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THROUGH PRIMAL PARTITIONING.

Abstract: This work is an extension of a previous one [8] where a specialized code for solving
the multicommodity network flow problem with a linear objective function and linear side constraints
was presented. The new code here described is able to minimize a nonlinear objective function, which
generally requires longer executions than linear cases. The code implements a specialization for the
multicommodity network problem of Murtagh & Saunders’ strategy of dividing the set of variables into
basic, nonbasic and superbasic. All the computations with the basis matrix are reduced to simpler
operations with a reduced working matrix, following a primal partitioning technique. An ad hoc
update of this working matrix has been developed, which improves the performance of the method
considerably. The optimization process followed consists of three phases (instead of the usual two in
the simplex method). The first merely solves a single network flow problem for each commodity, the
second phase attempts to obtain a feasible point and the last reaches the optimizer of the nonlinear
function. This methodology has proved to be very powerful, especially in cases where the number of
active linking multicommodity constraints is small. Several tests are reported, using artificial problems
and real problems arising from the fields of long and short-term hydro-thermal scheduling of electricity
generation, electrical network expansion planning and traffic assignment, with up to ≈17,000 variables
and ≈5,000 constraints.

Keywords: Multicommodity Network Flows, Network Simplex Methods, Nonlinear Optimization,
Primal Partitioning, Side Constraints, Hydro-Thermal Scheduling, Electricity Generation, Traffic
Equilibrium, Network Expansion.

1. Introduction.

Although primal partitioning has been reported for quite some time to be an appropriate technique
for solving the multicommodity linear network flow problem and its algorithm has been described in
detail [17], no work has been done adapting this methodology to the nonlinear objective function
case. This work aims to fill this void by describing the computational results obtained with an
efficient implementation considering different nonlinear objective functions. This is an extension of a
previous work by the authors [8] where a code for the linear case and its computational results for a
set of tests were presented.

The nonlinear multicommodity network flow problem (which will be referred to as the NMP
problem) can be cast as:

min
X1,X2,...,XK

h(X1, X2, . . . , XK) (1)

subj. to AXk = Rk k = 1÷K (2)

0 ≤ Xk ≤ Xk k = 1÷K (3)
K∑

k=1

Xk ≤ T (4)

where Xk ∈ IRn, (n: number of arcs) is the flow array for each commodity k (k = 1÷K), K being the
number of commodities of the problem, and h being a IRK×n → IR1 real valued function. A ∈ IRm×n

(m: number of nodes) is the arc–node incidence matrix. Constraints (3) are simple bounds on the
flows, Xk ∈ IRn, k = 1 ÷ K, being the upper bounds. Equation (4) represents the mutual capacity
constraints, where T ∈ IRn.

In this work the original NMP problem has been extended to include linear side constraints
defined by:

L ≤
K∑

k=1

LkXk ≤ U (5)
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where Lk: Lk ∈ IRp×n, k = 1 ÷ K, and L,U ∈ IRp (p: number of side constraints). These side
constraints can link arcs of the same or different commodities. Therefore, the final formulation of the
problem considered can be stated as follows:

min
X1,X2,...,XK

(1) ; subj. to (2–5) (6)

and will be referred to as the NMPC problem.
The code here presented (which will be referred to as the PPRN code [6] in the rest of the

document) can be viewed as a general purpose code for solving the NMPC problem. The NMPC
problem was first approached using the price-directive decomposition [23] but this procedure does
not seem to be as computationally efficient as primal partitioning [7]. If the set of side constraints
(5) is empty, code PPRN will only solve a nonlinear multicommodity network flow problem (NMP).
If the number of commodities is equal to one, it will work as a specialized nonlinear network flow
code with side constraints, as described in [14,17,18]. Even in the latter case the PPRN code can be
more efficient than a plain network flow code with side constraints, due to the fact of considering a
variable-dimension working matrix instead of a fixed one (as will be shown in later sections). This can
improve the performance of the algorithm when the number of active side constraints at the optimum
is small with respect to the whole set of side constraints. When the objective function (1) is linear the
PPRN code implements a specialized simplex algorithm based on a primal partitioning of the basis,
as described in [8].

The rest of the document will be subdivided into six main sections. Firstly, a brief revision
of the literature on this subject for the linear case will be made. Secondly, the primal partitioning
methodology will be revised. The next section will present the specific implementation of the code
developed. The updating process of the working matrix, which is instrumental in the performance of
the algorithm, will be described in the following section. Once the main features of the code have been
reported, the tests problems that have been employed will be presented. These problems are either
artificial problems or real problems arising mainly from long and short-term hydro-thermal scheduling
of electricity generation, electrical network expansion planning and traffic assignment. The last main
section will show the computational results obtained, with each test problem previously detailed.
Comparisons of computational performance with a general-purpose nonlinear optimization code are
included.

2. Linear Multicommodity Network Flows.

If the objecive function (1) is linear we will refer to the nonlinear multicommodity problem
(NMP) merely as the MP problem. To solve the MP problem by exploiting the network structure,
various techniques have been described in the literature. Some of them deal with the mutual capacity
constraints (4) in an exact fashion whereas others replace them by a Lagrangian relaxation in the
objective function. The price-directive decomposition, resource-directive decomposition and primal
partitioning methods belong to the first class. A complete description of these three methodologies can
be found in [17]. The Lagrangian relaxation technique does not guarantee finding the optimal flows,
but it can achieve good approximations simply by solving decoupled single network flow problems
obtained by relaxing constraints (4). This methodology is briefly described in [1].

A first attempt, comparing the above multicommodity network techniques (except the Lagrangian
relaxation one), was already made in [2]. In that work primal partitioning and price-directive
decomposition seemed to be the best methods.

Several codes have been developed to solve the MP problem, although up to now none have
become standard. Recently, interior point methods have provided another approach to solve the MP
problem. These methods appear to be really efficient when the size of the network is very great (see
[16] for a description of a code using such methodology).

In [8] the authors already presented a code for solving the MP problem considering additional side
constraints. That code and the PPRN code here described mainly follow the underlying ideas in the
primal partitioning method. Some aspects, especially those related to the management of a working
matrix are the same in both codes, and have been upgraded with respect to the original formulation of
the problem described in [17], substantially improving the performance of the algorithm. The primal
partitoning technique and the special management of the working matrix are revised in later sections.
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3. The primal partitioning method.

In this section a brief description of the primal partitioning method will be presented, paying
special attention to the changes brought about by considering the additional side constraints (5). See
[17] for a comprehensive description.

3.1. Structure of the problem.
Given that constraints (2), (4) and (5) in (6) are linear, it is possible to consider the problem

constraint matrix A. Then each variable jk (that is, each flow j of the k-th commodity) has an
associated column Ajk in A, with the following no null components:

(Ajk)t =

(
s
↓

t
↓

j
↓

. . . 1 . . .− 1 . . .︸ ︷︷ ︸
Network

| . . . 1 . . .︸ ︷︷ ︸
Mutual Capacity

| aj1 . . . ajp︸ ︷︷ ︸
Side Constraints

)t

where s and t identify the source and target nodes of arc jk. It can be noticed that each variable
appears in three clearly different types of constraint: network, mutual capacity and side constraints.
Network constraints are always active (they are equality constraints), whereas mutual capacity and
side constraints may not be (as they are inequality constraints).

Every basis in the primal partitioning method can be decomposed as follows:

B =
L1 R1 0
L2 R2 0
L3 R3 1l

(7)

L1, R2 and 1l being square matrices where:
• L1 refers to the network constraints and arcs of the K spanning trees. The topology of this matrix
is:

L1 =

B1

B2

. . .

BK

each Bk being a nonsingular matrix associated with the k-th spanning tree. L1 can be represented at
every iteration by K spanning trees following the methodology described in [4,12].
• R1 refers to the network constraints and complementary arcs of the K commodities.

Complementary arcs do not belong to any spanning tree and are required to preserve the nonsingularity
of the basis.
• L2 refers to the active mutual capacity and side constraints, for the arcs of the spanning trees.
• R2 refers to the active mutual capacity and side constraints, for the complementary arcs.
• L3 refers to the inactive mutual capacity and side constraints, for the arcs of the spanning trees.
• R3 refers to the inactive mutual capacity and side constraints, for the complementary arcs.
• 1l , an identity matrix, refers to the slacks of the inactive mutual capacity and side constraints. (It
should be noticed that constraints whose slacks are in matrix 1l are treated as inactive constraints,
even though the slack values are zero).

3.2. Motivation for using a working matrix.
During the optimization process systems Bx = b and xtB = bt must be solved at each iteration,

x and b being the variable and independent term vectors respectively. A description of the solution
technique can be found in [17] and is briefly outlined here. Considering for x and b a partition such
as the one employed above for the basis B, the next subsections show how to efficiently obtain the
solution of both systems.
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3.2.1. Computing Bx = b.
This system can be written as:

L1 R1 0
L2 R2 0
L3 R3 1l

x1

x2

x3

=
b1

b2

b3

By block multiplication we obtain:

L1x1 + R1x2 = b1 (8)
L2x1 + R2x2 = b2 (9)

L3x1 + R3x2 + x3 = b3 (10)

Isolating x1 from (8) we obtain x1 = L−1
1 b1 − L−1

1 R1x2. Substituting this expression into (9) yields
L2L

−1
1 b1 − L2L

−1
1 R1x2 + R2x2 = b2. Now x2 is directly obtained from this equation:

x2 = (R2 − L2L
−1
1 R1)−1(b2 − L2L

−1
1 x1) (11)

Once x2 is known, x1 is computed directly:

x1 = L−1
1 b1 − L−1

1 R1x2 (12)

And finally, with x1 and x2, x3 is computed as:

x3 = b3 − L3x1 −R3x2 (13)

Thus by solving (11), (12) and (13) consecutively we obtain the solution of the original system.

