major iterations, the subproblems may take a considerable amount of time. Although
the procedure may eventually attempt to solve the whole CTA problem, this never
happened within the time limit set for the performed tests. On the other hand,
random-BCD usually consists of a longer sequence of subproblems, which are solved
more quickly, though new solutions often do not improve on the previous. For the
instances of Figure 4, five blocks of cells were considered for random-BCD.

In the plots of Figure 4, it is seen that the objective function reaches an almost
steady state relatively soon. Little improvement is observed, in general, in the last
part of the optimization process. Indeed, the larger tables (except for number 14 and
number 18) could not be solved within an optimality tolerance of 5% even for much
longer time limits. For instance, tables 13 and 16 were tried with a time limit of two
days of CPU time. The best objective function value for table 13 was 453459, with
an optimality gap of 45%; for table 16 the best objective function value was 608223,
with a gap of 55%. Although both solutions are slightly better than those reached
by BCD, it is not clear that the improvement in the objective function is worth the
computational effort.

Another noticeable conclusion from Figure 4 is that, in general, BCD variants were
faster in achieving and acceptable solution. For these test tables the SAT technique
returned feasible points in all cases, and they were of better quality than the first
feasible points provided by branch-and-cut. CPLEX branch-and-cut started from very
poor quality feasible solutions, though they were quickly improved upon. However, in
the long run, it is likely that branch-and-cut improves any BCD method. Finally, it
is also observed that random-BCD and tree-BCD are very similar, the former being

13

0 2000 4000 6000

10
00

00
11

00
00

case 11

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000 8000

19
00

00
21

00
00

23
00

00

case 12

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000 8000

4e
+

05
6e

+
05

8e
+

05
1e

+
06

case 13

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 200 400 600 800

13
00

00
14

50
00

16
00

00 case 14

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000 8000

35
00

00
45

00
00

case 15

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000 8000 10000

60
00

00
75

00
00

90
00

00 case 16

bcd$V1

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000 8000

13
00

00
16

00
00

19
00

00

case 17

bc
d$

V
2

BCD
Tree
B&Cut

0 2000 4000 6000

62
00

0
64

00
0

66
00

0
68

00
0 case 18

bc
d$

V
2

BCD
Tree
B&Cut

Figure 4: Sequences of feasible solutions for tables 11 to 18. The horizontal axis shows the
CPU time and the vertical shows the best objective function value achieved. The time limit
was two hours except for table 14, since branch-and-cut found a solution in less than 15

minutes.

14

0 2000 4000 6000 8000 10000

13
00

00
0

16
00

00
0

19
00

00
0

case 21

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

45
00

00
60

00
00

75
00

00 case 22

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

10
00

00
0

12
00

00
0

14
00

00
0

case 23

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000

13
00

00
0

15
00

00
0

17
00

00
0

case 24

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

40
00

00
50

00
00

60
00

00 case 25

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

20
00

00
0

24
00

00
0

28
00

00
0

case 26

bcd$V1

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

80
00

00
11

00
00

0
14

00
00

0 case 27

bc
d$

V
2

BCD

Tree

B&Cut

0 2000 4000 6000 8000 10000 12000

75
00

00
85

00
00

95
00

00

case 28

bc
d$

V
2

BCD

Tree

B&Cut

Figure 5: Sequences of feasible solutions for tables 21 to 28. The horizontal axis shows the
CPU time and the vertical axis the best objective function value achieved. The time limit
was three hours. The branch-and-cut solution for tables 26 is not shown because the best

value of the objective function was 5.33 · 109.

15

Table 4: Results for general tables

instance B&C BCD Time limit
hier13x13x13d 416604 477024 350 sec.
hier16 5.47 · 108 6.94 · 108 7200 sec.
ninenew 9.35 · 108 5.90 · 108 7200 sec.
nine12 1.41 · 109 9.32 · 108 7200 sec.

slightly better. This is a surprising conclusion, since tree-BCD was supposed to take
advantage of the tree structure of the tables.

