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COMPUTATIONAL TESTS OF A LINEAR MULTICOMMODITY
NETWORK FLOW CODE WITH LINEAR SIDE CONSTRAINTS

THROUGH PRIMAL PARTITIONING.

Abstract: This work presents a new code for solving the multicommodity network flow problem
with a linear objective function considering additional linear side constraints linking arcs of the same
or different commodities. The code implements a specialization of the simplex method through primal
partitioning of the basis, with use of a reduced working basis. An ad hoc update of this working matrix
has been developed, which improves the performance of the method considerably . The optimization
process followed consists of three phases (instead of the usual two in the simplex method). The
first merely solves a single network flow problem for each commodity, the second phase attempts to
obtain a feasible point and the last reaches the optimizer. This methodology has proved to be very
powerful, especially in cases where the number of active linking multicommodity constraints is small.
Several tests are reported, using random problems obtained from various network generators and real
problems arising from the field of long-term hydro-thermal scheduling of electricity generation, with
up to 150,000 variables and 45,000 constraints.

Keywords: Multicommodity Network Flows, Network Simplex Methods, Primal Partitioning,
Side Constraints, Network Generators, Hydro-Thermal Scheduling, Electricity Generation.

1. Introduction.

Although primal partitioning has been reported for quite some time to be an appropriate technique
for solving the multicommodity linear network flow problem and its algorithm has been described in
detail [14], no report can be found of its computational performance with large multicommodity
problems of different characteristics. This work aims to fill this void by describing the computational
results obtained with an efficient implementation of primal partitioning to solve multicommodity
network flow problems of many types and sizes.

The multicommodity linear network flow problem (which will be referred to as the MP problem)
can be cast as:

min
X1,X2,...,XK

K∑

k=1

Ct
kXk (1)

subj. to AXk = Rk k = 1÷K (2)

0 ≤ Xk ≤ Xk k = 1÷K (3)
K∑

k=1

Xk ≤ T (4)

where Xk ∈ IRn, (n: number of arcs) is the flow array for each commodity k (k = 1 ÷K), K being
the number of commodities of the problem, and Ck the cost vector of the flows for each commodity.
A ∈ IRm×n (m: number of nodes) is the arc–node incidence matrix. Constraints (3) are simple
bounds on the flows, Xk ∈ IRn, k = 1 ÷ K being the upper bounds. Equation (4) represents the
mutual capacity constraints, where T ∈ IRn.

In this work the original MP problem has been extended to include linear side constraints defined
by:

L ≤
K∑

k=1

LkXk ≤ U (5)

where Lk: Lk ∈ IRp×n, k = 1 ÷ K, and L,U ∈ IRp (p: number of side constraints). These side
constraints can link arcs of the same or different commodities. Therefore the final formulation of the
problem considered can be stated as follows:

min
X1,X2,...,XK

(1) ; subj. to (2–5) (6)
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and will be referred to as the MPC problem.
To solve the MP problem by exploiting the network structure, various techniques have been

described in the literature. Some of them deal with the mutual capacity constraints (4) in an exact
fashion whereas others replace them by a Lagrangian relaxation in the objective function. The price-
directive decomposition, resource-directive decomposition and primal partitioning methods belong
to the first class. A complete description of these three methodologies can be found in [14]. The
Lagrangian relaxation technique does not guarantee finding the optimal flows, but it can achieve
good approximations simply by solving decoupled single network flow problems obtained by relaxing
constraints (4). This methodology is briefly described in [1].

A first attempt, comparing the above multicommodity network techniques (except the Lagrangian
relaxation one), was already made in [2]. In that work primal partitioning and price-directive
decomposition seemed to be the best methods.

Several codes have been developed to solve the MP problem, although up to now none have become
standard. The best codes are two to five times faster than a general-purpose linear programming code
[1]. Recently, interior point methods have provided another approach to solve the MP problem.
These methods appear to be really efficient when the size of the network is very great (see [13] for a
description of a code using such methodology).

The code here presented mainly follows the underlying ideas in the primal partitioning method
(it will be referred to as the PPRL code in the rest of the document). Some aspects, especially those
related to the management of a working matrix, have been upgraded with respect to the original
formulation of the problem described in [14], substantially improving the performance of the algorithm.
Moreover, the code can deal with additional side constraints like (5) (PPRL solves the MPC problem
instead of the MP one). In fact the mutual capacity constraints (4) are nothing but side constraints
with special structure. From this point of view, codes for solving network flow problems with side
constraints could be used to solve the MP problem. Descriptions of two such codes can be found
in [11,15]. Therefore, it can be said that PPRL combines the features of the codes which solve the
multicommodity network flow problem and of those which solve the network flow problem with side
constraints. Moreover, the fact of using a primal partitioning of the basis facilitates the extension of
the code to consider nonlinear objective functions. A first attempt was already made in a previous
work by the authors [5], where Murtagh and Saunder’s strategy of considering superbasic variables
was applied [16].

The rest of the document will be subdivided into five main sections. Firstly, the primal
partitioning methodology will be revised. Secondly the specific implementation developed in the
PPRL code will be described. The next section will be devoted to the updating process of the working
matrix, which is instrumental in the performance of the algorithm. Once the main features of the
code have been reported, the two types of test problems that have been employed will be presented.
These problem types come either from random network generators or from real problems from short
and long-term hydro-thermal scheduling of electricity generation. The last main section will show the
computational results obtained, with each test problem previously detailed.

2. The primal partitioning method.

In this section a brief description of the primal partitioning method will be presented, paying
special attention to the changes brought about by considering the additional side constraints (5). See
[14] for a comprehensive description.

2.1. Structure of the problem.
Given that constraints (2), (4) and (5) in (6) are linear, it is possible to consider the problem

constraint matrix A. Then each variable jk (that is, each flow j of the kth commodity) has an
associated column Ajk in A, with the following no null components:

(Ajk)t =

(
s
↓

t
↓

j
↓

. . . 1 . . .− 1 . . .︸ ︷︷ ︸
Network

| . . . 1 . . .︸ ︷︷ ︸
Mutual Capacity

| aj1 . . . ajp︸ ︷︷ ︸
Side Constraints

)t
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where s and t identify the source and target nodes of arc jk. It can be noticed that each variable
appears in three clearly different types of constraint: network, mutual capacity and side constraints.
Network constraints are always active (they are equality constraints), whereas mutual capacity and
side constraints may not be (as they are inequality constraints).

Every basis in the primal partitioning method can be decomposed as follows:

B =
L1 R1 0
L2 R2 0
L3 R3 1l

(7)

L1, R2 and 1l being square matrices where:
• L1 refers to the network constraints and arcs of the K spanning trees. The topology of this matrix
is:

L1 =

B1

B2

. . .

BK

each Bk being a nonsingular matrix associated with the kth spanning tree. L1 can be represented at
every iteration by K spanning trees following the methodology described in [3,9].
• R1 refers to the network constraints and complementary arcs of the K commodities.