3.2.2. Computing xtB = bt.
This system can be written as:

x1 x2 x3

L1 R1 0
L2 R2 0
L3 R3 1l

= b1 b2 b3

By block multiplication we obtain:

x1L1 + x2L2 + x3L3 = b1 (14)
x1R1 + x2R2 + x3R3 = b2 (15)

x3 = b3 (16)

The x3 value is found directly from (16). Isolating x1 from (14) we obtain:

x1 = (b1 − x3L3 − x2L2)L−1
1 (17)

Using (17) and (16) at (15) we get:

(b1 − b3L3 − x2L2)L−1
1 R1 + x2R2 + b3R3 = b2

(b1 − b3L3)L−1
1 R1 + x2(R2 − L2L

−1
1 R1) = b2 − b3R3(

(b2 − b3R3)− (b1 − b3L3)L−1
1 R1

)
(R2 − L2L

−1
1 R1)−1 = x2 (18)

Thus by solving (16), (18) and (17) we obtain the solution of the original system.

As shown in the two previous subsections, to solve systems Bx = b and xtB = bt it suffices
to invert submatrix L1 and a matrix whose expression is R2 − L2L

−1
1 R1. This last matrix will be

referred to as the working matrix, and denoted by Q. It must be noticed that the fact of inverting
L1 does not involve too much work, given that L1 is a block diagonal matrix, where each block
represents a spanning tree. This kind of system can be solved by simply exploiting the tree structure
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of the matrix and highly efficient procedures have been developed [12]. Therefore, the problem of
solving both systems of equations is reduced to factorizing the working matrix Q instead of basis B,
and having a procedure to update this factorization at each iteration. Since the dimension of the
working matrix is small compared with the whole dimension of basis B, it can be expected that the
computation time of an algorithm using this primal partitioning will likewise be small compared with
a general-purpose linear optimization package. On the other hand, the dimension of basis B is fixed
during the optimization process, whereas the dimension of Q is variable, given that it depends on the
number of active mutual capacity and side constraints. That implies that the updating process of
the Q factorization must be able to deal with variable size dimensions, increasing the difficulty of the
algorithm (as will be shown in later sections).

3.3. Computing the working matrix Q.
Some new concepts must first be defined in order to use them in an efficient procedure for

computing Q:
• Asc: set of active side constraints at current iteration.
• Amc: set of active mutual capacity constraints at current iteration.
• A: set of active constraints (mutual capacity and side constraints), that is, A = Asc ∪ Amc.
• |C|: number of elements of set C.
• dim(M): dimension of matrix M .

Given that R2 and L2 are associated with the active mutual capacity and side constraints, they
can be subdivided into two submatrices as follows:

R2 =
[R2mc

R2sc

]
L2 =

[L2mc

L2sc

]

where R2mc and L2mc refer to constraints belonging to Amc, and R2sc and L2sc refers to constraints of
the set Asc. Since Q = R2 − L2L

−1
1 R1, it can also be considered as subdivided into two submatrices

thus:
Q =

[Qmc

Qsc

]
=

[R2mc

R2sc

]
−

[L2mc

L2sc

]
L−1

1 R1

whose dimensions are dim(Qmc) = |Amc| × |A| and dim(Qsc) = |Asc| × |A|.
The expression for computing Q involves the calculation of L−1

1 R1. Since L1 is a block diagonal
matrix where the k-th block is a minimum spanning tree for the k-th commodity, and R1 expresses
for each complementary arc of the k-th commodity its connection to the k-th minimum spanning tree,
then solving L−1

1 R1 is equivalent to having the paths (denoted by Pj , j = 1÷ |A|) of complementary
arcs in their associated spanning trees. Given an arc a ∈ Pj , we will say than a has normal orientation
if it points to the source node of the complementary arc j; otherwise, it has reverse orientation.

If we denote by:
• aj the arc associated with the j-th column of Q, j = 1÷ |A|.
• mci the mutual capacity constraint of the i-th row of Q, i = 1 ÷ |Amc| (this capacity constraint

refers to the saturated arc mci).
• sci the side constraint of the i-th row of Q, i = |Amc|+ 1÷ |A|.
• B(a, n) a logical function which becomes true if the arc a appears in the side constraint n, and

false otherwise.
• ca,n the coefficient of the arc a in the side constraint n.

Then we can compute directly the matrix Q as follows:

Submatrix Qmc:

Qij

i=1÷|Amc|
j=1÷dim(Q)

=





+1, if aj = mci

+1, if mci ∈ Pj with normal orientation
−1, if mci ∈ Pj with reverse orientation
0, otherwise
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Submatrix Qsc:

Qij

i=|Amc|+1÷dim(Q)
j=1÷dim(Q)

=





Following the next 4 steps:
1) Set Qij = 0
2) if B(aj , sci) then Qij = caj ,sci

for each a ∈ Pj , perform next 2 steps
3) if B(a, sci) and a has normal orientation then

Qij = Qij + ca,sci

4) if B(a, sci) and a has reverse orientation then
Qij = Qij − ca,sci

A full and more detailed description of the computation of Q can be found in [5].

4. Implementation of primal partitioning.

The implementation of the primal partitioning method developed in the PPRN code follows
three stages, called phases 0, 1 and 2, instead of the two classical phases of the simplex method.
Phases 0 and 1 attempt to obtain a feasible starting point, whereas phase 2 achieves the optimizer.
However, although phases 0 and 1 work sequentially to find a feasible point, it can be said that primal
partitioning is only applied in phases 1 and 2. The following subsections will clarify these ideas by
describing each phase.

For computational purposes the inequality constraints (4) and (5) in the original NMPC problem
are replaced by equality constraints by adding slacks, obtaining:

K∑

k=1

Xk + s = T ; 0 ≤ s (19)

K∑

k=1

LkXk + t = U ; 0 ≤ t ≤ U − L (20)

where s ∈ IRn and t ∈ IRp. In this formulation equations (19) and (20) replace the original equations
(4) and (5). Then the formulation of the problem considered by the algorithm (which will be referred
to as NMPC2) is:

min
X1,X2,...,XK

(1) ; subj. to (2–3), (19–20) (21)

It can be noticed that the current version of PPRN cannot deal with lower bounds other than zero in
the variables.

4.1. Phase 0.
In phase 0 the algorithm considers only the network constraints and bounds on the variables of

the problem, without any constraint linking the flows of different commodities. It attempts to obtain
for each commodity k, k = 1÷K, a feasible starting point for the linear network problem:

min
Xk

Ct
kXk

subj. to AXk = Rk

0 ≤ Xk ≤ Xk

(22)

This problem is solved by applying a specialization of the simplex algorithm for networks. The
implementation developed mainly follows the ideas described in [12] with regard to the pivotal
operations when managing the spanning trees. It is important to note that phase 0 has nothing
to do with primal partitioning, as it only solves single network problems.

The code developed can either merely obtain a feasible point for (22) or reach its optimum
solution. (The default option is to obtain a feasible point). When at the optimal solution of problem
(21) the number of active mutual capacity and side constraints |A| is small, that implies that this
point is not far from the point obtained by joining the solutions of the K single network problems (22).
Then it seems to be a good choice to obtain the optimum value when solving (22) for each commodity,
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because at the end of phase 0 the current point will be near the optimum solution desired. Otherwise,
simply obtaining a feasible point for (22) will suffice.

It has been observed in phase 0 that keeping up and checking a degenerate pivot list to avoid
degenerate steps is less efficient than allowing degenerate pivots. Thus the default option in the code
developed is to permit degenerate steps.

4.2. Phase 1.
The K points obtained in phase 0 will not satisfy in general the mutual capacity and side

constraints, thus giving rise to a pseudofeasible point. That implies than some slack variables s for
the mutual capacity constraints or t for the side constraints will be out of bounds. Let X̂k, k = 1 . . . K
be the pseudofeasible point obtained; then the following index sets are defined:

• s− =
{
i :

( K∑

k=1

X̂k

)
i
> Ti ⇔ si < 0

}
.

• t− =
{
i :

( K∑

k=1

LkX̂k

)
i
> Ui ⇔ ti < 0

}
.

• t+ =
{
i :

( K∑

k=1

LkX̂k

)
i
< Li ⇔ ti > (U − L)i

}

Introducing new artificial variables e and f , and fixing initial values for s and t such that:

• ( K∑

k=1

X̂k

)
i
+ si − ei = Ti ; si = 0 ; ∀i ∈ s−

• ( K∑

k=1

LkX̂k

)
i
+ ti − fi = Ui ; ti = 0 ; ∀i ∈ t−

• ( K∑

k=1

LkX̂k

)
i
+ ti + fi = Ui ; ti = (U − L)i ; ∀i ∈ t+

The problem solved in phase 1 is:

min
X1,X2,...,XK ,s,t,e,f

∑

i∈s−
ei +

∑

i∈t−
fi +

∑

i∈t+

fi (23)

subj. to (2–3)
K∑

k=1

Xk + s + 1lee = T (24)

K∑

k=1

LkXk + t + 1lff = U (25)

0 ≤ t ≤ U − L ; 0 ≤ s ; 0 ≤ e ; 0 ≤ f

Where both matrices 1le ∈ IRn×n and 1lf ∈ IRp×p in (24) and (25) are diagonal and defined as follows:

(1le)ii =
{−1 if i ∈ s−

0 otherwise
(1lf )ii =

{−1 if i ∈ t−

+1 if i ∈ t+

0 otherwise
It can be noticed that the objective function (23) at phase 1 is nothing but the sum of infeasibilities
of the mutual capacity and side constraints. Therefore, the NMPC2 problem defined in (21) will be
feasible if, at phase 1, the value of (23) at the optimizer is 0.

Dividing the process of finding a feasible starting point for problem MCP2 into two stages (phases
0 and 1) has proved to be very efficient in number of iterations with respect to methods that starting
from any given point consider the sum of infeasibilities for all constraints. In the PPRN code, at
the beginning of phase 1 it is known that no infeasibilities should be considered for the network
constraints, because in phase 0 K spanning trees have been obtained. Besides, the obtention of the K
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spanning trees does not involve much computation time, given that the available methods for solving
linear network problems are very efficient.