Figure 5 shows the output obtained for the second group of larger tables. For
these instances the total time was three hours, and ten blocks were used for random-
BCD. The previous remarks for the results of Figure 4 are also valid for this set of
tables. The advantage of BCD can even be emphasized with respect to a standard
branch-and-cut approach: the latter often gets stuck (at least, in the three-hour time
limit considered), whereas the objective of BCD sequences tends to decrease. The
branch-and-cut sequence for table 26 is not shown in Figure 5, since the time limit
was reached with a (bad) solution of objective equal to 5.33 · 109.

Table 4 shows the results obtained for the four complex general tables of Table 3.
Columns “B&C” and BCD report the objective function value reached within the CPU
time limit indicated in the column “Time limit” for, respectively, the CPLEX branch-
and-cut and random-BCD. From these results, it cannot be concluded that BCD is
in general competitive for general complex tables against a state-of-the-art branch-
and-cut. This is partly explained by the complexity of the cell tables’ interrelations,
which result in highly coupled clusters of cells in the BCD approach. However, in
the significantly two largest instances (ninenew and nine12) BCD returned a better
solution within the time limit.

5 Conclusions

From our actual experience with real-world instances, it can be stated that CTA prob-
lems can be extremely difficult for large and complex tables, even for state-of-the-art
branch-and-cut solvers. The BCD approach presented and tested in this work was
able to obtain good solutions within one or two hours of the CPU time limit, for
large (up to 200000 cells, 16000 being sensitive) 1H2D tables. Moreover, the solu-
tion obtained was comparable, and usually better than the incumbent provided by
state-of-the-art branch-and-cut solvers within the same time limit. For general tables
(with unknown internal structure), BCD did not outperform branch-and-cut for all
the tables tested, but it did for the largest tables. We are thus optimistic about the
possibilities of the method for even more difficult real-world tables (with a higher
number of cells and sensitive cells). This is partly supported by the better observed
behaviour of random-BCD against tree-BCD: random-BCD can be immediately ap-
plied to more general (other than 1H2D) classes of tables, without need to exploit the
particular internal structure of the table relations.

16

The (increasing) ability of NSAs to create more complex and huge tables from
collected data is an incentive to develop powerful tools for CTA. Among them we find
Benders’ reformulation of CTA; some preliminary testing with a prototype showed
the approach is efficient for two-dimensional tables [8], but deeper cuts are needed
for more complex tables. Other data protection approaches, like interval protection,
which results in a massive linear programming problem, and its efficient solution by
structured interior-point methods, are also among the remaining tasks to be addressed
in this challenging field.

6 Acknowledgments

The authors thank Daniel Baena (from the NSA of Catalonia) for generating the tables
used in the computational results. This work has been supported by the Spanish MEC
grant MTM2006-05550.

References

[1] Alonso-Ayuso, A., Escudero, L.F., and Ortuño, M.T. (2003), BFC, A branch-and-
fix coordination algorithmic framework for solving some types of stochastic pure
and mixed 0-1 programs, European Journal of Operational Research, 151, 503–519.

[2] Bacharach, M. (1966), Matrix rounding problems, Management Science, 9, 732–
742.

[3] Benders, J.F. (2005) Partitioning procedures for solving mixed-variables program-
ming problems, Computational Management Science 2, 3–19. English translation
of the original paper appeared in Numerische Mathematik 4, (1962), 238–252.

[4] Bertsekas, D.P. (1999), Nonlinear Programming, 2nd ed., Athena Scientific, Bel-
mont.

[5] Castro, J. (2006), Minimum-distance controlled perturbation methods for large-
scale tabular data protection, European Journal of Operational Research 171, 39–
52.

[6] Castro, J. (2007), A shortest paths heuristic for statistical disclosure control in
positive tables, INFORMS Journal on Computing 19, 520–533.

[7] Castro, J., and Baena, D. (2006), Automatic structure detection in constraints of
tabular data, Lecture Notes in Computer Science, 4302, 12–24.

[8] Castro, J., and Baena, D. (2008), Using a Mathematical Programming Modeling
Language for Optimal CTA, Lecture Notes in Computer Science, 5262, 1–12.

[9] Chinneck, J.W. (2008), Feasibility and Infeasibility in Optimization, Springer, New
York.

17

[10] Conejo, A.J., Castillo, E., Minguez, R., and Garcia-Bertrand, R. (2006), De-

composition Techniques in Mathematical Programming: Engineering and Science

Applications, Springer, Berlin.