Complementary arcs do not belong to any spanning tree and are required to preserve the nonsingularity
of the basis.
• L2 refers to the active mutual capacity and side constraints, for the arcs of the spanning trees.
• R2 refers to the active mutual capacity and side constraints, for the complementary arcs.
• L3 refers to the inactive mutual capacity and side constraints, for the arcs of the spanning trees.
• R3 refers to the inactive mutual capacity and side constraints, for the complementary arcs.
• 1l , an identity matrix, refers to the slacks of the inactive mutual capacity and side constraints. (It
should be noticed that constraints whose slacks are in matrix 1l are treated as inactive constraints,
even though the slack values are zero).

2.2. Motivation for using a working matrix.
During the optimization process systems Bx = b and xtB = bt must be solved at each iteration,

x and b being the variable and independent term vectors respectively. A description of the solution
technique can be found in [14] and is briefly outlined here. Considering for x and b a partition such
as the one employed above for the basis B, the next subsections show how to efficiently obtain the
solution of both systems.

2.2.1. Computing Bx = b.
This system can be written as:

L1 R1 0
L2 R2 0
L3 R3 1l

x1

x2

x3

=
b1

b2

b3

By block multiplication we obtain:

L1x1 + R1x2 = b1 (8)
L2x1 + R2x2 = b2 (9)

L3x1 + R3x2 + x3 = b3 (10)

Isolating x1 from (8) we obtain x1 = L−1
1 b1 − L−1

1 R1x2. Substituting this expression into (9) yields
L2L

−1
1 b1 − L2L

−1
1 R1x2 + R2x2 = b2. Now x2 is directly obtained from this equation:

x2 = (R2 − L2L
−1
1 R1)−1(b2 − L2L

−1
1 x1) (11)
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Once x2 is known, x1 is computed directly:

x1 = L−1
1 b1 − L−1

1 R1x2 (12)

And finally, with x1 and x2, x3 is computed as:

x3 = b3 − L3x1 −R3x2 (13)

Thus by solving (11), (12) and (13) consecutively we obtain the solution of the original system.

2.2.2. Computing xtB = bt.
This system can be written as:

x1 x2 x3

L1 R1 0
L2 R2 0
L3 R3 1l

= b1 b2 b3

By block multiplication we obtain:

x1L1 + x2L2 + x3L3 = b1 (14)
x1R1 + x2R2 + x3R3 = b2 (15)

x3 = b3 (16)

The x3 value is found directly from (16). Isolating x1 from (14) we obtain:

x1 = (b1 − x3L3 − x2L2)L−1
1 (17)

Using (17) and (16) at (15) we get:

(b1 − b3L3 − x2L2)L−1
1 R1 + x2R2 + b3R3 = b2

(b1 − b3L3)L−1
1 R1 + x2(R2 − L2L

−1
1 R1) = b2 − b3R3(

(b2 − b3R3)− (b1 − b3L3)L−1
1 R1

)
(R2 − L2L

−1
1 R1)−1 = x2 (18)

Thus by solving (16), (18) and (17) we obtain the solution of the original system.

As shown in the two previous subsections, to solve systems Bx = b and xtB = bt it suffices
to invert submatrix L1 and a matrix whose expression is R2 − L2L

−1
1 R1. This last matrix will be

referred to as the working matrix, and denoted by Q. It must be noticed that the fact of inverting
L1 does not involve too much work, given that L1 is a block diagonal matrix, where each block
represents a spanning tree. This kind of system can be solved by simply exploiting the tree structure
of the matrix and highly efficient procedures have been developed [9]. Therefore, the problem of
solving both systems of equations is reduced to factorizing the working matrix Q instead of basis B,
and having a procedure to update this factorization at each iteration. Since the dimension of the
working matrix is small compared with the whole dimension of basis B, it can be expected that the
computation time of an algorithm using this primal partitioning will likewise be small compared with
a general-purpose linear optimization package. On the other hand, the dimension of basis B is fixed
during the optimization process, whereas the dimension of Q is variable, given that it depends on the
number of active mutual capacity and side constraints. That implies that the updating process of
the Q factorization must be able to deal with variable size dimensions, increasing the difficulty of the
algorithm (as will be shown in later sections).

2.3. Computing the working matrix Q.
Some new concepts must first be defined in order to use them in an efficient procedure for

computing Q:
• Asc: set of active side constraints at current iteration.
• Amc: set of active mutual capacity constraints at current iteration.
• A: set of active constraints (mutual capacity and side constraints), that is, A = Asc ∪ Amc.
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• |C|: number of elements of set C.
• dim(M): dimension of matrix M .

Given that R2 and L2 are associated with the active mutual capacity and side constraints, they
can be subdivided into two submatrices as follows:

R2 =
[R2mc

R2sc

]
L2 =

[L2mc

L2sc

]

where R2mc and L2mc refer to constraints belonging to Amc, and R2sc and L2sc refers to constraints of
the set Asc. Since Q = R2 − L2L

−1
1 R1, it can also be considered as subdivided into two submatrices

thus:
Q =

[Qmc

Qsc

]
=

[R2mc

R2sc

]
−

[L2mc

L2sc

]
L−1

1 R1

whose dimensions are dim(Qmc) = |Amc| × |A| and dim(Qsc) = |Asc| × |A|.
The expression for computing Q involves the calculation of L−1

1 R1. Since L1 is a block diagonal
matrix where the kth block is a minimum spanning tree for the kth commodity, and R1 expresses for
each complementary arc of the kth commodity its connection to the kth minimum spanning tree, then
solving L−1

1 R1 is equivalent to having the paths (denoted by Pj , j = 1÷ |A|) of complementary arcs
in their associated spanning trees. Given an arc a ∈ Pj , we will say than a has normal orientation if
it points to the source node of the complementary arc j; otherwise, it has reverse orientation.

If we denote by:
• aj the arc associated with the jth column of Q, j = 1÷ |A|.
• mci the mutual capacity constraint of the ith row of Q, i = 1 ÷ |Amc| (this capacity constraint

refers to the saturated arc mci).
• sci the side constraint of the ith row of Q, i = |Amc|+ 1÷ |A|.
• B(a, n) a logical function which becomes true if the arc a appears in the side constraint n, and

false otherwise.
• ca,n the coefficient of the arc a in the side constraint n.

Then we can compute directly the matrix Q as follows:

Submatrix Qmc:

Qij

i=1÷|Amc|
j=1÷dim(Q)

=





+1, if aj = mci

+1, if mci ∈ Pj with normal orientation
−1, if mci ∈ Pj with reverse orientation
0, otherwise

Submatrix Qsc:

Qij

i=|Amc|+1÷dim(Q)
j=1÷dim(Q)

=





Following the next 4 steps:
1) Set Qij = 0
2) if B(aj , sci) then Qij = caj ,sci

for each a ∈ Pj , perform next 2 steps
3) if B(a, sci) and a has normal orientation then

Qij = Qij + ca,sci

4) if B(a, sci) and a has reverse orientation then
Qij = Qij − ca,sci

It is clear from this procedure that the information regarding the mutual capacity constraints is
not stored, and is implicitly assumed in the construction of the Qmc submatrix. Moreover, the current
implementation of the PPRL code does not require the Boolean function B(a, n) when computing Qsc

(which is done in a more efficient way without using B(a, n)), but it has been introduced here to
simplify the concept. However, the abovementioned function B(a, n) is needed in other parts of the
algorithm, requiring us to store the information about the side constraints in sparse form in columns
(that is, for each arc we have the side constraints where it appears) and sorted according to the side
constraint number. Thus the Boolean function B(a, n) can be reduced to a binary search (far more
efficient than an exhaustive search). A full description of the computation of Q can be found in [4].
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3. Implementation of primal partitioning.