4.3. Phase 2.
Once a feasible point has been obtained, phase 2 attempts to achieve the optimizer of the nonlinear

objective function. The primal partitioning method, as presented in [17], was intended for linear
objective functions. However, when optimizing nonlinear functions, primal partitioning can be applied
together with Murtagh and Saunders’ strategy —described in [19]— of dividing the set of variables
into basic, superbasic and nonbasic variables:

A =
[
B|S|N]

(26)

A being the matrix of constraints (2), (4), and (5). The efficiency in managing the working matrix
Q with respect to the whole basis B is preserved in the nonlinear case. Furthermore, the structure
of network, mutual capacity and side constraints, can be exploited, improving the computation time
with respect to general methods of optimization where these constraints are treated in a general way.

Consider that at iteration i we have (subindex i is omitted in almost all cases to simplify the
notation):
•xi, h(xi): the current feasible point and the value of the objective function at this point.
•B, S,N : the sets of basic, superbasic and nonbasic variables. B is represented by just K spanning

trees and an LU decomposition of the working matrix Q.
•g(xi): where g(xi) = ∇h(xi) divided into g(xi) =

[
gB |gS |gN

]
for basic, superbasic and nonbasic

variables.
•Z: a representation matrix of the null subspace of the constraint matrix A defined in (26). The

expression of Z is:

Z =



−B−1S

1l
0


 (27)

It can easily be observed that AZ = 0.
•gz, εgz : the current reduced gradient gz = Ztg(xi), and a tolerance to estimate when its norm is

considered sufficiently small.
•π: a vector satisfying πtB = gt

B .
Then the algorithm of phase 2 can be expressed as the following succession of steps (steps where one
can take advantage of the particular structure of the constraints are marked with (∗)):

STEP (1): Optimality test in the current subspace.
i) If ||gz|| ≥ εgz go to step (3).

STEP (2): Price nonbasic variables.
i) Compute Lagrange multipliers λ = gN −N tπ. (∗)
ii) Choose a suitable λq and the associated column Nq. If no multiplier can be chosen

go to step (8).
iii) Update data structures: remove Nq from N and add it to S; add λq as a new

component of gz.
STEP (3): Find descent direction P t =

[
PB |PS |0

]t for basic and superbasic variables.
i) Solve ZtHiZPS = −gz, where Hi = ∇2h(xi). (∗)
ii) Solve BPB = −SPS . (∗)

STEP (4): Ratio test.
i) Find αmax ≥ 0 such that xi + αmaxP is feasible.
ii) if αmax = 0 go to step (7).

STEP (5): Linesearch.
i) Find α∗ such that h(xi + α∗P ) = min

0≤α≤αmax

h(xi + αP )

ii) Update new point xi+1 = xi + α∗P , and compute h(xi+1) and gi+1.
STEP (6): Update reduced gradient gz.

i) Solve πtB = gt
B . (∗)

ii) Perform gz = gS − Stπ. (∗)
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iii) if α < αmax go to step (1).
STEP (7): A basic or a superbasic variable becomes nonbasic (it reaches its lower or upper bound).

i) If a superbasic variable Sp hits its bound then:
- Remove the component of gz associated with the column Sp from S.
- Remove Sp from S and add it to N .

ii) If a basic variable Bp hits its bound then:
- Find a superbasic variable Sq to replace Bp in B preserving the nonsingularity

of the basis. (∗)
- Remove Bp from B and add it to N . Remove Sq from S and add it to B (pivot

operation). This involves updating the working matrix Q since a change in the
basis B has been made.

- Update π.
- Perform gz = gS − Stπ. (∗)

iii) Go to step (1).
STEP (8): Optimal solution found.

Some comments should be made about the finer points of this algorithm:

4.3.1. Computing the descent direction.
The current implementation of the program makes it possible to solve the system ZtHiZPS = −gz

in step (3) i) by two methods: through a truncated-Newton algorithm, or using a quasi-Newton
approximation of the projected Hessian ZtHiZ. In neither case is an analytical expression for the
Hessian of the objective function (1). Thus the PPRN code only needs the evaluation of the objective
function and its gradient. The following subsections will briefly show both methodologies.

4.3.1.1. Truncated-Newton algorithm.
The truncated-Newton algorithm employed for solving ZtHiZPS = −gz follows mainly the

description of [9]. This is based on the conjugate gradient method for solving linear systems of
equations Mx = b, M being symmetric and positive definite. In this case the matrix system M is
directly the projected HessianZtHiZ.

The steps for solving ZtHiZPS = −gz are:

Step 0) Set j = 0, p0 = 0, r0 = gz, d0 = −r0, δ0 = dt
0d0, η = θ2(gt

zgz).
Step 1) qj = ZtHiZdj

if dt
jqj ≤

√
εM δj then exit: PS =

{−gz if j=0
pj otherwise

else αj = rt
jrj/dt

jqj

Step 2) pj+1 = pj + αjdj

rj+1 = rj + αjqj

if rt
j+1rj+1 ≤ η then exit: PS = pj+1

Step 3) βj = rt
j+1rj+1/rt

jrj

dj+1 = −rj+1 + βjdj

δj+1 = rt
j+1rj+1 + β2δj

j = j + 1
go to step 1

The three critical points of this algorithm are the computation of qj and the controlling of the
two exit conditions. The next three points will briefly describe how PPRN proceeds with these tasks.

i) Given that the current Hessian Hi is unknown, it is necessary to approximate it in some way.
The steps for computing qj = ZtHiZdj are:

• U = Zdj

• V =
(
g(xi + γU)− g(xi)

)
/γ, g(x) being the gradient of the objective function.

• qj = ZtV
The second step comes from expanding g(xi + γU) in Taylor series:

g(xi + γU) ≈ g(xi) + γ∇g(xi)U

∇g(xi)U ≈ (
g(xi + γU)− g(xi)

)
/γ = V
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Thus, since ∇g(xi)U = HiU = HiZdj , V can be considered a good approximation to HiZdj . The
γ difference interval used by the code is γ =

√
εM/

√
δj , where εM is the machine precision, and

δj = dt
jdj is updated at each iteration in step 3. In fact, the correct value that should be used

is γ =
√

εM/
√

U tU where U = Zdj . The effect of choosing such a γ value would be equivalent
to performing finite differences using the unit vector U/||U ||2 (where ||.||p denotes the p-norm of a
vector) and a difference interval equal to

√
εM , which is a more desirable situation. However, that

would involve computing the 2-norm of U at each iteration, whereas the value
√

δj = ||dj ||2 has been
already computed. This value is chosen, then, to avoid extra computations, although in some cases
(where ||U ||2 >> ||dj ||2) the difference approximation could become meaningless.

ii) The first exit condition in step 1 attempts to control whether or not the hessian Hi is positive
definite. If the value dt

jZ
tHiZdj was negative we could conclude that ZtHiZ is not positive definite.

However, given that we only have an approximation of ZtHiZdj , we have to compare dt
jZ

tHiZdj

with a value greater than 0. The PPRN code uses the value
√

εM δj , where δj = dt
jdj . Using this

value, the comparison test can be seen as:

dt
jZ

tHiZdj ≤
√

εM δj

dt
jZ

tHiZdj ≤
√

εM ||dj ||22
dt

j

||dj ||2 ZtHiZ
dj

||dj ||2 ≤
√

εM

which means than unit vectors are being considered, decreasing the possible round-off error.

iii) The second exit condition in step 2 will be active when a sufficient reduction in the
vector rj has been achieved. Initially r0 = gz, and (assuming full precision) at each iteration
||rj ||2 ≤ ||rj−1||2, j = 1 ÷ s, s being the number of superbasic variables (which is the dimension
of the system). After s iterations the rs vector will have a value of 0, which means that ps is the
solution of the system. However, in order to avoid too many computations, the process will be stopped
when a sufficient decrease in the 2-norm of rj has been reached. In fact, the exit condition should be
written as:

rt
j+1rj+1 ≤ η

rt
j+1rj+1 ≤ θ2(gt

zgz)

rt
j+1rj+1

gt
zgz

≤ θ2

||rj+1||2
||gz||2 ≤ θ = max{ε1, min{ε2, ||gz||2}}

where ε1 is the maximum required precision (in the PPRN code ε1 =
√

εM ), ε2 is the required
precision when the current iterate xi is far from the optimum of the current subspace (ε2 ∈ [0, 1] and
can be chosen by the user), and ||gz||2 is used as the required precision when we are near the optimum
of the current subspace.

A clear disadvantage of this methodology is that at each iteration an evaluation of the objective
function has to be made for computing qj through finite differences, which considerably increases the
cost of the algorithm. On the other hand, no data structure need be stored to maintain ZtHiZ at
each iteration (as quasi-Newton methods do), and only four vectors of dimension s are needed for
pj , rj , dj and qj . If the number of superbasics is high a great memory saving can be made, which can
speed up considerably the performance of the program.

4.3.1.2. Quasi-Newton method.
The second way of solving ZtHiZPS = −gz consists of approximating the s × s matrix ZtHiZ

by a factorization RtR following the description in [19]. This is the default option in the PPRN code.
Thus, the superbasic direction PS in step (3) i) is found directly by solving RtRPS = −gz by forward
and backward substitution. This factorization must be updated whenever a superbasic variable enters
the set S (step (2) iii)), a superbasic variable leaves the set S (step (7) i)), there is a basis change (step
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(7) ii)) or there is a movement from xi to xi+1 and a quasi-Newton update of R must be performed
(step (6)). Let us describe briefly how each operation is performed.

i) A superbasic variable enters the set S.
In this case the current implementation of the PPRN code merely adds 1ls+1 (the (s + 1)-th unit

vector) to R as a new column. The new dimension of matrix R will be (s + 1)× (s + 1). This implies
that when solving RtRPS = −gz at the next iteration PSs+1 = −gzs+1 (the gradient direction will
be used for the (s + 1)-th component of PS). However, in successive iterations new second-order
information will be added to this component through the quasi-Newton update.

ii) A superbasic variable leaves the set S.
In this case a column of R (i.e., the q-th column) must be removed from R. The resulting upper-

Hessenberg matrix must be restored to its triangular form. This is performed by pre-multiplying R
with suitable Givens matrices Gl,l+1, l = q ÷ s− 1.

iii) A basis change is performed.
Consider that the p-th basic variable is replaced by the q-th superbasic variable. Thus, the

new null space matrix Z̄ can be written as Z̄ = Z(1l + 1lqut), where 1lq is the q-th unit vector, and
u = −1/yq(y + 1lq), y being y = B−1

p S (B−1
p is the p-th row of the inverse of the basis, S is the

superbasic matrix and yq the q-th component of y). Thus, since RtR ≈ ZtHiZ, the next factorization
R̄ can be obtained as follows:

R̄tR̄ ≈ Z̄tHiZ̄

≈ (1l + u1ltq)Z
tHiZ(1l + 1lqut)

≈ (1l + u1ltq)R
tR(1l + 1lqut)

≈ (Rt + uRt
q)(R + Rqu

t)

⇓
R̄ = (R + Rqu

t)

Rq being the q-th column of R. A more detailed description of this process can be found in [19].

iv) Quasi-Newton update.
When there is a movement from xi to xi+1 the approximation RtR of ZtHiZ must be modified

to take into account the new reduced Hessian ZtHi+1Z. The update used by the PPRN code is the
well-known BFGS formula

R̄tR̄ = RtR +
1

α∗ytPS
yyt +

1
gt

zPS
gzg

t
z (28)

where α∗ is the linesearch value obtained in step (5) i), gz is the reduced gradient Ztg(xi) at point xi,
PS is the superbasic direction found in step (3) i), and y = g(xi+1) − g(xi). Appendix 1 shows how
the factorization update R̄ is performed in the PPRN code.