[11] Cox, L.H. (1995), Network models for complementary cell suppression, Journal

of the American Statistical Association, 90, 1453–1462.

[12] Dandekar, R.A. (2003) (Energy Information Administration, Department of En-
ergy, USA.) Personal communication.

[13] Dandekar, R.A., and Cox, L.H. (2002), Synthetic tabular data: an alterna-
tive to complementary cell suppression, manuscript, Energy Information Admin-
istration, U.S. Department of Energy. Available from the first author on request
(Ramesh.Dandekar@eia.doe.gov).

[14] de Wolf, P.P. (2002), HiTaS: A heuristic approach to cell suppression in hierar-
chical tables, Lecture Notes in Computer Science 2316, 74–82.

[15] Dillenberger, Ch., Escudero, L.F., Wollensak, A., and Zhang, W. (1994), On
practical resource allocation for production planning and scheduling with period
overlapping setups, European Journal of Operational Research, 75, 275–286.

[16] Domingo-Ferrer, J., and Franconi, L.(eds.) (2006), Lecture Notes in Computer

Science. Privacy in Statistical Databases (Vol. 4302), Springer, Berlin.

[17] Domingo-Ferrer, J., and Saigin, Y. (eds.) (2008), Lecture Notes in Computer

Science. Privacy in Statistical Databases (Vol. 5262), Springer, Berlin.

[18] Domingo-Ferrer, J., and Torra, V. (2002), A critique of the sensitivity rules usu-
ally employed for statistical table protection, International Journal of Uncertainty

Fuzziness and Knowledge-Based Systems, 10, 545–556.

[19] Domingo-Ferrer, J., and Torra, V. (eds.) (2004), Lecture Notes in Computer

Science. Privacy in Statistical Databases (Vol. 3050), Springer, Berlin.

[20] Domingo-Ferrer, J., and Torra, V. (2004), Disclosure risk assessment in statistical
data protection, Journal of Computational and Applied Mathematics 164–165, 285–
293.

[21] Eén, N., and Sörensson, N. (2003), An extensible sat-solver, in Proceedings of the

Sixth International Conference on Theory and Applications of Satisfiability Testing.

[22] Fischetti, M., and Salazar, J.J. (2001), Solving the cell suppression problem on
tabular data with linear constraints, Management Science, 47, 1008–1026.

[23] Giessing, S., and Repsilber D. (2002), Tools and strategies to protect multiple ta-
bles with the GHQUAR cell suppression engine, Lecture Notes in Computer Science

2316, 181–192.

[24] Hundepool, A. (2006), The Argus software in CENEX, Lecture Notes in Com-

puter Science 4302, 334–346.

18

[25] Kelly, J.P., Golden, B.L, and Assad, A.A. (1992), Cell suppression: disclosure
protection for sensitive tabular data, Networks, 22, 28–55.

[26] Kelly, J.P., Golden, B.L., Assad, A.A., and Baker, E.K. (1990), Controlled round-
ing of tabular data, Operations Research, 38, 760–772.

[27] Marques-Silva, J.P., and Sakallah, K.A. (1999), GRASP: A search algorithm for
propositional satisfiability, IEEE Transactions on Computers 48, 506–521.

[28] Plazas, M.A. (2006), Multistage stochastic model for bidding in electrical markets

(in Spanish), Ph.D. Thesis, Universidad de Castilla-La Mancha.

[29] Salazar-González, J.J. (2006), Controlled rounding and cell perturbation: sta-
tistical disclosure limitation methods for tabular data, Mathematical Programming

105, 583–603.

[30] Salazar-González, J.J. (2008), Statistical confidentiality: Optimization tech-
niques to protect tables, Computers and Operations Research 35, 1638–1651.

[31] Willenborg, L., and de Waal, T. (eds.) (2000) Lecture Notes in Statistics. Ele-

ments of Statistical Disclosure Control (Vol. 155), Springer, New York.

[32] Zhang, H. (1997), SATO: An efficient propositional prover, in Proceedings of the

International Conference on Automated Deduction, 272–275, July 1997.

19

	Introduction
	Formulation of CTA as a MILP
	The block coordinate descent approach for CTA
	Finding a feasible starting point. The SAT method

	Computational results
	Implementation
	Test instances
	Results

	Conclusions
	Acknowledgments

