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Abstract On current electricity markets the electrical utilities are faced with very sophisti-
cated decision making problems under uncertainty. Moreover, when focusing in the short-
term management, generation companies must include some medium-term products that
directly influence their short-term strategies. In this work, the bilateral and physical futures
contracts are included into the day-ahead market bid following MIBEL rules and a stochastic
quadratic mixed-integer programming model is presented. The complexity of this stochastic
programming problem makes unpractical the resolution of large-scale instances with gen-
eral purpose optimization codes. Therefore, in order to gain efficiency, a polyhedral outer
approximation of the quadratic objective function obtained by means of perspective cuts
(PC) is proposed. A set of instances of the problem has been defined with real data and
solved with the PC methodology. The numerical results obtained show the efficiency of this
methodology compared with standard mixed quadratic optimization solvers.

Keywords Liberalized Electricity Market - Optimal Bid - Stochastic Programming -
Perspective Cuts

1 Introduction
On current electricity markets, the generation companies (GenCo) have to lead with different

situations coming from the various available short- and medium-term market mechanisms.
One of the main changes produced by the liberalization of the electricity markets it that the

This work was supported by the Ministry of Science and Technology of Spain through MICINN Project
DPI2008-02153.

Cristina Corchero
Department of Statistics and Operations Research, Universitat Politecnica de Catalunya E-mail:
cristina.corchero@upc.edu

Eugenio Mijangos
Department of Applied Mathematics and Statistics and Operations Research, University of the Basque Coun-
try E-mail: eugenio.mijangos @ehu.es

F.-Javier Heredia
Department of Statistics and Operations Research, Universitat Politecnica de Catalunya E-mail:
f.javier.heredia@upc.edu



2 C. Corchero, E. Mijangos and F.-J. Heredia

Long/Medium Term > Day D-1 Day D >
]

Bilateral Contracts

Intraday

Day- Markets
Derivatives Market Ahead
Market

Fig. 1 MIBEL’s market mechanisms.

price of electricity has become a significant risk factor because it is unknown in the moment
when the GenCo has to take the operational decisions. Some medium-term products are
used for hedging against this market-price risk, as, for instance, the futures or the bilateral
contracts.

This work is applied to the Iberian Electricity Market (MIBEL), which includes the
Spanish and Portuguese electricity systems. This market has been recently improved with
the creation of the Derivatives Market and the introduction of new kind of bilateral contracts
beside the classical ones. Nowadays, the MIBEL includes in the short-term: the day-ahead
market (DAM) and a set of balancing, reserve and adjustment markets (intraday markets);
these markets are complemented with the medium- and long-term mechanisms: a derivatives
market and different kinds of bilateral contracts (see Fig. 1). This structure is similar to other
European electricity markets. Generation companies can no longer optimize their short-term
generation planning decisions, i.e. their bidding strategies, without considering the relation-
ship between the short-term bid and the medium-term physical products. The MIBEL’s rules
explain how to include some of this medium-term mechanisms into the DAM bid. In this
work, the medium-term mechanism included are the national bilateral contracts (BC) and
the futures physical contracts (FC) matched at the derivatives market.