The main advantage of the quasi-Newton method with respect to the truncated-Newton algorithm
is that no extra objective function evaluations are required. For objective functions with high
evaluation computation cost this can mean a significant time saving. On the other hand, the R matrix
must be stored in dense form, and should the number of superbasics be very great its management
would be prohibitive. The default option of the PPRN code is to work with the quasi-Newton method
until a certain number of superbasics is reached (this threshold value can be modified by the user),
whereupon a switch is made to the truncated-Newton method.

4.3.2. Optimality test in the current subspace.
At each iteration it must be tested whether the optimum point of the current subspace has already

been reached (step (1) i) of the algorithm) . However, the test performed is much more exhaustive
than simply ascertaining whether ||gz|| ≥ εgz . Actually, the code discerns between two situations:
when we have still not reached the optimum active constraint set (thus being far from the optimizer)
and when we are already in the optimum active constraint set and merely a final, more accurate
subspace minimization is required. The variable cs tells us which is the current situation, and it can
take the values “far” or “near” depending on whether we are in the first or the second case. The code
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uses six logical variables (Ti) to decide whether or not the optimum point has been achieved in the
current subspace. Each Ti is defined as follows.

T1 :=
(
α∗||PS ||1 ≤ (εcs

x +
√

εM )(1 + ||xs||1)
)

T2 :=
(|∆h| ≤ (εcs

f + εM )(1 + |h|))

T3 :=
(||gz||∞ ≤ Tgz

)
T4 :=

(||gz||∞ ≤ max{Tgz/10, εgε(||π||1)}
)

T5 :=
(
(T5 is active) and (cs = “far”) and (nsame ≤ MAXsame)

)
T6 :=

(
ncurrent ≤ MAXcurrent

)

The first test, T1, controls whether the 1-norm of the current movement in the superbasic variables
α∗||PS ||1 is significant with respect to the 1-norm of the superbasic components of the current iterate
||xs||1, using for such comparison the machine precision εM and the value εcs

x which depends on the
variable cs (if cs= “near” this value will be much smaller than when cs= “far”, requiring a smaller
movement to satisfy the test).

The second test, T2, will be true when the variation in the objective function |∆h| is not significant
with respect to the absolute value of h at the current iterate (|h|). The value εcs

f used in the comparison
depends also on the variable cs, and, as in the previous case, ε“near′′

f << ε“far′′
f .

At test T3 the tolerance Tgz
has been previously computed as Tgz

= ηcs
gz
||g0

z ||∞, where g0
z was

the reduced gradient vector at the first point of the current subspace, and ηcs
gz
∈ [0, 1] is a value

that can be chosen by the user. Thus, this test attempts to control when a sufficient reduction in
the reduced gradient has been made since the minimization in the current subspace started. When
cs =“near” it is desirable to require a greater reduction in the projected gradient, so, as in previous
cases, η“near′′

gz
<< η“far′′

gz
.

The next test, T4, will be true when the reduced gradient is so small that the current point can
be considered to be the optimum one of the current subspace. In this case the value εg does not
depend on how far we are from the optimum active constraints set (variable cs), and ε(||π||1)} is a
function that depends on the π vector computed in step (6) i) of the phase 2 algorithm. In the current
implementation of the PPRN code ε(||π||1) has been defined as:

ε(||π||1) = max{1,
||π||1√

mK + n + p
} (29)

where m was the number of nodes, K the number of commodities, n the number of arcs and p the
number of side constraints. The coefficient

√
mK + n + p is an attempt at scaling the optimality

tolerances depending on problem size.
The last two tests have been included for highly non-smooth functions where the four previous

tests could mean very slow convergence. The first of these two tests (T5) is inactive by default (the
user can decide to activate it if he/she so desires) and can only be applied when we are far from
the optimum. T5 will become true if the first three tests, T1, T2 and T3, gave the same result during
MAXsame consecutive iterations in the current subspace (where the value MAXsame can be chosen
by the user). The second one (T6) controls whether the number of iterations in the current subspace
ncurrent is greater than a maximum allowable value MAXcurrent.

Once the six logical tests have been made, the code will consider that the optimum in the current
subspace has been reached if the logical variable T is true, where T is defined as:

T := (T1 and T2 and T3) or T4 or T5 or T6 (30)

Thus, in step (1) i), the condition that is really verified as the criterion for going to step (3) is “if T
is true” instead of “If ||gz|| ≥ εgz”.

4.3.3. Choosing a nonbasic variable to become superbasic.
In step (2) ii) the process of choosing a nonbasic variable to enter the superbasic set was reduced

to “choose a suitable λq and the associated column Nq”. In fact, the PPRN code implements a more
elaborated algorithm for this point, which is most crucial since a bad choice or poor tolerances may
mean slow convergence when finding the optimum active constraint set.
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The following algorithm is the very sequence of steps in which point (2) ii) is expanded in the
PPRN code. The algorithm uses a tolerance Tλq

for choosing a good multiplier λq. At the beginning
of phase 2 this tolerance is initialized with an arbitrary high value T 0

λq
. The variable cs for knowing

how far we are from the optimal active constraints set is also consulted and updated in this algorithm.
The function ε(||π||1) was defined in (29), and the tolerance Tgz —to detect a sufficient reduction in
the norm of the reduced gradient ||gz||∞— was already introduced in the previous subsection. The
value εopt, chosen by the user, is the optimality precision required at the optimum point (by default
εopt = 10−6).

0) At the beginning of phase 2 set Tλq
= T 0

λq
and cs = “far”.

1) Tλq
= max{Tλq

, 1.12 · ||gz||∞}.
2) Find the first λq such that |λq| ≥ Tλq or, if there is none, the greatest |λq|.
3) If (|λq| ≥ Tλq

) go to 7).
4) No multiplier satisfies the current tolerance Tλq .

If (|λq| ≥ εoptε(||π||1)) then
i) Tλq = max{|λq|/10, εoptε(||π||1)}.
ii) Go to 7).

5) No multiplier is greater than the optimality tolerance εoptε(||π||1). We are near the optimum.
If ((cs = “near”) or (||gz||∞ ≤ εoptε(||π||1))) then go to 8).

6) No multiplier is greater than the optimality tolerance and the point does not satisfy the
optimality conditions. We adjust the tolerances for a more accurate optimization —probably
the last— in the current subspace.

i) Tgz =
min{Tgz , ||gz||∞}

10
.

ii) If (Tgz < εoptε(||π||1) then
- cs= “near”.
- Tgz = εoptε(||π||1).

iii) Continue with step (3) of the phase 2 algorithm.
7) A suitable λq has been found:

i) Update ||gz||∞ = max{|λq|, ||gz||∞}.
ii) Update Tgz = ηcs

gz
||gz||∞.

iii) If (cs = “near”) then cs= “far”.
iv) Continue with step (2) iii) of the phase 2 algorithm.

8) The current point satisfies the optimality conditions. STOP: OPTIMAL SOLUTION FOUND.

The main idea of this algorithm is to use initially an arbitrary high tolerance Tλq and to reduce
it when no multiplier can be found greater than this tolerance. This value is reduced until it reaches
the optimality tolerance εoptε(||π||1). When that happens it can be considered that the optimum
constraints set has been found, and the tolerance Tgz is adjusted for a final, more accurate optimization
in the current optimum active constraints set. It must be noted that at step 1 we always choose the
greater value between 1.12 · ||gz||∞ and Tλq for finding a good λq, following the recommendation in
[19]. This is done because the chosen λq will be added as a component of the new reduced gradient,
which means that this value will be significant with respect to the rest of components of the current
gz.

4.3.4. Quasi-active superbasic variables.
When solving ZtHZPS = −gz, PPRN makes it possible to consider a special set of superbasic

variables that will be referred to as “quasi-active superbasic variables”. The quasi-active set I+ is
defined as:

I+ = {i : |xsi | < εq and gzi < 0} ∪ {i : |xsi − xsi | < εq and gzi > 0} (31)
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xs being the superbasic variables, xs their upper bounds and gz the reduced gradient. It will be
considered that the remaining superbasic variables belong to the set I−. When the option for
considering this kind of superbasics is active the code will solve ZtHZPS = −gz by performing

ZtHZI− 0
0 1lI+

PSI−

PSI+

=
−gzI−

−gzI+

(32)

where MI∗ is the vector (matrix) made of the i-th components (columns and rows) of M such that
i ∈ I∗. Thus the solution of (32) is directly

ZtHZI− PSI− = −gzI− (33)
PSI+ = −gzI+ (34)

By definition of (31) it is clear that using the descent direction PSI+ computed at (34) means than
the quasi-active superbasic variables will acquire a value outside their bound when updating the new
point in step (5) ii). The motivation for using such a PS is, then, to avoid possible descent directions
found through ZtHZPS = −gz that could provide a zero value for αmax at step (4) i) of the phase
2 algorithm (that is, degenerate steps). The fact of avoiding these degenerate steps removes some
cycling problems in the process of leaving and entering superbasic variables. The default option is
not working with quasi-active variables. However, when a degenerate step is found due to a quasi-
active variable, the option is automatically activated —only at next iteration— in order to avoid the
initiation of cycling.