The implementation of the primal partitioning method developed in the PPRL code follows three
stages, called phases 0, 1 and 2, instead of the two classical phases of the simplex method. Phases 0
and 1 attempt to obtain a feasible starting point, whereas phase 2 achieves the optimizer. However,
although phases 0 and 1 work sequentially to find a feasible point, it can be said that phase 1 is closer
to phase 2 than to phase 0, since primal partitioning is only applied in phases 1 and 2. The following
subsections will clarify these ideas by describing each phase.

For computational purposes the inequality constraints (4) and (5) in the original MPC problem
are replaced by equality constraints by adding slacks, obtaining:

K∑

k=1

Xk + s = T ; 0 ≤ s (19)

K∑

k=1

LkXk + t = U ; 0 ≤ t ≤ U − L (20)

where s ∈ IRn and t ∈ IRp. In this formulation equations (19) and (20) replace the original equations
(4) and (5). Then the formulation of the problem considered by the algorithm (which will be referred
to as MPC2) is:

min
X1,X2,...,XK

(1) ; subj. to (2–3), (19–20) (21)

It can be noticed that the current version of PPRL cannot deal with lower bounds other than zero in
the variables.

3.1. Phase 0.
In phase 0 the algorithm considers only the network constraints and bounds on the variables of

the problem, without any constraint linking the flows of different commodities. It attempts to obtain
for each commodity k, k = 1÷K, a feasible starting point for the linear network problem:

min
Xk

Ct
kXk

subj. to AXk = Rk

0 ≤ Xk ≤ Xk

(22)

This problem is solved by applying a specialization of the simplex algorithm for networks. The
implementation developed mainly follows the ideas described in [9] with regard to the pivotal
operations when managing the spanning trees. It is important to note that phase 0 has nothing
to do with primal partitioning, as it only solves single network problems.

The code developed can either merely obtain a feasible point for (22) or reach its optimum
solution. (The default option is to obtain a feasible point). When at the optimal solution of problem
(21) the number of active mutual capacity and side constraints |A| is small, that implies that this
point is not far from the point obtained by joining the solutions of the K single network problems (22).
Then it seems to be a good choice to obtain the optimum value when solving (22) for each commodity,
because at the end of phase 0 the current point will be near the optimum solution desired. Otherwise,
simply obtaining a feasible point for (22) will suffice.

It has been observed in phase 0 that keeping up and checking a degenerate pivot list to avoid
degenerate steps is less efficient than allowing degenerate pivots. Thus the default option in the code
developed is to permit degenerate steps.

3.2. Phase 1.
The K points obtained in phase 0 will not satisfy in general the mutual capacity and side

constraints, thus giving rise to a pseudofeasible point. That implies than some slack variables s for
the mutual capacity constraints or t for the side constraints will be out of bounds. Let X̂k, k = 1 . . . K
be the pseudofeasible point obtained; then the following index sets are defined:
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• s− =
{
i :

( K∑

k=1

X̂k

)
i
> Ti ⇔ si < 0

}
.

• t− =
{
i :

( K∑

k=1

LkX̂k

)
i
> Ui ⇔ ti < 0

}
.

• t+ =
{
i :

( K∑

k=1

LkX̂k

)
i
< Li ⇔ ti > (U − L)i

}

Introducing new artificial variables e and f , and fixing initial values for s and t such that:

• ( K∑

k=1

X̂k

)
i
+ si − ei = Ti ; si = 0 ; ∀i ∈ s−

• ( K∑

k=1

LkX̂k

)
i
+ ti − fi = Ui ; ti = 0 ; ∀i ∈ t−

• ( K∑

k=1

LkX̂k

)
i
+ ti + fi = Ui ; ti = (U − L)i ; ∀i ∈ t+

The problem solved in phase 1 is:

min
X1,X2,...,XK ,s,t,e,f

∑

i∈s−
ei +

∑

i∈t−
fi +

∑

i∈t+

fi (23)

subj. to (2–3)
K∑

k=1

Xk + s + 1lee = T (24)

K∑

k=1

LkXk + t + 1lff = U (25)

0 ≤ t ≤ U − L ; 0 ≤ s ; 0 ≤ e ; 0 ≤ f

Where both matrices 1le ∈ IRn×n and 1lf ∈ IRp×p in (24) and (25) are diagonal and defined as follows:

(1le)ii =
{−1 if i ∈ s−

0 otherwise
(1lf )ii =

{−1 if i ∈ t−

+1 if i ∈ t+

0 otherwise
It can be noticed that the objective function (23) at phase 1 is nothing but the sum of infeasibilities
of the mutual capacity and side constraints. Therefore, the MPC2 problem defined in (21) will be
feasible if, at phase 1, the value of (23) at the optimizer is 0.

Dividing the process of finding a feasible starting point for problem MCP2 into two stages (phases
0 and 1) has proved to be very efficient in number of iterations with respect to methods that starting
from any given point consider the sum of infeasibilities for all constraints. In the PPRL code, at the
beginning of phase 1 it is known that no infeasibilities should be considered for the network constraints,
because in phase 0 K spanning trees have been obtained. Besides, the obtention of the K spanning
trees does not involve much computation time, given that the available methods for solving linear
network problems are very efficient.

3.3. Phase 2.
Once a feasible point has been obtained in phases 0 and 1, phase 2 will reach the optimizer

without leaving the feasible region. The problem to be minimized now is the original MCP2 problem
defined in (21). Basically, the only difference between phases 1 and 2 is the different objective function
to be minimized, but in both cases the primal partitioning technique is applied.

The fact of considering a partition of the basis as presented in (7) permits an efficient solution of
systems Bx = b and xtB = bt (as was shown in former sections). This means updating this partition at
each iteration whenever a pivotal operation is performed. During the pivotal operations the dimension
of matrix Q can be modified, since dim(Q) = |A| (where |A| is the number of active mutual capacity
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and side constraints). Considering that the variables of the problem can be arcs or slacks (and the
arcs of the basis B can be subdivided into arcs of the K spanning trees or complementary arcs),
then, depending on the type of variable entering and leaving the basis, the following six cases can
be observed (denoting by “E:–” the case of an entering variable and by “L:–” the case of a leaving
variable):

• E: slack–L: slack. The row of Q associated with the entering slack is removed and replaced by a
new row for the leaving slack. Dim(Q) is not modified.
• E: slack–L: complementary arc. The row and column of Q associated with the entering slack and

leaving complementary arc respectively are removed. Dim(Q) must be updated as dim(Q)− 1.
• E: slack–L: arc of kth tree. A complementary arc of the kth commodity, e.g. the jth complementary
arc, having the leaving arc in its path Pj , must be found to replace the leaving arc in the kth tree.
This complementary arc will always exist (otherwise the basis would become singular). The row and
column of Q associated with the entering slack and the jth complementary arc are removed. Dim(Q)
must be updated as dim(Q)− 1.
• E: arc–L: slack. A new row associated with the leaving slack is added to Q. To maintain the

nonsingularity of Q a new column for the entering arc — which will become a complementary arc —
is also added to the working matrix. Dim(Q) must be updated as dim(Q) + 1.
• E: arc–L: complementary arc. The column of Q associated with the leaving complementary

arc is removed, and replaced by a column corresponding to the entering arc, which will become a
complementary arc. Dim(Q) is not modified.
• E: arc–L: arc of kth tree. A complementary arc of the kth commodity, e.g. the jth complementary
arc, having the leaving arc in its path Pj , is sought. If this arc is found, it will replace the leaving arc
in the kth tree, and the entering arc will become a complementary arc. If no complementary arc is
found, then the entering arc will replace the leaving arc in the kth tree. One of the two possibilities
described will always happen, otherwise the basis would become nonsingular. Dim(Q) is not modified.