A FC is an exchange-traded derivative that represents agreements to buy/sell some un-
derlying asset in the future at a specified price (Hull, 2002). The main characteristics of a FC
are the asset, the contract size, the delivery arrangements and period, and the characteristics
of the price. As it has been mentioned, MIBEL’s rules (BOE, 2006b) force the GenCo to
include into the DAM bid process the settlement of the energy from the derivative market
products. The DAM’s operator demands every GenCo to commit the quantity designed to
each FC through the DAM bidding of a given set of generation units. This commitment is
done through the so called price acceptant offer, that is, a sale offer with a bid price of 0
€/MWh. Due to the algorithm the market operator uses to clear the DAM, all instrumental
price offers will be matched (i.e. accepted) in the clearing process, that is, this energy shall
be produced and will be remunerated at the DAM spot price. BC, as defined in the MIBEL,
are agreements between a generation company and a qualified consumer to provide a given
amount of electrical energy at a stipulated price along a delivering period. The character-
istics of the bilateral contracts (energy, price, delivering period) are negotiated before the
DAM and the energy that is destined to the BC cannot be included in the DAM bid. More-
over, the MIBEL rules (BOE, 2006a) force the DAM bid of each unit to include the whole
available energy not allocated to the BC contracts. Thus, the GenCo has to take into account
all these FC and BC obligations when finding the optimal unit commitment and DAM bid.
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In order to participate in the DAM, the GenCo must build an hourly bid composed by
pairs of energy and price. One of the main objectives of this work is to find an analytical
expression for this bid. There are some previous works that deal with this problem. For in-
stance, Conejo et al (2002) proposes an optimal stepwise bidding strategy for a price-taker
GenCo based on the units characteristics, the expected spot price, and the optimal gener-
ation. Furthermore, Gountis and Bakirtzis (2004) considers the approximation of stepwise
bid curves by linear bid functions based on the marginal costs and the optimal generation
quantity. Also, Ni et al (2004) uses the concept of price-power function, which is similar to
the matched energy function used in our work, to derive the optimal bid curves of a hydro-
thermal system. Nowak et al (2005) and Fleten and Kristoffersen (2007) also distinguish
between the variables representing the bid energy and those corresponding to the matched
energy in the case of a price-taker GenCo. Moreover, general considerations about optimal
bidding construction in electricity markets can be obtained in Anderson and Philpott (2002)
and Anderson and Xu (2002).

The second important objective is to include in the DAM bidding strategy the futures
physical and the bilateral contracts. Some different approaches to the inclusion of FC in the
management of a GenCo can be found in the electricity market literature. Most of the works
described forward contracts as the contracts with physical settlement and futures contracts
as the contracts with financial settlement. In the case of BC, it is a classic topic that has been
tackled from very different points of view and there are numerous works that analyze their
characteristics, their definition and the behavior that a GenCo must have in front of them.
For example, Dahlgren et al (2003) provides a state of the art on the analysis of different
risk-hedging mechanisms, among them BCs. Bjorgan et al (1999) described in a theoreti-
cal framework the integration of physical futures contracts into the risk management of a
GenCo. Also, Chen et al (2004) analyze specifically the impact of physical and financial
contracts on the bidding strategies of a GenCo. They demonstrate that the GenCo opti-
mal bidding strategy will be affected differently, depending on which medium-term product
is considered. The relation between the optimal day-ahead bid and the bilateral contracts
was explicitly modeled in Heredia et al (2010) and Heredia et al (2011) through a set o
additional variables and linear constraints. Furthermore, Conejo et al (2008) optimize the
forward physical contracts portfolio up to one year, taking into account the day-ahead bid-
ding. Moreover, on a medium-term horizon, Guan et al (2008) optimize the generation asset
allocation between different derivatives products and the spot market, taking into account
short-term operating constraints. Finally, Corchero and Heredia (2011) presents a model for
the inclusion of the MIBEL futures physical contract in the DAM bid which is solved with
commercial MIQP solvers.

As stated above, we are dealing with a new situation, due to the MIBEL rules for the
inclusion of physical futures and bilateral contracts. Thus the main difference with the pre-
vious commented works is the definition of the optimal bid function together with the coor-
dination between day-ahead bidding strategies and physical futures and bilateral contracts
settlement. The optimization model presented in this work improves the one presented in
Corchero and Heredia (2011) in two ways. First, the modelization of the electricity market
are extended, with the consideration of the bilateral contracts both into the stochastic pro-
gramming model and in the analytical expression of the optimal bid. Second, contrary to the
work in Corchero and Heredia (2011) where commercial solvers were used, the optimiza-
tion problems arising from the new electricity market model are solved here with specialized
algorithms.