4.3.5. Pivot operation.
When a basic variable hits its bound in step (7) ii), a column of the basis B is removed and

replaced by a column of the superbasic set S. The new basis (denoted by Bn) could be expressed as
Bn = Bη being η a convenient eta-matrix. However the algorithm does not work with the whole basis
B. For our purposes it is necessary to reflect how this change in the basis affects the K spannings
trees and the working matrix Q. During the pivotal operations the dimension of matrix Q can be
modified, since dim(Q) = |A| (where |A| is the number of active mutual capacity and side constraints).
Considering that the variables of the problem can be arcs or slacks (and the arcs of the basis B can
be subdivided into arcs of the K spanning trees or complementary arcs), then, depending on the type
of variable entering and leaving the basis, the following six cases can be observed (denoting by “E:–”
the case of an entering variable and by “L:–” the case of a leaving variable):

• E: slack–L: slack. The row of Q associated with the entering slack is removed and replaced by a
new row for the leaving slack. Dim(Q) is not modified.
• E: slack–L: complementary arc. The row and column of Q associated with the entering slack and

leaving complementary arc respectively are removed. Dim(Q) must be updated as dim(Q)− 1.
• E: slack–L: arc of k-th tree. A complementary arc of the k-th commodity, e.g. the j-th

complementary arc, having the leaving arc in its path Pj , must be found to replace the leaving
arc in the k-th tree. This complementary arc will always exist (otherwise the basis would become
singular). The row and column of Q associated with the entering slack and the j-th complementary
arc are removed. Dim(Q) must be updated as dim(Q)− 1.
• E: arc–L: slack. A new row associated with the leaving slack is added to Q. To maintain the

nonsingularity of Q a new column for the entering arc — which will become a complementary arc —
is also added to the working matrix. Dim(Q) must be updated as dim(Q) + 1.
• E: arc–L: complementary arc. The column of Q associated with the leaving complementary

arc is removed, and replaced by a column corresponding to the entering arc, which will become a
complementary arc. Dim(Q) is not modified.
• E: arc–L: arc of k-th tree. A complementary arc of the k-th commodity, e.g. the j-th complementary
arc, having the leaving arc in its path Pj , is sought. If this arc is found, it will replace the leaving arc
in the k-th tree, and the entering arc will become a complementary arc. If no complementary arc is
found, then the entering arc will replace the leaving arc in the k-th tree. One of the two possibilities
described will always happen, otherwise the basis would become nonsingular. Dim(Q) is not modified.
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It has not been made explicit, but it must be noticed that, when rows of matrix Q =
[

Qmc

Qsc

]
are

removed or added, depending on the type of associated slack (whether it is a slack of mutual capacity
or side constraints) the operations will affect submatrix Qmc or/and Qsc.

5. Updating the working matrix.

The way in which the working matrix is handled is instrumental in ensuring the efficiency of the
algorithm, since it is the only matrix to be factorized (together with matrix R that has been presented
in the former section). Several tests have shown that the sparsity of Q is, in general, high (Q has
less than 10% non zero elements). The current implementation of code PPRN performs a sparse LU
decomposition of Q with partial pivoting allowing a choice between two ways of pre-reordering the
matrix: applying either the P3 algorithm developed by Hellerman and Rarick [13] or a pre-reorder
which attempts to put all the spikes at the end of the matrix. The latter pre-reorder is taken as
default, since very good results have been obtained with it. Details of this subject can be found in
[11].

An initial description of how to update this matrix was made by Kennington and Helgason in
[17]. Two importants remarks should be made on the approach described there:
• It only considers the updating of the Q matrix with mutual capacity constraints. As mentioned

above, the updating of Q in code PPRN has been extended to include side constraints.
• It considers an updating of Q−1 instead of Q. The difficulty of the variable dimension of Q at each
iteration means that updating Q−1 is a costly operation if it is stored as a sparse matrix, since it is
necessary to add or remove columns in a sparse structure. On the other hand, it seems inappropiate
to store Q−1 as a dense matrix, given its high sparsity. This led one of the authors to develop an ad
hoc and very efficient update of Q, instead of its inverse [5].

It is beyond the scope of this document to describe all the formulae required in the updating
process, as they were developed in a previous work [5]. Nevertheless, a brief outline will be given here.

Let us consider that at iteration p the working matrix Qp is recomputed (not merely updated),
with dimension dim(Qp) = np, and that it will not be newly recomputed until after i iterations (that is,
until iteration p+i), where its dimension will be dim(Qp+i) = np+i. Since the dimension of Q can only
increase at most by a row and column at each iteration, it follows that nj ≤ np + i, ∀ j p ≤ j ≤ p+ i,
p+i being the maximum dimension of Qj between iterations p and p+i. Thus the proposed procedure
would be to work with an extended matrix Qj at iterations j, p ≤ j ≤ p + i, where Qj is defined as

Qj =
( nj lj

nj Qj 0
lj 0 1l

)

Dimensions nj and lj of matrices Qj and identity 1l satisfy nj + lj = np + i, i.e., the extended matrix
Qj has at every step the maximum dimension that Qj can achieve between iterations p and p + i.

Thus the structure that will be updated will be that of the extended matrices Qj , even though
the systems to be solved are systems Qjxj = bj and xt

jQj = bt
j . In fact these systems can be directly

computed from Qj , using xj and bj , which are extensions of xj and bj such that

xj =




nj xj

lj αj


 bj =




nj bj

lj 0




Then

Qjxj = bj ⇐⇒
(

Qj 0
0 1l

)(
xj

αj

)
=

(
bj

0

)
⇐⇒

{
αj = 0
Qjxj = bj

the marked expression being the desired result. Analagously xt
jQj = bt

j can be solved in the same
way.

The increase (decrease) in the number of rows/columns in Qj can now be treated through
direct pre and post-multiplications by eta and permutation matrices, implying that nj will become
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nj + 1 (nj − 1) and the identity submatrix in the bottom right part of Qj will lose (gain) a unit
in dimension. Therefore, it is clear than Qj+1 can be updated from Qj through Qj+1 = EjQjFj ,
where Ej and Fj are made up of eta and permutation matrices. Recursively it is possible to write
Qj+1 = EjEj−1Qj−1Fj−1Fj , and so on, until reaching iteration p where the working matrix was
recomputed. Thus it can be written in a general form ∀ j, p ≤ j < p + i, Qj = EQpF , where
E =

∏j−p
l=1 Ej−l and F =

∏j−p
l=1 Ep+l−1. So the solution to system Qjxj = EQpFxj = bj can be

computed as follows:

QpFxj = E−1bj

Qpzj = E−1bj , where zj = Fxj

zj = Q
−1

p E−1bj

And finally xj = F−1zj

Since Qp has been factorized when recomputed, to solve the required systems E and F must
simply be inverted at each iteration. Nevertheless, the inverses of E and F are directly computed,
since they are nothing but products of eta and permutation matrices. In fact, code PPRN directly
stores the inverses of E and F , which continue to be products of eta and permutation matrices.

6. Test problems employed.

Two types of problems have been employed to test the performance of the code. The first type are
expensive (in computation time) artificial problems, while the second arises from the fields of long and
short-term hydro-thermal coordination of electricity generation, electrical network expansion planning
and traffic assignment. The following subsections will describe the main features of such problems,
and the particular instances employed in testing the code.

6.1. Artificial problems.
Three different artificial objective functions have been tested. However, the networks used are real

and have been obtained from long-term hydro-thermal scheduling problems that will be described later.
The reason for choosing such networks instead of others obtained from different network generators
—e.g., those distributed for the First DIMACS International Algorithm Implementation Challenge
[10]— is that, for problems of the same size, the hydro-electrical networks seem to be much more
difficult to solve than the randomly obtained ones (this can be observed in a previous work by the
authors for linear objective functions [8]).

The first two artificial objective functions are simple convex functions defined by:

h(1)(X1, X2, . . . , XK) =
K∑

k=1

n∑

i=1

x2
ki (35)

h(2)(X1, X2, . . . , XK) =
K∑

k=1

n∑

i=1

x4
ki (36)

xki being the flow of the i-th arc and k-th commodity. The third objective function is derived from
that described in [25], and is defined as:

h(3)(X1, X2, . . . , XK) =
K∑

k=1

Fk(Xk) (37)

where

Fk(Xk) =
1
c1

n∑

i=1

x2
ki +

1
c2

(
n−1∑

i=1

√
1 + x2

ki + (xki − xk,i+1)2 +
1
c3

(
10 +

n∑

i=1

(−1)ixki

)4
)

(38)
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table i. long-term hydro-thermal scheduling problems.

test K #s.c. nodes arcs rows A columnsA

P(j)
1 4 12 37 153 313 777

P(j)
2 4 3 99 315 714 1578

P(j)
3 4 3 685 2141 4884 10708

c1, c2, c3 ∈ IR (in the executions performed c1 = 1000, c2 = 1000 and c3 = 1200). Despite their
simplicity, these three objective functions have solutions with a high number of superbasic variables,
which increases the execution time considerably.

Table i shows the dimensions of the long-term hydro-thermal scheduling networks used with
these artificial objective functions. The first column, “test”, is the name given to the test problem,
where the subindex i identifies the network used and the supraindex (j), j = 1 ÷ 3 refers to the
artificial objective function used ((35), (36) or (37) respectively). Column K denotes the number
of commodities considered in the test (usually four commodities are used for these long-term hydro-
thermal networks). Column “#s.c.” shows the number of side constraints considered in the problem.
Columns “nodes” and “arcs” give the number of nodes and arcs of the single-commodity network.
Finally, columns “rows A” and “columns A” give the dimensions of the constraint matrix of the
multicommodity network problem to be solved.

6.2. Hydro-thermal scheduling problems.
The second type of problems has been obtained as instances of long and short-term hydro-

thermal scheduling of electricity generation according to the models proposed in [21] and [15] (where
a comprehensive explanation of the models can be found).