It has not been made explicit, but it must be noticed that, when rows of matrix Q =
[

Qmc

Qsc

]
are

removed or added, depending on the type of associated slack (whether it is a slack of mutual capacity
or side constraints) the operations will affect submatrix Qmc or/and Qsc.

4. Updating the working matrix.

The way in which the working matrix is dealt with is instrumental in ensuring the efficiency of
the algorithm, since it is the only matrix to be factorized. Several tests have shown that the sparsity
of Q is, in general, high (Q has less than 10% non zero elements). The current implementation of
code PPRL performs a sparse LU decomposition of Q with partial pivoting allowing a choice between
two ways of pre-reordering the matrix: applying either the P3 algorithm developed by Hellerman and
Rarick [10] or a pre-reorder which attempts to put all the spikes at the end of the matrix. The latter
pre-reorder is taken as default, since very good results have been obtained with it. Details of this
subject can be found in [7].

An initial description of how to update this matrix was made by Kennington and Helgason in
[14]. Two importants remarks should be made on the approach described there:
• It only considers the updating of the Q matrix with mutual capacity constraints. As mentioned

above, the updating of Q in code PPRL has been extended to include side constraints.
• It considers an updating of Q−1 instead of Q. The difficulty of the variable dimension of Q at each
iteration means that updating Q−1 is a costly operation if it is stored as a sparse matrix, since it is
necessary to add or remove columns in a sparse structure. On the other hand, it seems inappropiate
to store Q−1 as a dense matrix, given its high sparsity. This led one of the authors to develop an ad
hoc and very efficient update of Q, instead of its inverse [4].

It is beyond the scope of this document to describe all the formulae required in the updating
process, as they were developed in a previous work [4]. Nevertheless, a brief outline will be given here.

Let us consider that at iteration p the working matrix Qp is recomputed (not merely updated),
with dimension dim(Qp) = np, and that it will not be newly recomputed until after i iterations (that is,
until iteration p+i), where its dimension will be dim(Qp+i) = np+i. Since the dimension of Q can only
increase at most by a row and column at each iteration, it follows that nj ≤ np + i, ∀ j p ≤ j ≤ p+ i,
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p+i being the maximum dimension of Qj between iterations p and p+i. Thus the proposed procedure
would be to work with an extended matrix Qj at iterations j, p ≤ j ≤ p + i, where Qj is defined as

Qj =
( nj lj

nj Qj 0
lj 0 1l

)

Dimensions nj and lj of matrices Qj and identity 1l satisfy nj + lj = np + i, i.e., the extended matrix
Qj has at every step the maximum dimension that Qj can achieve between iterations p and p + i.

Thus the structure that will be updated will be that of the extended matrices Qj , even though
the systems to be solved are systems Qjxj = bj and xt

jQj = bt
j . In fact these systems can be directly

computed from Qj , using xj and bj , which are extensions of xj and bj such that

xj =




nj xj

lj αj


 bj =




nj bj

lj 0




Then

Qjxj = bj ⇐⇒
(

Qj 0
0 1l

)(
xj

αj

)
=

(
bj

0

)
⇐⇒

{
αj = 0
Qjxj = bj

the marked expression being the desired result. Analagously xt
jQj = bt

j can be solved in the same
way.

The increase (decrease) in the number of rows/columns in Qj can now be treated through
direct pre and post-multiplications by eta and permutation matrices, implying that nj will become
nj + 1 (nj − 1) and the identity submatrix in the bottom right part of Qj will lose (gain) a unit
in dimension. Therefore, it is clear than Qj+1 can be updated from Qj through Qj+1 = EjQjFj ,
where Ej and Fj are made up of eta and permutation matrices. Recursively it is possible to write
Qj+1 = EjEj−1Qj−1Fj−1Fj , and so on, until reaching iteration p where the working matrix was
recomputed. Thus it can be written in a general form ∀ j, p ≤ j < p + i, Qj = EQpF , where
E =

∏j−p
l=1 Ej−l and F =

∏j−p
l=1 Ep+l−1. So the solution to system Qjxj = EQpFxj = bj can be

computed as follows:

QpFxj = E−1bj

Qpzj = E−1bj , where zj = Fxj

zj = Q
−1

p E−1bj

And finally xj = F−1zj

Since Qp has been factorized when recomputed, to solve the required systems E and F must
simply be inverted at each iteration. Nevertheless, the inverses of E and F are directly computed,
since they are nothing but products of eta and permutation matrices. In fact, code PPRL directly
stores the inverses of E and F , which continue to be products of eta and permutation matrices.

It has been shown that working with extended matrices avoids the problems of a variable
dimension updating. Clearly a good choice of i — the number of iterations between two successive
recomputations of Q — is important. This value should be neither too small (Q would be recomputed
too often) nor too big (the dimension of the extended matrix would be too high and the round-off
could increase). The default value for i of code PPRL is to recompute Q each 50 iterations (this
value can be modified by the user). Another important point is to maintain the identity matrix at
the bottom right part of Qj . It is this that allows updating Qj+1 from Qj at every step. It can be
viewed as an invariant condition that must be preserved at each iteration. Of course another invariant
condition could have been chosen (e.g., a diagonal matrix of 2, i.e., 2× 1l). Nevertheless, the choice of
the identity matrix is justified by its simplicity.

9



5. Test problems employed.

Two types of problems have been employed to test the performance of the code. The first type
was obtained from various network generators, while the second one arises from the field of long
and short-term hydro-thermal coordination of electricity generation. The following subsections will
describe the main features of such problems, and the particular instances employed in testing the
code.

5.1. Network generator problems.
Four network generators (Rmfgen, Grid-on-torus, Gridgen and Gridgraph) have been employed,

taken from the suite of generators distributed for the First DIMACS International Algorithm
Implementation Challenge [6]. They are freely distributed and have been obtained via anonymous
ftp from dimacs.rutgers.edu at directory /pub/netflow. Some features are common to all four network
generators:
• The output network is written in DIMACS format, producing the following information:

- The number of nodes and arcs of the network.
- The input and output flows at production and demand nodes.
- For each arc, the source and target nodes, the maximum and minimum flow capacities and the
linear cost.

• Although code PPRL can deal with side constraints, the generators produce networks without
them. Thus all test problems obtained through generators have no side constraints.