The utility would need to predict the unknown price in order to design its bidding strate-
gies and to maximize its profits. Therefore, as the market price is a random variable whose
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realization is only known once the market has been cleared, the programs presented are
based on stochastic techniques and the unknown market-price is modeled by means of a
scenario set of forecasted prices. The set of scenarios is used to feed a two-stage stochastic
optimization model that finds the optimal day-ahead bid of a price-taker GenCo (an elec-
trical utility without influence over the market prices) operating in the MIBEL and holding
bilateral and physical futures contracts.

On the other hand, the deterministic equivalent of this stochastic optimization problem
will be a mixed integer quadratic programming problem (MIQP), which is difficult to solve
efficiently, particularly for large-scale instances. Hence, in order to improve the efficiency
in the solution of this kind of problems, the quadratic objective function of this problem will
be approximated by a polyhedral outer approximation by means of perspective cuts (PC)
as was suggested by Frangioni and Gentile (2006), so that we can exploit the efficiency
of general-purpose solvers for mixed integer linear problems (MILP); in this case we use
CPLEX 12.1. An alternative to the perspective cuts methodology is the Second-Order Cone
Program reformulation (SOCP, Tawarmalani and Sahinidis (2001)), but for quadratic prob-
lems the perspective cuts reformulation was reported to be more efficient (Frangioni and
Gentile (2009)). Finally, Branch-and-Fix Coordination (BFC) methods has also been used
successfully to solve two-stage stochastic mixed integer linear problems (Escudero et al
(2009)). However, the BFC methods, together with their extension to quadratic problems,
require a more complex implementation compared with the PC formulation, as this last can
be easily integrated within the CPLEX 12.1 branch and cut framework with the help of the
cutcallback procedure.

The main contributions of this paper are as follows:

— A new quadratic mixed-integer stochastic programming model for the inclusion of the
bilateral and physical futures contracts into the day-ahead bid that maximizes the gen-
eration companies benefits.

— The derivation of the analytical expression of the optimal bid function that ensures the
maximization of the expected benefits of the GenCo considering both the BC and FC
obligations.

— A efficient numerical solution for this kind of electricity market problems applying per-
spective cuts.

From the point of view of the GenCo, the business benefits of the proposed methodology
are twofold: first, the stochastic programming model and the derived optimal bid function
provides the GenCos with a tool to maximize their long-run expected profits; second, the
perspective cuts methodology reduces the running time in such a way that real-life instances
of the problem can be solved several times within a working day, which is crucial for the
applicability of the method.

The remainder of the paper is organized as follows. Section 2 presents the mathematical
formulation of our day-ahead bid model. Section 3 includes the definition of the optimal bid
function for a price-taker GenCo with bilateral and physical futures contracts obligations.
Section 4 puts forward the perspective cut methodology and how it is applied to our model
in order to be solved as a MILP. Finally, Section 5 shows the numerical results when solving
the proposed models and Section 6 offers the conclusions.
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2 Day-ahead electricity market bid with futures and bilateral contracts model
(DAMB-FBC)

In this section the model (DAMB-FBC) is presented. It is a two-stage stochastic program-
ming problem that allows a price-taker generation company to optimally decide the unit
commitment of its thermal units, the economic dispatch of the bilateral and futures con-
tracts between the thermal units, and the optimal generation bid of the committed units to
the MIBEL’s day-ahead market.

The objective function of the model represents the expected profits of the GenCo ob-
tained with the participation in the day-Ahead market. The constraints assure that the MI-
BEL’s rules for the included market mechanisms are defined and that all the operational
restrictions of the units are respected. The main decision variables are the ones that model
the star-up and shut-down of the units, the quantity that will be bid at instrumental price and
the scheduled energy committed to the bilateral and the futures contracts settlement.

2.1 Parameters

The (DAMB-FBC) model is built for a price-taker GenCo owning a set of thermal genera-
tion units . that bid to the r € .7 = {1,2,..,24} hourly auctions of the DAM.