6.2.1. Long-term hydro-thermal scheduling problems.
The solution to the long-term hydrogeneration optimization problem in a power utility with

thermal and hydro power stations indicates how to distribute throughout a long period of time the
hydroelectric generation in each reservoir of the reservoir system in order that the expected cost of
thermal generation over the period under consideration be a minimum. In long-term hydrogeneration
optimization the availability of a thermal plant, the demand of electricity and the water inflows in
the reservoirs are not deterministic but only known as probability distributions. The probabilistic
demand and thermal plant availability can be modelled through functions of probabilistic production
cost versus hydrogeneration. The problem left is that of minimizing the sum of the expected generation
cost of each interval, taking into account that the water inflows at each interval are to be regarded as
stochastic.

d

c

a

b

Inflow reserv."b"

Inflow reserv."a"

Fig. 1 Example of a four-reservoir system.
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Fig. 2 Replicated multicommodity water network.

It is important to optimize taking into account the whole set of probable water inflows. A model
that considers several types of water according to their probability of occurrence must be employed.
This can be made approximating the probability density function of water inflow, in each reservoir over
each time interval considered, by a block probability density function with K−1 rectangular blocks of
probability areas p1, . . . , pK−1,

∑K−1
k=1 pk = 1. The commodities of the problem are thus amounts of

water corresponding to different probabilities. The first commodity is the deterministic water (from
the origin of the probability density function to the axis position where the first rectangular block
starts), the second commodity is the water under the p1 block, and so up to the K-th commodity
under the block of area pK−1. An expression of the expected cost of generation at each interval in
terms of amounts of the different types of water dedicated to storage, generation, pumping or spillage
at each reservoir has been derived, and the objective function to be minimized is the sum of the
expected costs of all intervals, which can be considered highly nonlinear (more details can be found
in [21]).

The characteristics of the tests problems used for this model were already described in table i.
We shall refer to the concrete problems with this objective function as P(4)

i (since the supraindex
(j), j = 1÷ 3, are related to the artificial objective functions).

Given a reservoir system such that of Fig. 1, a replicated hydro network of it, as shown in Fig. 2,
is employed to represent the water balance constraints over the intervals. Total reservoir volumes and
maximum discharges are imposed as mutual capacity constraints to multicommodity flows on volume
arcs (the horizontal ones) and discharge arcs (the vertical or slanted ones).

6.2.2. Short-term hydro-thermal scheduling problems.
The solution to the short-term hydrot-hermal coordination indicates how to distribute the

hydroelectric generation (cost-free) in each reservoir of the reservoir system and how to allocate
generation to thermal units committed to operate over a short period of time so that the fuel
expenditure during the period is minimized. Load and spinning reserve constraints tie up hydro
and thermal generation.
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Fig. 3 a) Incremental Spinning Reserve (ISR) function of the jth thermal unit.
b) Decremental Spinning Reserve (DSR) function of the jth thermal unit.
c) Network representation of thermal generation variables.

The network model usually employed for short-term hydrogeneration optimization has been
extended to include thermal units in a new and undecoupled way [15], imposing single load and
spinning reserve constraints on both hydro and thermal generation and minimizing directly thermal
production costs without decoupling the problem into hydro and thermal subproblems. When
constraints are added so that hydrogeneration plus thermal generation match the load and satisfy a
spinning reserve requirement at each interval, pure network flow algorithms are no longer applicable;
however, if these constraints are linearized, efficient specialised algorithms for optimizing network
flows with linear side constraints can be employed. Hydrogeneration has thus been linearized in terms
of the network variables (initial and final volumes and discharges at each reservoir) in order that all
side constraints are linear.

The basis of the thermal generation model used is the following. Let Pj be the power output
of the jth thermal unit and let P j and P j be its upper and lower operating limits: P j ≤ Pj ≤ P j .
The incremental spinning reserve (ISR) rIj of unit “j” is the amount of power by which the current
generation Pj can be increased within a given time lapse. rIj is the maximum possible ISR. Similarly,
the decremental spinning reserve (DSR) rDj is the amount of power by which one can decrease the
current power Pj . Its maximum value will be rDj . The ISR rIj and the DSR rDj of the jth unit
satisfy: rIj = min{rIj , P j − Pj} and rDj = min{rDj , Pj − P j}, which is represented by the thick
lines of Fig. 3a) and 3b)

At power Pj we have an ISR rIj and a DSR rDj , and there is a power gap gIj ≥ 0 from the ISR
rIj to P j − Pj so that rIj + gIj = P j − Pj and also a power gap gDj ≥ 0 between the DSR rDj and
Pj −P j thus rDj + gDj = Pj −P j . The generation of a thermal unit, its ISR and DSR, the associated
power gaps, and its operating limits lend themselves well to being modeled through network flows as
shown in Fig. 3c). An upper limit of rIj on arc α must be imposed to prevent the reserve from getting
over its limit. To assure that flows on arcs α and β are like the variables in Fig. 3a), a small positive
weighing cost on the flow of arc β must be placed while arc α has zero cost. Similarly arc γ will have
zero cost while arc δ will have a small positive cost wβδ like arc β in order to divert as much flow as
possible from arc β and δ to arcs α and γ respectively. The flow Pj − P j from node A to node C is
associated to the generation cost to be minimized

The model just described for one generator can be extended to all committed thermal units at
a given interval “i”. A single network will represent the generation, ISR, DSR and power gaps of all
committed units. The networks of each single unit can share the sink node S. The network described
would correspond to the thermal generation and spinning reserve for a single interval “i”, and will be
referred to as therm.net “i”. One such network, connected to a single sink node S, must be considered
for each interval. A load constraint and an ISR and a DSR requirement, for each interval, are linear
side constraints.

The resulting network model is a single commodity one and the primal partitioning algorithm
described has been employed to find its optimum when minimizing a nonlinear cost function of
generation. A complete description of this nonlinear objective function can be found in [15].
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table ii. short-term hydro-thermal scheduling problems.

test K #s.c. nodes arcs rows A columnsA

P(5)
1 1 528 1345 4416 1873 4944

P(5)
2 1 840 1975 6048 2815 6888

P(5)
3 1 840 2479 8064 3319 8904

P(5)
4 1 1848 4741 15600 2289 17448

Table ii shows the characteristics of the test problems employed with the short-therm objective
function. The meaning of the columns is the same that was previously detailed. In all cases a
single-commodity network problem is obtained.

6.3. Electrical network expansion planning problems.
The network expansion problem addressed to is that of finding the lower cost expansion of an

existing transmission network in order to account for load demand growth and increasing power
generation availability. The investment cost of new transmission and distribution lines and power
transformers from some power source points to load points and the operating cost expressed as
estimated cost of active power losses on the existing plus new network should be minimized. Problem
data are: a set of generating points with their geographical coordinates, generating capacity and
voltage level, a set of load points with their geographical coordinates, load value and voltage level, a
set of existing lines and transformers uniting some generation and load points and a set of functions
of change of investment cost of lines and transformers at different voltage levels with power rating.
Finally a price to evaluate power losses, an estimation of the usage rate (in percentage of time over
a year) of the transmission and distribution equipment, the interest rate to be considered and the
investment pay-off time length.

It will be assumed that, although all loads have an specified voltage level (usually the lowest),
power can be delivered to them at any voltage level equal or higher than the load voltage. This implies
that at all load points all voltage levels envisaged equal or higher than the load voltage should be
considered. The user may also decide which voltage levels to consider in generation sources. Thus at
each load and generation point all transformers from any voltage to all lower levels considered will be
taken into account.

d1

d2d3

a1

a2a3

b1

b2b3

c1

c2c3

g1

g2

h1

h2

S
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klC

K

Bkl

cost
(Pts)

(MW)

a)

Fig. 4. a) Example of superabundant network from generating sources g and h to load nodes a, b, c
and d at three voltage levels

b) Real cost function of transmission line or transformer for several structural options, in terms
of power to be carried and continuous approximation to real cost function.
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table iii. Electrical network expansion planning problems.

test #volt K #s.c. nodes arcs rows A columnsA

P(6)
1 3 20 4 73 508 1972 10672

P(6)
2 4 20 4 92 508 2352 10672

P(6)
3 4 20 4 92 560 2404 11764

In what regards to transmission lines, if any load or generation point at a given voltage level
would be connected to the rest of the load or generation points at the same voltage, we would have
an enormous number of variables to consider. In order to have a reasonable number of variables rules
have been defined to decide which lines to take into account at each voltage level. The set of lines
and transformers considered will be referred to as superabundant network (see Fig 4a) and it should
include the optimum network subset. An optimization process will try to find out this optimum
network. Taking a network with the same nodes as the superabundant network and taking as arcs
its lines and transformers the variables to be optimized will be the flows on the arcs. The arcs with
zero flow at the solution are not worth building up whereas those with flow bigger than zero are to
be constructed. The flow on the arcs of the networks will be active power and each arc between two
nodes is duplicated with one arc in each direction to account for nonnegative flows representing power
flow in either direction

The objective function considered refers to the installation cost of equipment and a continuous
function as that in Fig. 4b) has been considered for each line or transformer. This function has a linear
part plus an step type cost modeled by one minus a decreasing exponential times the basic investment
cost. Transmission losses as a quadratic function of power flow are also part of the objective function.

Some constraints will have to be imposed on the variables (power flows) in order that the solution
obtained resembles the electrical flows on the lines and transformers to be installed. This is possible
by considering for the constraints the parameters of the the d.c. aproximation. The flow balance
equations in the network ensure the compliance of Kirchhoff’s current law.

Security constraints are usually considered either limiting the bus voltage magnitudes and bus
swing angles, or protecting the network against single line contingencies. In this model special security
constraints have been included: that at least two lines at the same voltage level must carry the load
to a given load point and that there should be disjoint paths from each load point to at least two
different generation points. Should these security constraints be not included, a radial type network
expansion would be the optimal solution.