• These network generators do not consider the case of multicommodity flows. Thus the output
network obtained with the generators must be converted to a multicommodity network problem.
This has been done through the following algorithm (where m is the number of nodes, n the
number of arcs, K the desired number of commodities, demi,1, i = 1 ÷m the demand vector of
the single commodity network, capi,1, i = 1÷n the upper capacity vector of the single commodity
network and costi,1, i = 1÷ n the cost vector of the single commodity network)

for each k = 1 to K
pk := random( 1

2 , 1)
end for each
for each i = 1 to m

r := demi,1

for each k = 1 to K
demi,k := pk · r

end for each
end for each
for each i = 1 to m

r := capi,1

for each k = 1 to K
capi,k:= pk · r

end for each
end for each
for each i = 1 to n

r := costi,1
for each k = 1 to K

costi,k := random(0 , r)
end for each

end for each

where “random(a,b)” is a function which returns a random value x, a ≤ x ≤ b (derived from [19]).
It must be noticed that the arc capacities and node demands in the multicommodity network are
obtained as a fraction pk of the original capacities and demands in the single network, where pk

will always remain between 1
2 and 1. The reason for not permitting values of pk of less than 1

2
is to avoid obtaining multicommodity networks where either the demands could be so small that
no active mutual capacity constraints would ever appear in the optimal solution, or the upper
capacities would be so close to 0 than no feasible solution could be obtained.
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table i. Rmfgen: medium-sized network—few commodities.

test a b K c1 c2 cost dem nodes arcs rows A columnsA

P11 16 8 1 0 10000 1000 1000 2048 9472 2048 9472
P12 16 8 4 0 10000 1000 1000 2048 9472 17664 47360
P13 16 8 8 0 10000 1000 1000 2048 9472 25856 85248
P14 16 8 16 0 10000 1000 1000 2048 9472 42240 161024

table ii. Rmfgen: small-sized network—many commodities.

test a b K c1 c2 cost dem nodes arcs rows A columnsA

P21 4 8 50 0 4000 1000 1000 128 496 6896 25296
P22 4 8 100 0 4000 1000 1000 128 496 13296 50096
P23 4 8 150 0 6000 1000 1000 128 496 19696 74896
P24 4 8 200 0 8000 1000 1000 128 496 26096 99696

Eight particular instances have been created with each generator. These eight instances can
be classified into two groups of four instances. The first group is made up of problems with few
commodities and medium-sized networks, whereas the second group is composed of small networks
with many commodities. The following subsections will present the main features of each generator
and the description of the test instances taken into account. For all the cases created the seed used
(to generate random values) was the integer 3141592.

5.1.1. The Rmfgen generator.
The Rmfgen generator, developed by Goldfarb and Grigoriadis [8], from the input parameters a,

b, c1 and c2 produces a network with b pieces of frames of size a× a (so the number of vertices of the
whole network is a× a× b). In each frame all the vertices are connected with their neighbours (forth
and back). In addition the vertices of a frame are connected one to one with the vertices of the next
frame using a random permutation of those vertices. The source is the lower left vertex of the first
frame and the sink is the upper right vertex of the bth frame. The capacities are randomly chosen
integers from the range of (c1, c2) in the case of interconnecting edges, and c2× a× a for the in-frame
edges.

In this work the original Rmfgen generator has been extended with two more parameters cost
and dem used to produce a cost for each arc (randomly chosen from the range (0, cost)) and a
demand/supply at the sink/source nodes (chosen from the range (0, dem)).

Tables i and ii show the input parameters and dimension of the eight test problems created
considering a medium-sized network and few commodities in the first case, and a small network with
many commodities in the second. The first column, “test”, is the name given to the test instance.
Columns named a, b, c1, c2, cost and dem refer to the input parameters of the generator. Column
K denotes the number of commodities considered in the test. Columns “nodes” and “arcs” give the
number of nodes and arcs of the single commodity network. Finally, columns “rows A” and “columns
A” give the dimensions of the constraint matrix of the multicommodity network problem to be solved.

5.1.2. The Grid-on-torus generator.
The Grid-on-torus generator was developed by A.V. Goldberg (1991, Dept. of Computer Science,

Stanford University). It produces a capacitated transportation problem laid out on a grid-on-torus.
It requires five integer parameters, which are:
• M: the number of nodes.
• N: the number of arcs.
• MAXCAP: the maximum capacity of arcs (the minimum capacity is always 0).
• MAXCOST: the maximum cost of arcs.
• SEED: for random number generators.

Table iii shows the instances generated considering a medium-sized network and few commodities.
In all cases the parameters of the Grid-on-torus generator were: M=1500, N=9000, MAXCAP=10000,
MAXCOST=1000, SEED=3141592. The demand/supply obtained was afterwards divided by 10 to
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table iii. Grid-on-torus: medium-sized network—few commodities.

test K nodes arcs rows A columnsA

P31 1 1500 9000 1500 9000
P32 4 1500 9000 15000 45000
P33 8 1500 9000 21000 81000
P34 16 1500 9000 33000 153000

table iv. Grid-on-torus: small-sized network—many commodities.

test K nodes arcs rows A columnsA

P41 50 100 600 5600 30600
P42 100 100 600 10600 60600
P43 150 100 600 15600 90600
P44 200 100 600 20600 120600

table v. Gridgraph: medium-sized network—few commodities.

test K supply nodes arcs rows A columnsA

P51 1 15000 2502 5000 2502 5000
P52 4 15000 2502 5000 15008 25000
P53 8 3000 2502 5000 25016 45000
P54 16 3000 2502 5000 45032 85000

obtain feasible multicommodity flows. The meaning of the columns is the same as for those described
when presenting the Rmfgen generator.

In the case of many commodities and a small network, the input parameters of the Grid-on-torus
generator were: M=100, N=600, MAXCAP=10000, MAXCOST=1000, SEED=3141592. As in the
previous case, the demand/supply was divided (now by 100) to allow feasible multicommodity flows.
The dimensions of the tests obtained are shown in Table iv.

5.1.3. The Gridgraph generator.
The Gridgraph generator was developed by M.G.C. Resende (1991, AT&T Bell Laboratories).

It requires five parameters (h, w, MAXCAP, MAXCOST and SEED), and from these it produces a
graph made up of h × w + 2 nodes: a source s, a sink t and a rectangular grid of h times w nodes
(thus, a max-flow min-cost problem). Arcs go:
• From s to h nodes of the first grid column.
• From h nodes of the last grid column to t.
• From (i, j) node to (i + 1, j) and (j + 1, i) nodes except for the last row which goes from (h, j) to

(h, j + 1) and the last column which goes from (i, w) to t.
The capacities for grid arcs are uniformly distributed between 0 and MAXCAP. The arcs

connecting the source node s or the sink one t are uncapacitated. The costs for grid arcs are uniformly
distributed between 0 and MAXCOST. The arcs linking s and t with the grid have zero cost. The
supply/demand at nodes s and t is the maximum flow that can be transported. This value must be
reduced in the case of considering a multicommodity network to preserve feasibility.

Table v shows the test instances obtained when considering few commodities and medium-
sized networks. The input parameters to Gridgraph were: h=50, w=50, MAXCAP=10000,
MAXCOST=1000, SEED=3141592. The column “supply” is the supply of flow injected into the
network, instead of the maximum flow given by Gridgraph. The remaining columns have the same
meaning that in previous tables.