The parameters for the i/ thermal unit are:

- cf’ s cﬁ and c;], generation costs with constant, linear and quadratic coefficients (€, €/ MWh

and €/MWh? respectively).
- P; and P;, upper and lower bounds on the hourly energy generation (MWh).
- ¢{" and cff f , start-up and shut-down costs (€).
— " and tf’ /7 , minimum operation and minimum idle time (h).
A base load physical futures contract j € .% is defined by:
— %, the set of generation units allowed to cover the FC ;.
- L‘; , the amount of energy (MWh) to be procured each interval of the delivery period by

the set % of generation units to cover contract j.
- Af, the price of contract j (€/MWh).

A base load bilateral contract k € 4 is defined by:

- Lf , the amount of energy (MWh) to be procured at each interval of the delivery period
by the set of available generation units to cover the BCs.
- l,f , the price of the contract k (€/MWh).

The random variable QL,D , the clearing price of the ' hourly auction of the DAM, is rep-
resented in the two-stage stochastic model by a set of scenarios s € .7, each one with its
associated clearing price for each DAM auctiont € 7:

- AP clearing price for auction ¢ at scenario s (€/MWh).
— P’ probability of scenario s.

2.2 Variables

Those decision variables that doesn’t depend on the scenarios are called first stage (or here-
and-now) variables and in our formulation are, for eacht € 7 andi € .¥:
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— uy;, the unit commitment (binary)
- i cfl-, the start-up/shut-down costs variables.
— ¢1i, the instrumental price offer bid.

- fiij, the scheduled energy for FC j € .%.

— by, the scheduled energy for the pool of BCs .

Decision variables that can adopt different values depending on the scenario are called sec-
ond stage variables and in our formulation are, for eacht € .7, i € . and scenario s € .

- g, the total generation.

- pi;, the matched energy in the day-ahead market.
2.3 Constraints
2.3.1 Bilateral and futures contracts constraints

The coverage of both the physical futures contracts and the bilateral contracts must be guar-
anteed. The constraints for each futures contract are:

Y fij=Lf te 7, jeF 1)
i€
fn'jZO te g, jeF, ic S 2)

and the bilateral contract constraints are:

Y bi=Y L} te 7 3)
i€y k€A
0 < by < Piuy; iesg, teT 4)

where Lf is the energy that has to be settled for contract k € #

2.3.2 Day-ahead market and total generation constraints

As we have introduced, we will use the value of the matched energy in our formulation. The
matched energy is the accepted energy in the clearing process, that is, the energy generated
that will be rewarded at the clearing price. This matched energy is uniquely determined by
the sale bid and the clearing price and it will play a central role in the presented model. See
Section 3 for a formal definition of the bid function and the matched energy function.

The MIBEL’s rules affecting the day-ahead market establishes the relation between the
variables representing the matched energy py;, the energy of the bilateral contracts b;, the
energy of the futures contracts f;;;, the instrumental price offer bid g;, and the commitment
binary variables u;;. The energies Lf and Lf must be integrated in the MIBEL’s DAM bid
observing the two following rules:

1. If generator i contributes with f;;; MWh at period ¢ to the coverage of the FC j, then the
energy f;; must be offered to the pool for free (instrumental price bid).

2. If generator i contributes with b; MWh at period ¢ to the coverage of any of the BCs,
then the remaining production capacity P; — b;; must be bid to the DAM.
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These rules can be included in the model by means of the following set of constraints:

P > qui icI 1T, scS 3)

Pi < Pityi — by ictg €T, s (©6)

qri > Piusi — by iedsg e, s @)

@i> Y, fij ics 1eT, scd ®)
jlie;

where:

(5) and (6) ensure respectively that the matched energy p;; will be greater than the in-
strumental price bid g;; and less than the total available energy not allocated to BC.

(7) and (8) guarantee respectively that the instrumental price bid will be greater than the
minimum generation output of the unit and greater than the contribution of the unit to
the FC coverage.