These security constraints can not be imposed with the formulation described so far but can
be easily expressed through the following multicommodity model. The power corresponding to each
load will be considered a different commodity, so there will be as many commodities flowing on
the network as load nodes. Instead of having a nonlinear single commodity network flow problem
with side constraints we will have to solve a nonlinear multicommodity network flow problem with
side constraints. According to the classical multicommodity formulation there will be an specific arc
capacity for each commodity and a mutual capacity constraint for each arc, which will coincide with
the arc capacity considered all along.

Imposing limits to the single commodity arc capacities and to the single commodity generation
point injections it is possible to satisfy that each load is delivered through more than one line and
that it is supplied from more than one generation point. To get that a given load is delivered through
lines at the same voltage level a multicommodity product penalty term can be added to the objective
function. A comprehensive description of this model can be found in [22].

Table iii shows the characteristics of the problem instances employed with this test function, all
of them corresponding to the same real case but modifying the number of voltages and dimensions
of the superabundant network generated by the heuristic. The column “#volt” gives the number of
voltages at which the network expansion will be considered. The meaning of the remaining columns
is the same as that in former tables.

6.4. Traffic assignment problems.
The static user equilibrium traffic assignment problem with inelastic demand and separable link

cost functions was first formulated as an optimization problem by Beckmann [3]. Given I origins and
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table iv. Traffic assignment problem.

test K #s.c. nodes arcs rows A columnsA

P(7)
1 16 0 182 309 3221 5253

J destinations, the static user equilibrium problem consists of finding a flow distribution amongst
paths pij joining origin i ∈ I with destination j ∈ J such that all paths with nonzero flow assigned
to them have equal cost u∗ij and flows without flow assigned to them result in a cost (uij)p ≥ u∗ij .
This problem can be formulated as a multicommodity problem, considering that each commodity kij

is the traffic flow leaving from origin i ∈ I and arriving at destination j ∈ J . However, this can mean
having a great number of commodities (K = I × J , K being the number of commodities). Another
possibility is grouping the traffic flows by origin or destination nodes, thus having K = I or K = J
depending on the choice, with a great reduction in the number of commodities and variables. In the
executions made the grouping was according to origin nodes.

The objective function to minimize is the sum for each arc a of the network of a cost function
defined in terms of the arc traffic volume va. This function can be stated as:

h(7)(V1, V2, . . . , VK) =
∑

∀a

∫ va

0

Ca(v)dv (39)

where Ca(v) is the instantaneous value cost function for a given volume, and va =
∑
∀k Vka

. By
solving the integral function, (39) can be written as:

h(7)(V1, V2, . . . , VK) =
∑

∀a

c1a + c2a la

(
1 + αa

(va + c3a

c4a

)βa

)
(40)

la being the length of the line, and cia , αa and βa some line-dependent coefficients. The expression
(40) has been used as the assignment problem objective function.

It must be said that the approach here considered for solving this problem is slightly different
from those usually employed and described in the literature on this field [24]. Along with some
heuristic methodologies, the Frank-Wolfe and Simplicial Decomposition algorithms have been those
most extensively used. The main advantage of these algorithms is that they make it possible to deal
with large networks, as problem structure is greatly exploited. However, they have slow convergence
and finding accurate solutions becomes prohibitive. The formulation of the problem and the algorithm
employed in this work overcomes this difficulty, even though they cannot deal with very large networks
(since each arc means having K volumes, one for each commodity, thus obtaining a final problem with
too many variables).

Only one problem test has been used with this objective function. This problem corresponds to a
subnetwork of the city of Barcelona (thus being a real case network). The dimensions of this problem
are shown in table iv.

7. Computational results.

This section will present the results obtained using the PPRN code with the test problems
described formerly. The PPRN code has been compared with the general-purpose package MINOS 5.3
[20], since no other specialized code for solving the NMPC problem is known. The default values have
been used for all the adjustable parameters in both codes. All runs were carried out on a Sun Sparc
10/41 (one CPU), having a risc-based architecture, with 40MHz clock, ≈100Mips and ≈20Mflops
CPU, and 32Mbytes of main memory.

Tables v–xi show the results obtained for each group of test problems presented in the previous
section, with both the PPRN code and MINOS 5.3. For PPRN, information disclosed includes rows:
• “Ph.0”: number of iterations at phase 0.
• “Ph.1”: number of iterations at phase 1.
• “Ph.2”: number of iterations at phase 2.
• “h(x∗)”: optimum objective function value.
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table v. Results for the artificial objective function h(1)(x).

P(1)
1 P(1)

2 P(1)
3

PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 107 — 460 — 4083 —
Ph.1 63 163 226 617 2896 16598
Ph.2 654 687 1459 1753 9458 12401
h(x∗) 285515.68 285515.68 867915.88 867915.87 210894646.82 210894647.06
|A| 34 — 87 — 810 —
s 272 272 544 544 2723 2727

CPU.sec 10.4 17.0 87.2 139.7 3086.7 23579.6
ε∗opt 7.7·10−7 9.9·10−8 9.2·10−7 1.0·10−7 5.3·10−7 1.6·10−7

#h(x) 1200 1271 3437 2798 59198 18541
T.It 1 1.10 3.41 2.31 11.40 21.31 24.28
T.It 2 15.02 23.93 58.69 86.70 315.47 1868.88

T.It 2−h 14.72 23.63 57.91 86.10 295.21 1864.04

table vi. Results for the artificial objective function h(2)(x).

P(2)
1 P(2)

2 P(2)
3

PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 107 — 460 — 4083 —
Ph.1 63 163 226 689 2896 16598
Ph.2 845 1160 2127 2297 15463 17019
h(x∗) 3.9718·1010 3.9718·1010 6.0465·1010 6.0465·1010 1.9431·1014 1.9431·1014

|A| 34 — 95 — 788 —
s 211 233 449 449 1238 1900

CPU.sec 10.4 22.5 83.1 118.4 5823.3 16524.7
ε∗opt 4.8·10−7 2.3·10−7 1.8·10−7 2.5·10−8 5.0·10−7 7.7·10−8

#h(x) 1780 2299 4010 4320 152579 24174
T.It 1 1.10 3.48 2.31 10.39 20.65 73.56
T.It 2 11.18 18.90 37.46 48.42 367.96 899.21

T.It 2−h 10.55 18.31 36.43 47.40 330.70 893.84

• “|A|”: number of active mutual capacity and side constraints at the optimizer (i.e., the dimension
of the working matrix).
• “s”: number of superbasic variables at the optimum point.
• “CPU sec.”: CPU seconds spent by the execution.
• “ε∗opt”: optimality precision of the solution point, where ε∗opt = ||g∗z ||∞/ε(||π∗||1). In all cases this

value should be less than 10−6, which is the default value.
• “#h(x)”: number of objective function evaluations.
• “T.It 1”: time per phase 1 iteration (in milliseconds).
• “T.It 2”: time per phase 2 iteration (in milliseconds).
• “T.It 2−h”: time per phase 2 iteration excluding the time spent evaluating the objective function

(in milliseconds).
For MINOS 5.3, the same information is given excluding rows “Ph.0” and “|A|”. The values “T.It
1”, “T.It 2” and “T.It 2−h” were computed exactly in the PPRN executions, whereas in the MINOS
runs they had to be approximated (with the result that some noise could be present in the results
exposed).
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table vii. Results for the artificial objective function h(3)(x).

P(3)
1 P(3)

2 P(3)
3

PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 175 — 460 — 4083 —
Ph.1 74 256 226 689 2896 16598
Ph.2 1640 1638 3539 3772 18289 28314
h(x∗) 971.69 971.69 891.69 891.69 212682.61 212682.61
|A| 27 — 81 — 713 —
s 266 266 546 546 1927 1929

CPU.sec 30.9 34.4 236.0 292.3 6831.2 19398.0
ε∗opt 1.5·10−7 2.8·10−9 4.8·10−7 4.1·10−8 6.1·10−7 7.4·10−8

#h(x) 5851 3666 14337 8212 139047 47686
T.It 1 1.08 6.78 2.16 6.37 17.92 73.45
T.It 2 17.75 19.94 65.37 76.32 367.16 642.04

T.It 2−h 14.32 17.79 54.99 70.74 235.49 612.87

table viii. Results for the long-term hydro-thermal scheduling problem.

P(4)
1 P(4)

2 P(4)
3

PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 175 — 460 — 4083 —
Ph.1 74 261 226 574 2813 16069
Ph.2 395 202 4457 5092 14186 16569
h(x∗) -3.7747·1012 -3.7747·1012 1.0792·108 1.2228·108 -7.9171·109‡ -6.7860·109‡
|A| 51 — 99 — 642 —
s 2 2 260 69 112 118

CPU.sec 3.2 3.9 183.1 213.9 2504.1 4284.9
ε∗opt 4.7·10−8 8.0·10−8 3.1·10−3† 1.7·10−2 † 7.5·10−8 3.8·10−10

#h(x) 432 211 12379 11699 21068 20559
T.It 1 0.94 4.94 2.57 9.12 17.85 72.09
T.It 2 6.60 12.91 44.12 40.97 169.98 188.68

T.It 2−h 2.60 9.09 8.77 11.79 46.10 85.15
†

The required optimality tolerance εopt = 10−6
could not be achieved.

‡
Different local minima were reached.

Some comments should be made about the results presented. In some problems (P(4)
3 , P(6)

1 , P(6)
2

and P(6)
3 ) PPRN and MINOS obtained different solutions. This is due to the high nonconvexity of

the objective functions for the long-term hydro-thermal and network expansion models, which permits
many local optimum points. Thus, to compare the behavior of both codes for these problems, attention
must be payed to the CPU time per iteration (for each phase), instead of the total CPU time spent
in the run.

In all runs the optimality tolerance required was εopt = 10−6. Only for test problem P4
2 could this

tolerance not be achieved for both codes, due to the nonlinearities in the long-term hydro-thermal
objective function. In this case, the PPRN code reduced ε∗opt more than the MINOS package, thus
reaching a best optimum point (this is why both codes have a different objective function value, rather
than considering different local minima).

As stated previously, PPRN and MINOS were executed with the default options. This meant
that the PPRN code computed ZtHZPS = −gz using the quasi-Newton methodology while s ≤ 500
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table ix. Results for the short-term hydro-thermal scheduling problem.