12



table vi. Gridgraph: medium-sized network—few commodities.

test K supply nodes arcs rows A columnsA

P61 50 400 227 450 11800 22950
P62 100 400 227 450 23150 45450
P63 150 125 227 450 34500 67950
P64 200 125 227 450 45850 90450

For the case of the small network with many commodities the input parameters used were: h=15,
w=15, MAXCAP=10000, MAXCOST=1000, SEED=3141592. The test instance dimensions obtained
are shown in Table vi:

5.1.4. The Gridgen generator.
The Gridgen generator was delevoped by Y. Lee and J. Orlin. This network generator creates a

grid-like network plus a super node. In addition to the arcs connecting the nodes in the grid, there
is an arc from each supply node to the super node and from the super node to each demand node to
guarantee feasibility. These arcs have very high costs and very large capacities.

The idea of this network generator is as follows. First, a grid of n1 × n2 nodes is generated.
The nodes are numbered from 1 to n1 × n2, and the super node is numbered as n1 × n2 + 1. Then
arcs between adjacent nodes are generated. For these arcs, the user may choose between generating
two-way arcs or one-way arcs. If two-way arcs are to be generated, two arcs, one in each direction,
will be generated between each adjacent node pair. Otherwise, only one arc will be generated. If this
is the case, the arcs will be generated in alternative directions. Then the arcs between the super node
and the source/sink nodes are added as mentioned above. If the required number of arcs is still not
reached, additional arcs will be added by uniformly picking random node pairs. There is no checking
to prevent multiple arcs between any pair of nodes. However, there will be no self-arcs (arcs that point
back to their own tail node) in the network. The source and sink nodes are selected uniformly in the
network, and the imbalances of each source/sink node are also assigned by uniform distribution.

The input parameters of the generator are:
• Two-way arcs: 1 if links in both directions must be generated, and 0 otherwise.
• Random number seed: it must be a positive integer.
• Number of nodes: the number of nodes generated might be slightly different from specified to make
the network a grid.
• Grid width.
• Number of sources and number of sinks.
• Average degree: to count the arcs to and from the super node.
• Total flow.
• Distribution of arc costs: 1 for uniform, and 2 for exponential. If 1 is chosen, then two more

parameters must be supplied: the lower bound and upper bound of the arc costs. If the exponential
distribution is chosen, then the lambda value of the distribution is required.
• Distribution of arc capacities: 1 for uniform, and 2 for exponential. If 1 is chosen, then two

more parameters must be supplied: the lower bound and upper bound of the arc capacities. If the
exponential distribution is chosen, then the lambda value of the distribution is required.

Tables vii and viii show the instances generated for both kinds of problems: medium-sized
network and few commodities, and small network and many commodities. The input parameters
for the first type were: two-way arcs=0, seed=3141592, #nodes=1000, grid width=75, #sources=50,
#sinks=30, average degree=8, total flow=50000, arc cost distribution=1, minimum cost=0, maximum
cost=1000, arc capacity distribution=1, minimum capacity=0, maximum capacity=10000. The
parameters for the second kind of problems were: two-way arcs=0, seed=3141592, #nodes=100,
grid width=20, #sources=10, #sinks=10, average degree=6, total flow=200, arc cost distribution=1,
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table vii. Gridgen: medium-sized network—few commodities.

test K nodes arcs rows A columnsA

P71 1 976 7808 976 7808
P72 4 976 7808 11712 39040
P73 8 976 7808 15616 70272
P74 16 976 7808 23424 132736

table viii. Gridgen: small-sized network—many commodities.

test K nodes arcs rows A columnsA

P81 50 101 606 5656 30906
P82 100 101 606 10706 61206
P83 150 101 606 15756 91506
P84 200 101 606 20806 121806

minimum cost=0, maximum cost=1000, arc capacity distribution=1, minimum capacity=0, maximum
capacity=20000.

5.2. Hydro-thermal scheduling problems.
The second type of problems has been obtained as instances of long and short-term hydro-

thermal scheduling of electricity generation according to the models proposed in [18] and [12] (where
a comprehensive explanation of the models can be found).

5.2.1. Long-term hydro-thermal scheduling problems.
The solution to the long-term hydrogeneration optimization problem in a power utility with

thermal and hydro power stations indicates how to distribute throughout a long period of time the
hydroelectric generation in each reservoir of the reservoir system in order that the expected cost of
thermal generation over the period under consideration be a minimum. In long-term hydrogeneration
optimization the availability of a thermal plant, the demand of electricity and the water inflows in
the reservoirs are not deterministic but only known as probability distributions. The probabilistic
demand and thermal plant availability can be modelled through functions of probabilistic production
cost versus hydrogeneration. The problem left is that of minimizing the sum of the expected generation
cost of each interval, taking into account that the water inflows at each interval are to be regarded as
stochastic.

It is important to optimize taking into account the whole set of probable water inflows. A model
that considers several types of water according to their probability of occurrence must be employed.
This can be made approximating the probability density function of water inflow, in each reservoir over
each time interval considered, by a block probability density function with K−1 rectangular blocks of
probability areas p1, . . . , pK−1,

∑K−1
k=1 pk = 1. The commodities of the problem are thus amounts of

water corresponding to different probabilities. The first commodity is the deterministic water (from
the origin of the probability density function to the axis position where the first rectangular block
starts), the second commodity is the water under the p1 block, and so up to the Kth commodity under
the block of area pK−1. An expression of the expected cost of generation at each interval in terms of
amounts of the different types of water dedicated to storage, generation, pumping or spillage at each
reservoir has been derived, and the objective function to be minimized is the sum of the expected costs
of all intervals. This is a nonlinear multicommodity network flow problem and a simplified linearized
objective function has been minimized here.

Given a reservoir system such that of Fig. 1, a replicated hydro network of it, as shown in Fig. 2,
is employed to represent the water balance constraints over the intervals. Total reservoir volumes and
maximum discharges are imposed as mutual capacity constraints to multicommodity flows on volume
arcs (the horizontal ones) and discharge arcs (the vertical or slanted ones).

The simplified linear objective function considered penalizes — with high positive costs — the
spillage flows (sk

ji) and incentivates — with negative costs — the discharges (dk
ji), which lead to

hydrogeneration, weighting each commodity with their availability in terms of p1, . . . , pK−1. Stored

14



d

c

a

b

Inflow reserv."b"

Inflow reserv."a"

Fig. 1 Example of a four-reservoir system.

vb,i-1
k

... ...

S

......

... ...

......

... ...

... ...

1) 2) i) Ni)

a a a a

b b b b

c ccc

d d d d

k
va,i-1

a,i
k

k
a,iv

d
k

kv

b,i
b,i

k

kvc,i

c,id

kv k
v

k
d,i-1 d,i

d,id

kvc,i-1

d

Fig. 2 Replicated multicommodity water network.

volumes (vk
ji) do not take part in the linear objective function, the initial and final volumes being data

of each problem. Side constraints to account for generation or irrigation limitations can be imposed.