Please note that (2) together with (8) assures that ¢;; will be always non-negative. The total
generation level of a given unit i, g;;, is defined as the addition of the allocated energy to the
BC plus the matched energy of the DAM:

gi=bitpic I te T s ©))

Contraints (1)-(9) assure that g;; will be always either zero or gJ; € [P;, Pi], that is:

P < 8 < Piuyi, i€ I, 1 €T, 5€S (10)

2.3.3 Unit commitment constraints

This section includes the formulation for the unit commitment of the thermal units (Carrién
and Arroyo, 2006). The first two sets of constraints model the start-up and shut-down costs
and the next ones control minimum operation and idle time for each unit. First, the start-up
and shut-down costs are modeled:

ey > ¢f" [uni —ug_y)] ic s e T\{1} (11)
et > ¢ g1y — g ic.s re7\{1} (12)
clhycf >0 ic s e (13)
w; €{0,1} ie s, ted (14)

The initial state of each thermal unit i can be taken into account through the parameters G;
and H; that represent, respectively, the number of the initial time periods along which the
thermal unit must remain on (G;) or off (H;). These conditions are imposed by the following
set of constraints:

Mo

(lfuji):O ie s (15)

uj,':O ied (16)
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Finally, the minimum up and down time, 7" and tl-”f ! are imposed, up to the periods |7 | —

(t"—1) and |.7| — (&) 1 1), through the following set of constraints:

1+t —1

Y in = " i = ) t=Gi+1,...|T|—1"+1,ies (17
n=t

t+t”ff 1 .

Z (=) > ug i —u]  t=Hi+1,...|7| -1 +1ies  (18)
n=t

and for the last #" — 1 and t;)f 71 time periods:

17|

Y (i — [ — 1)) > 0 t=|T|-t"+2,...,|7|,ie. s  (19)
n=t

|7 .

Y (1=t — [ 1y — uri]) > 0 t=|T| =142, |7, ie s (0)
n=t

2.4 Objective function

The quadratic function associated to the expected profits of the GenCo after the participation
in the DAM is:

minE; [Clu.c*.e”. g.p:a”)] =

Z Z (cf‘l+cﬁ+cﬁ?uti+ (21a)
4

eTJie
Zps[cgnﬂ g’ — %Dspf,}) 21b)

se.s

where

(21a) is the on/off fixed cost of the unit commitment of the thermal units, deterministic
and independent of the realization of the random variable /I,D * and

(21b) represents the expected value of the benefits from the DAM. The term between
parenthesis corresponds to the expression of the quadratic generation costs associated
to the total generation of the unit g;; while the last term, QL,D’S p;; computes the incomes
from the DAM due to a value p;; of the matched energy.

Please note that the constant incomes from the BC and FC
BCy BC
Z AL
ke

and
()LJFC_AZD)LI;‘C
te7,je g

has been dropped from the objective function.
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2.5 Model (DAMB-FBC)
The model defined so far can be represented as:

min E;p [C(u,c”,cd,g,p ;XD)}

(DAMB-FBC) Eq. (1) —(4) BC and FC constraints
Eq. (5)—(9) DAM and total gen. constraints
Eq. (11) —(20) Unit commitment constraints

Model (DAMB-FBC) is the optimization problem associated with the two-stage stochas-
tic programming problem with a set .# of scenarios for the spot price A.”, where t € .7. This
optimization problem is a convex MIQP with a well defined global optimal solution.

3 Optimal Bid

The (DAMB-FBC) model developed so far doesn’t include an explicit representation of the
bid function to be submitted to the day-ahead market. Instead of this, the expression of the
optimal bid function, that is, the bid function that must be submitted by the GenCo in order
to ensure the long-run optimal expected profits found by the (DAMB-FBC) model, can be
derived from the optimality conditions of this problem. With this objective in mind, let’s
first introduce the formal definition of three basic concepts: the bid function, the matched
energy function and the optimal bid function.