P(5)
1 P(5)

2 P(5)
3 P(5)

4

PPRN MINOS PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 3419 — 5209 — 7044 — 11650 —
Ph.1 1177 2653 915 2905 1216 2965 3341 12257
Ph.2 1692 2522 1608 2299 1850 2455 6768 7507
h(x∗) 0.4009 0.4009 0.8715 0.8715 0.3844 0.3844 1.0920 1.0917 †
|A| 470 — 530 — 510 — 1525 —
s 66 66 335 338 288 296 230 231

CPU.sec 110.2 226.5 156.7 357.8 217.3 485.5 2026.0 3316.9
ε∗opt 7.4·10−13 1.9·10−11 4.1·10−7 5.8·10−8 8.4·10−11 1.0·10−17 4.5·10−7 1.2·10−8

#h(x) 2036 6219 2583 6359 2714 6897 9821 19092
T.It 1 19.47 28.79 27.85 38.52 31.58 58.46 120.87 128.62
T.It 2 45.89 59.52 71.22 106.94 91.05 127.14 230.58 231.83

T.It 2−h 41.19 49.91 63.07 92.92 79.85 105.69 208.56 193.25
†

In this execution the “feasibility tolerance” parameter of the MINOS package was increased considerably to permit obtaining

a feasible solution. The different value h(x∗) for MINOS and PPRN can be due to this fact.

table x. Results for the electrical network expansion planning problems.

P(6)
1 P(6)

2 P(6)
3

PPRN MINOS PPRN MINOS PPRN MINOS

Ph.0 303 — 274 — 312 —
Ph.1 11 147 0 86 0 84
Ph.2 936 1331 985 829 860 1217
h(x∗) 1072.7775 † 1198.2819 † 1107.6211 † 1104.9917 † 996.0407 † 929.9943 †
|A| 1 — 1 — 1 —
s 1 1 0 0 1 1

CPU.sec 15.5 107.7 12.0 80.1 14.0 115.0
ε∗opt 1.1·10−9 4.9·10−9 0.0 0.0 0.0 0.0

#h(x) 106 1028 29 839 45 1231
T.It 1 4.54 53.58 — 64.14 — 60.06
T.It 2 9.56 74.99 8.29 89.96 10.88 90.34

T.It 2−h 8.97 70.99 8.02 83.22 10.44 81.80
†

Different local minima were reached.

(s being the number of superbasic variables) and changed to the truncated-Newton algorithm when
s > 500. On the other hand, the MINOS package always performs a quasi-Newton update. This
fact is instrumental in the performance of the test problems P(1)

3 , P(2)
3 and P(3)

3 , where the number of
superbasic variables at the optimum is very great. In these three cases the time spent by PPRN is
much less than that required by MINOS, even though the PPRN code performs many more objective
function evaluations (#h(x)) —since it is using the truncated-Newton algorithm. Thus, it can be
concluded that the different behavior of both codes in these examples is mainly due to the different
algorithm used for computing the superbasic descent direction PS when the number of superbasic
variables is very high, and that, clearly, the truncated-Newton algorithm seems to be much more
efficient than the quasi-Newton update in such cases.

From tables v–xi some interesting conclusions can be drawn. These are shown in Table xii,
where each column means:
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table xi. Results for the traffic assignment problem.

P(7)
1

PPRN MINOS

Ph.0 869 —
Ph.1 78 660
Ph.2 460 526
h(x∗) 288.9697 288.9697
|A| 1 —
s 9 9

CPU.sec 11.6 69.6
ε∗opt 1.3·10−10 2.7·10−8

#h(x) 258 657
T.It 1 6.66 50.88
T.It 2 19.60 68.47

T.It 2−h 16.93 62.52

table xii. time comparison between minos and pprn.

T.It 1 T.It 2 T.It 2−h time T.It 1 T.It 2 T.It 2−h time
test ratio ratio ratio ratio test ratio ratio ratio ratio

P(1)
1 3.10 1.59 1.60 1.63 P(4)

2 3.54 0.92 1.34 1.16
P(1)

2 4.93 1.47 1.48 1.60 P(4)
3 4.03 1.11 1.84 1.71

P(1)
3 1.13 5.92 6.31 7.63 P(5)

1 1.47 1.29 1.21 2.05
P(2)

1 3.16 1.69 1.73 2.16 P(5)
2 1.38 1.50 1.47 2.28

P(2)
2 4.49 1.29 1.30 1.42 P(5)

3 1.85 1.39 1.32 2.23
P(2)

3 3.56 2.44 2.70 2.83 P(5)
4 1.06 1.00 0.92 1.63

P(3)
1 6.27 1.12 1.24 1.11 P(6)

1 11.80 7.84 7.91 6.90
P(3)

2 2.94 1.22 1.28 1.23 P(6)
2 — 10.85 10.37 6.67

P(3)
3 4.09 1.74 2.60 2.83 P(6)

3 — 8.30 7.83 8.21
P(4)

1 5.25 1.95 3.49 1.21 P(7)
1 7.63 3.49 3.69 6.00

• “T.It 1 ratio”: ratio of the CPU time per phase 1 iteration between MINOS and PPRN(T.It 1 (MINOS)
T.It 1 (PPRN)

)
, that is, how many times faster PPRN is with respect to MINOS in performing

one single phase 1 iteration.
• “T.It 2 ratio”: ratio of the CPU time per phase 2 iteration between MINOS and PPRN(T.It 2 (MINOS)
T.It 2 (PPRN)

)
, that is, how many times faster PPRN is with respect to MINOS in performing

one single phase 2 iteration.
• “T.It 2−h ratio”: ratio of the CPU time per phase 2 iteration (excluding the time spent making

objective function evaluations) between MINOS and PPRN
(T.It 2−h (MINOS)

T.It 2−h (PPRN)

)
, that is, how many

times faster PPRN is with respect to MINOS in performing one single phase 2 iteration without
considering the objective function evaluations.
• “time ratio”: ratio of the total CPU time between MINOS and PPRN

(CPU. sec (MINOS)
CPU. sec (PPRN)

)
, that is,

how many times faster the PPRN code is with respect to MINOS 5.3.
Looking at column “time ratio” of table xii it can be observed that PPRN is faster than MINOS

in all the executions. Besides, in some tests (e.g., P(1)
3 ) the “time ratio” value is higher than the other

ratios; the reason is that PPRN performs in such cases much fewer iterations than MINOS. Another
interesting fact is that, in most cases, PPRN is much faster in phase 1 than in phase 2 iterations with
respect to MINOS, since it can take advantage of optimizing a linear function only.
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8. Conclusions.

A new nonlinear multicommodity network flow code has been presented, implementing the primal
partitioning method. Special features included in it are: managing the working matrix, dividing
the optimization process into three phases and using Murtagh & Saunders’ strategy of considering
basic, superbasic and nonbasic variables. Moreover, the code is capable of solving problems with side
constraints, optimizing a linear objective function through an ad hoc simplex algorithm, and working
as a specialized single-commodity network flow code with side constraints. The code has shown to be
very efficient in solving some test problems obtained from artificial functions and real models (long and
short-term hydro-thermal scheduling of electricity generation, electrical network expansion planning
and inelastic traffic assignment), with sizes ranging from 800 to 17,000 variables and 300 to 5,000
constraints.

Appendix 1. Factorization update of R̄.

The BFGS formula used in the code was defined previously in equation (28). Next proposition
will show how the new factorization matrix R̄ can be obtained from R adding only one rank-one
matrix.

Proposition.
Given the BFGS update formula

R̄tR̄ = RtR +
1

α∗ytPS
yyt +

1
gt

zPS
gzg

t
z

and defining δ1 =
1√

− gt
zPS

, δ2 =
1√

α∗ytPS

, v such that Rtv = gz, v̄ = −δ1v, and p = δ2y + δ1gz

(δ1, δ2 ∈ IR ; v, v̄, p ∈ IRs, s being the dimension of R),
then R̄ can be computed as R̄ = R + v̄pt

Proof.
It will be shown that defining R̄ = R + v̄pt, then R̄tR̄ = RtR + 1

α∗ytPS
yyt + 1

gt
zPS

gzg
t
z, thus R̄ being

the correct factorization update matrix. Indeed,

R̄tR̄ = (Rt + pv̄t)(R + v̄pt)
= RtR + Rtv̄pt + pv̄tR + p(v̄tv̄)pt

(using that v̄ = −δ1v)
= RtR + (−δ1)Rtvpt + (−δ1)pvtR + δ2

1(vtv)ppt

(using that Rtv = gz)
= RtR + (−δ1)gzp

t + (−δ1)pgt
z + δ2

1(vtv)ppt

(using that p = δ2y + δ1gz)
= RtR− δ1δ2gzy

t − δ2
1gzg

t
z − δ1δ2ygt

z − δ2
1gzg

t
z + δ2

1(vtv)ppt

= RtR− δ1δ2(gzy
t + ygt

z)− 2δ2
1gzg

t
z + δ2

1(vtv)ppt (41)

Since p = δ2y + δ1gz then ppt can be directly expressed as:

ppt = (δ2y + δ1gz)(δ2y
t + δ1g

t
z)

= δ2
2yyt + δ2δ1ygt

z + δ1δ2gzy
t + δ2

1gzg
t
z (42)

Now it will be shown that the coefficient δ2
1(vtv) is equal to 1. The descent direction PS is computed

as RtRPS = −gz. Given that Rtv = gz it follows that v = −RPS . Thus vtv = P t
SRtRPS = −P t

Sgz.
Since δ1 = 1√

−gt
zPS

we directly have

δ2
1(vtv) =

1
−gt

zPS
(−P t

Sgz) = 1 (43)
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Substituting (42) and (43) in (41) we have:

R̄tR̄ = RtR− δ1δ2(gzy
t + ygt

z)− 2δ2
1gzg

t
z + δ2

2yyt + δ2δ1ygt
z + δ1δ2gzy

t + δ2
1gzg

t
z

= RtR− δ2
1gzg

t
z + δ2

2yyt

= RtR +
1

gt
zPS

gzg
t
z +

1
α∗ytPS

yyt

which was the desired result.
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