5.2.2. Short-term hydro-thermal scheduling problems.
The solution to the short-term hydrothermal coordination indicates how to distribute the

hydroelectric generation (cost-free) in each reservoir of the reservoir system and how to allocate
generation to thermal units committed to operate over a short period of time so that the fuel
expenditure during the period is minimized. Load and spinning reserve constraints tie up hydro
and thermal generation.

The network model usually employed for short-term hydrogeneration optimization has been
extended to include thermal units in a new and undecoupled way [12], imposing single load and
spinning reserve constraints on both hydro and thermal generation and minimizing directly thermal
production costs without decoupling the problem into hydro and thermal subproblems. When
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Fig. 3 a) Incremental Spinning Reserve (ISR) function of the jth thermal unit.
b) Decremental Spinning Reserve (DSR) function of the jth thermal unit.
c) Network representation of thermal generation variables.

constraints are added so that hydrogeneration plus thermal generation match the load and satisfy a
spinning reserve requirement at each interval, pure network flow algorithms are no longer applicable;
however, if these constraints are linearized, efficient specialised algorithms for optimizing network
flows with linear side constraints can be employed. Hydrogeneration has thus been linearized in terms
of the network variables (initial and final volumes and discharges at each reservoir) in order that all
side constraints are linear.

The basis of the thermal generation model used is the following. Let Pj be the power output
of the jth thermal unit and let P j and P j be its upper and lower operating limits: P j ≤ Pj ≤ P j .
The incremental spinning reserve (ISR) rIj of unit “j” is the amount of power by which the current
generation Pj can be increased within a given time lapse. rIj is the maximum possible ISR. Similarly,
the decremental spinning reserve (DSR) rDj is the amount of power by which one can decrease the
current power Pj . Its maximum value will be rDj . The ISR rIj and the DSR rDj of the jth unit
satisfy: rIj = min{rIj , P j − Pj} and rDj = min{rDj , Pj − P j}, which is represented by the thick
lines of Fig. 3a) and 3b)

At power Pj we have an ISR rIj and a DSR rDj , and there is a power gap gIj ≥ 0 from the ISR
rIj to P j − Pj so that rIj + gIj = P j − Pj and also a power gap gDj ≥ 0 between the DSR rDj and
Pj −P j thus rDj + gDj = Pj −P j . The generation of a thermal unit, its ISR and DSR, the associated
power gaps, and its operating limits lend themselves well to being modeled through network flows as
shown in Fig. 3(c. An upper limit of rIj on arc α must be imposed to prevent the reserve from getting
over its limit. To assure that flows on arcs α and β are like the variables in Fig. 3(a, a small positive
weighing cost on the flow of arc β must be placed while arc α has zero cost. Similarly arc γ will have
zero cost while arc δ will have a small positive cost wβδ like arc β in order to divert as much flow as
possible from arc β and δ to arcs α and γ respectively. The flow Pj − P j from node A to node C is
associated to the generation cost to be minimized

The model just described for one generator can be extended to all committed thermal units at
a given interval “i”. A single network will represent the generation, ISR, DSR and power gaps of all
committed units. The networks of each single unit can share the sink node S. The network described
would correspond to the thermal generation and spinning reserve for a single interval “i”, and will be
referred to as therm.net “i”. One such network, connected to a single sink node S, must be considered
for each interval. A load constraint and an ISR and a DSR requirement, for each interval, are linear
side constraints.

The resulting network model is a single commodity one and the primal partitioning algorithm
described has been employed to find its optimum when minimizing a linear cost function of generation.

Table ix shows the characteristics for the instances generated of the long-term (tests P9i)
and short-term (tests P10i) hydro-thermal models. The column “#s.c.” gives the number of side
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table ix. hydro-thermal scheduling problems.

test K #s.c. nodes arcs rows A columnsA

P91 4 2 37 117 267 587
P92 4 12 37 153 313 777
P93 4 18 25 98 216 508
P94 4 3 99 315 714 1578
P95 4 3 685 2141 4884 10708
P101 1 36 444 181 217 480
P102 1 504 6216 2521 3025 6720

constraints considered in the problem. The remaining columns have the same meaning as in previous
tables.

6. Computational results.

This section will present the results obtained with the PPRL code, with the test problems
described formerly. The PPRL code has been compared with the general-purpose package Minos
5.3 [17]. All runs were carried out on a Sun Sparc 10/41 (one cpu), having a risc-based architecture,
with 40MHz clock, ≈100Mips and ≈20Mflops cpu, and 32Mbytes of main memory.

Tables x–xiv show the results obtained for the groups of test problems presented in former tables,
with both the PPRL code and Minos 5.3. For PPRL the information disclosed includes columns:
• “Ph.0”: number of iterations at phase 0.
• “Ph.1”: number of iterations at phase 1.
• “Ph.2”: number of iterations at phase 2.
• “Obj.Value”: optimum objective function value.
• “|A|”: number of active mutual capacity and side constraints at the optimizer (i.e., the dimension
of the working matrix).
• “cpu sec.”: cpu seconds spent by the execution.

For Minos 5.3 only the information in columns “Ph.1”, “Ph.2”, “Obj.Value” and “cpu sec.” is given (it
must be noticed that in the Minos 5.3 package — and others that implement the simplex method —
phase 1 finds a feasible point — task performed by phases 0 and 1 in PPRL —, whereas phase 2
reaches the optimizer).

It must be pointed out that network generator tests with few commodities have been executed
with the option of finding the optimum spanning tree at phase 0, whereas for the cases with many
commodities and for long and short-term hydro-thermal scheduling problems a feasible spanning tree
only was obtained (this is clearly reflected in the number of iterations at phase 0 of each type of case).
Thus for cases with only one commodity, phase 0 alone is executed (in these cases the comparison
is made between the Minos 5.3 package and the single network flow code that implements phase 0,
instead of the primal partitioning algorithm).

Some tests were not performed with Minos 5.3, given that because its size the execution time
would be too expensive. This is denoted in tables with the message “Not executed”. The message
“Error during execution” can also be found in some table cells for some tests attempted with Minos
5.3. It denotes that the program stopped before arriving at the optimum (in some cases with a
controlled error and in others with a failure). The message “Too many constraints” appears sometimes
because the number of constraints is stored as a two-byte signed integer, thus the maximum number
of constraints possible is 215 − 1 = 32767, and test with more constraints cannot be performed by
Minos 5.3.

From tables x–xiv some interesting conclusions can be drawn. These are shown in Table xv
(only for instance tests whose execution was completed for both codes), where each column means:
• “cpu sec./iter.”: average cpu time per iteration in seconds, for Minos and for PPRL. Only the

iterations at phases 1 and 2 for PPRL are considered (and only its associated cpu time).
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table x. results for Rmfgen tests.

PPRL Minos 5.3
test Ph.0 Ph.1 Ph.2 Obj.Value |A| cpu sec. Ph.1 Ph.2 Obj.Value cpu sec.

P11 3152 0 0 370685.0 0 13.1 1 4350 370685.0 412.6
P12 12046 7 654 2037823.4 2 69.2 5 20179 2037823.4 3545.1
P13 24050 293 4942 4453121.9 4 568.3 9 49411 4453123.8 15903.0
P14 49284 6774 25102 9805550.3 6 5896.9 Too many constraints

P21 2500 3972 9554 11728727.3 24 332.1 3514 22669 11728728.2 2385.4
P22 5000 10462 43123 26902869.7 52 2552.4 19634 131938 26902871.4 29993.9
P23 7500 14660 76875 39449268.2 56 7490.9 Error during execution
P24 10000 19911 107055 53828985.7 57 14560.8 Not executed

table xi. results for Grid-on-torus tests.

PPRL Minos 5.3
test Ph.0 Ph.1 Ph.2 Obj.Value |A| cpu sec. Ph.1 Ph.2 Obj.Value cpu sec.

P31 3727 0 0 1881.3 0 12.5 21 5670 1881.3 455.1
P32 13233 531 3848 75797.87 25 242.1 704 42601 75798.0 6584.3
P33 28259 3298 20054 989167.2 66 2267.5 Error during execution
P34 55379 9698 107176 5234488.2 183 23051.2 Not executed

P41 2500 982 5008 5004639.0 36 151.2 3003 14301 5004640.0 1096.2
P42 5000 3779 16817 12485241.0 102 1175.2 41918 76372 12485241.0 19271.4
P43 7500 10313 52715 21967864.7 166 5603.7 128630 231337 21967864.7 90131.8
P44 10000 26862 121659 35830254.4 237 18294.1 Not executed

table xii. results for Gridgraph tests.

PPRL Minos 5.3
test Ph.0 Ph.1 Ph.2 Obj.Value |A| cpu sec. Ph.1 Ph.2 Obj.Value cpu sec.

P51 3318 0 0 94657071.1 0 6.8 869 3000 94657071.1 256.4
P52 13076 2462 10147 355442380.7 244 716.7 11820 48781 355442380.7 10528.4
P53 21088 2387 8607 128385992.5 108 1042.0 Error during execution
P54 43173 11447 45162 252898663.4 221 11077.3 Not executed

P61 2500 2587 9501 27675286.0 23 557.4 3989 15623 27675286.04 3002.6
P62 5000 9793 36611 64840298.33 60 3829.8 Error during execution
P63 7500 6734 30441 26928530.2 27 4583.2 Too many constraints
P64 10000 11852 52914 37788372.1 38 11010.3 Not executed

• “iter. ratio”: ratio of the average cpu time per iteration between Minos and PPRL(
Minos cpu time per iter.
PPRL cpu time per iter.

)
, that is, how many times faster PPRL is with respect to Minos in performing

one single phase 1/phase 2 iteration.
• “time. ratio”: ratio of the total cpu time between Minos and PPRL

(
Minos cpu time
PPRL cpu time

)
, that is, how

many times faster code PPRL is with respect to Minos 5.3.
Looking at Table xv, it can be observed that the phase 0 code (in tests P11, P31, P51 and P71) is

about 30 times faster than Minos 5.3. On the other hand, PPRL is two to six times faster than Minos
in performing a single simplex iteration (phases 1 and 2). This is due to the fact of managing the
working matrix instead of the whole basis (notice that this is so even in tests P9i and P10i with side
constraints — not considered in the original formulation of the primal partitioning method). However,
comparing the total execution time, code PPRL is much faster than Minos 5.3. The reason is the
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table xiii. results for Gridgen tests.

PPRL Minos 5.3
test Ph.0 Ph.1 Ph.2 Obj.Value |A| cpu sec. Ph.1 Ph.2 Obj.Value cpu sec.

P71 3584 0 0 5532381.8 0 10.4 256 3657 5532382.0 275.6
P72 14577 689 5776 22883042.3 41 255.7 7524 69308 22883042.2 9349.4
P73 28317 3038 35791 61345575.9 111 2779.8 53617 730324 61345575.1 173952.8
P74 57502 11317 251673 164680474.5 263 38061.0 Not executed

P81 2550 44 6531 1409470.3 1 199.1 1617 9779 1409470.3 922.2
P82 5177 273 13269 2940217.3 3 773.0 5336 31486 2940217.2 6079.0
P83 7850 501 19460 4603847.52 5 1608.4 8813 41614 4603847.51 12860.7
P84 10350 989 28290 6440385.5 9 3486.9 Error during execution

table xiv. results for hydro-thermal scheduling tests.

PPRL Minos 5.3
test Ph.0 Ph.1 Ph.2 Obj.Value |A| cpu sec. Ph.1 Ph.2 Obj.Value cpu sec.

P91 174 84 106 -1282540.0 27 0.5 238 85 -1282540.0 2.4
P92 156 89 60 -571293.8 38 0.5 183 149 -571293.8 3.0
P93 200 268 303 -400778.3 38 1.0 222 208 -400778.3 2.3
P94 543 344 1564 -995120.3 111 7.0 570 829 -995120.3 12.9
P95 5168 4257 10134 71104987.7 730 327.0 12758 7426 71104987.8 995.4
P101 250 88 89 3248.1 12 0.6 134 192 3250.7 3.8
P102 3850 2069 1382 40701.8 168 69.8 3051 5777 40739.2 727.7

table xv. time comparison between minos and pprl.

cpu sec./iter. iter. time cpu sec./iter. iter. time
test PPRL Minos ratio ratio test PPRL Minos ratio ratio

P11 — 0.094 — 31.5 P71 — 0.070 — 26.5
P12 0.028 0.175 6.2 51.2 P72 0.033 0.121 3.6 36.6
P13 0.089 0.321 3.6 28.0 P73 0.069 0.221 3.2 62.6
P21 0.023 0.091 3.9 7. 2 P81 0.029 0.080 2.7 4.6
P22 0.047 0.197 4.1 11.8 P82 0.055 0.165 3.0 7.9
P31 — 0.079 — 36.4 P83 0.079 0.255 3.2 8.0
P32 0.045 0.152 3.3 27.2 P91 0.0026 0.0074 2.8 4.8
P41 0.023 0.063 2.7 7.3 P92 0.0033 0.0090 2.7 6.0
P42 0.056 0.162 2.8 16.4 P93 0.0017 0.0053 3.1 2.3
P43 0.088 0.250 2.8 16.1 P94 0.0036 0.0092 2.5 1.8
P51 — 0.066 — 37.7 P95 0.022 0.049 2.2 3.0
P52 0.054 0.173 3.2 14.7 P101 0.0033 0.0117 3.5 6.3
P61 0.045 0.153 3.4 5.4 P102 0.0188 0.0824 4.3 10.4

number of iterations required by each program: in general, code PPRL requires far fewer iterations
than Minos, due to the special procedure of finding a feasible point in phases 0 and 1 (only in tests
P93 and P94 did the number of iterations degrade the performance of the program). Thus, combining
the primal partitioning technique (with the special management of the working matrix presented)
and the phase 0-phase 1-phase 2 procedure seems to be a good choice to solve linear multicommodity
problems with side constraints.
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7. Conclusions.

A new linear multicommodity network flow code has been presented, implementing the primal
partitioning method. Special features included in it are: managing the working matrix and dividing
the optimization process into three phases. Moreover, the code is capable of solving problems with
side constraints. The code has shown to be very efficient in solving some test problems obtained from
network generators and long-term hydrothermal scheduling models, with sizes ranging from 500–
150,000 variables and 200–45,000 constraints. This algorithm can be extended to consider nonlinear
objective functions, and some work has already been done in this direction.
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