Definition 1 (Bid function) A bid function for the thermal unit i is a non-decreasing func-
tion defined over the interval [0, P;] that gives, for any feasible value of the bid energy pf’i,
the asked price per MWh from the day-ahead market:

Ab: [0,P] — RTUO
p;]i — )'tiz;'(pfi)

Subsequently, for a given bid function /“Lﬁ the matched energy associated with the clear-
ing price A2, pri is defined through the matched energy function:

Definition 2 (Matched energy function) The matched energy associated with the bid func-
tion /lt’j is defined as the maximum bid energy with an asked price not greater than the
clearing price AP, and is represented by the function:

pii (A7) = max{pf; € [0,P}] | 4;;(pr;) < A} (22)

Definition 3 (Bid functions’s optimality conditions) Let x* be an optimal solution of the
(DAMB-FBC) problem. The bid function QL,?* of a thermal unit i committed at period ¢ (i.e.
uy; = 1) is said to be optimal if

pii=pl (A% ses (23)

that is, if the matched energy function (22) associated with every scenario’s clearing price
).,D"S, coincides with p;¥, the optimal value of the matched energy in the solution of model
(DAMB-FBO).
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It is straightforward to note that if a GenCo submits a bid function satisfying (23) system-
atically to the DAM, in the long-run, the expected profit of the GenCo will be maximized
according to the (DAMB-FBC) problem. The objective of this section is to prove the exis-
tence of such an optimal bid function A2* and to obtain its analytical expression. In order to
do so, the properties of the optimal solutions of the problem (DAMB-FBC) will be studied
in the next section and used to derive the expression of the optimal matched energy p; in
terms of the optimal values of the instrumental energy bid ¢g}; and the committed energy b;;
of the bilateral contracts.

3.1 Optimal Matched Energy

Let x*' = [u*, ", g p* gt f * b*]' represents the optimal solution of the (DAMB-FBC)
problem. Fixing the unit commitment variables u*, ¢** and ¢?* to its optimal value in the for-
mulation of the (DAMB-FBC) problem, we get the following continuous convex quadratic
problem:

(DAMB-FBC*) :
min Y Y ¥ P2 g+ el (6]

Vie T Viely,, s€.

st. Y fuj=Lf Vie T, VjeF
i\ie){,ﬂlgﬂt
@i > Y, fij Vie T, Viel,
j€Fi
Y bi=Y L% Vie T
i\ielg,,t JjERB
8 = bi+ppi Vi€ T, Vi€, VseS
P < Pi—byi Vie T, Viel, Vs
Pii 2 i Vie T Ve, VseS
Gri > P;— by Vie T, Vieljjnt
bii <P Vie T, Vi,
bi >0 Vie 7, Viel,,
fiij =0 Vie 7, Viel,, VjeF

with I, := {i € .# |uj; = 1}, i.e., the set of thermal units committed at time . Of course,
the optimal solution of this continuous problem coincides with the optimal value of the
continuous variables of the original (DAMB-FBC) problem, g*, p*, ¢*, b* and f*. The

(DAMB-FBC*) problem is separable by intervals, being the problem associated with the "
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time interval, in standard form (Luenberger, 2004):

(DAMB-FBC}) :

. e D.s S
mn Y Y Pl -A"g g
Viely,, s

st. Y fuj—L =0 VjeF

i\ie.ijﬂl,t,,,

Y, fij—ai <0 Viel},
€7

Y bi- ) L¥=0
ili€l,, JjEA
i —bi—py;=0 Vi€ Loy,
Pl —Pi+b; <0 Vier,,
gri—p5; <0 Vie 1:,‘,”7
Pi—bi—qi <0 viel,
—qi <0 Vie I:,‘n,
bi—P; <0 Viel,,
—b; <0 Viel,,
—fij <0 Vie]jm7

Vse
Vse
Vse ./

VjeF

(Ntli)
()

3.8
(ﬂtjé)

(1)
(1)
(s
(4
(ug
(4
(.ut% j)

- O U U

24

(25)

(26)

27)
(28)
(29)
(30)
3D
(32)
(33)
(34)

where 7', 72, u', m3, u?, w3, u*, w3, ub, u” and p® are the Lagrange multipliers associated
with each constraint. The Karush-Kuhn-Tucker (KKT) conditions of the (DAMB-FBC;)
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problem can be expressed as:

7, o -
& = — <2c?PS> — (24) Viel,, ,Vs€S (35)
m =t -t — PP Viel, Ve (36)
W =kt 4 Viel,, Vse s (37
phi= Y o+ Y ou Viel,,VjeF  (38)
JEFiEl, i€l | j€F:

Y (i = ) 1 | 4 b+t — 1 = 0 Viel, (39)
se.s

ui(Y, fii—ai) =0 Viel, (40)

JEF

w (Pl +b; = Pi)) =0 Viel, Vse. (4]
1w (g —pi) =0 Viel,, Vses (42
(P — bl —q;;) =0 Vi€ I, (43)
Hgy; =0 viel, (44)
Wi (b; = Pi) =0 viel,, (45)
Wbt =0 viel, (46)
iy fi =0 Viel, ,VjeF  (47)
Ly Mgt 12 453, 1> O vi eI, (48)

2,5 3.8
'utf 7“zi >0

ut%'j >0

viel,,, Vs (49)
Vie I;*nt, Vje.F (50)

The next proposition comes directly from the KKT conditions and the convexity of problem
(DAMB-FBCO):

Proposition 1 Let x*' = [u*,c"*,c?*, g%, p*,q*, f*,b*] be an optimal solution of the (DAMB-
FBC) problem. Then, for any x* there exist Lagrange multipliers ', ©%, @3, u!, u?, u3, u*,
w3, 18, u” and pB, such that the value of variables g*, p*, %, f* and b* satisfy the KKT sys-
tem (35)-(50). Conversely, for any solution g*, p*, ¢*, f* and b* of the KKT system (35)-(50)
associated with I, , the correspondent solution x* is optimal for the (DAMB-FC) problem.

ong’
The fact that any solution of the (DAMB-FCB) problem must satisfy the system (35)-(50)
will be exploited to derive the expressions of the optimal matched energy in the next lemma.

Lemma 1 (Optimal matched energy, quadratic costs) Ler x* be an optimal solution of
the (DAMB-FBC) problem. Then, for any unit i with quadratic convex generation costs (i.e.
C? > 0) committed at period t (i.e. i € I, ), the optimal value of the matched energy p;; can
be expressed as:

pii = max{q;,p;;} (51
where p;; is defined as:

[P = D]

pi=1 6
(Pi—byy)

if 6; < [Pi—by]"

if [P = by < 6 < (Pi—Dby) (52)
if 65 > (Pi—by)
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with
Ds
- M + (53)

q —Yn
2c;

and
[P; — by;] " = max{0,P; — bj;}

Proof. As Proposition 1 establishes, any optimal solution of the (DAMB-FBC) problem
must satisfy the KKT system (35)-(50). Additionally, equations (27)-(29) establish that any
optimal solution x* of the (DAMB-FBC) problem must satisfy that:

Pi—bi < q; < pii <Pi—by (54)

As we want to see that the optimal value of the matched energy p;;" is equivalent to expres-
sion (51), we need to distinguish whether [P; — by;| " is equal to (P; — by;) or 0, i.e., whether
b, < P; or not. Thus, to derive the relationships (51), the solution of the KKT system will
be analyzed in these two situations. For each one, we will analyze five cases among which
any optimal solution of the (DAMB-FBC) problem could be classified according to (54):

(@) by < P;= [B,' —bti}Jr = (Bi :bti)

(a.1) (P;—by) < q; = pif = (Pi—by;) : This is a trivial case, because, by definition (52)
p;i < (Pi—bi) and, p;} = max{q;; = (Pi — bx), p;; < (Pi — bui)} = (Pi — byi).

(a.2) (P;—by) <gq; < pif = (Pi—by;) : Condition (42) gives ,ufi’s = 0 that, together with
(37) and the non-negativity of the lagrange multipliers p gives /,ttli = l-‘é = [.tfi =0
and then (36) gives 7>° = u>* — P'A”*. This result, combined with the definition

g = pif +b;; and together with (35), gives that:

D,s ! 2.

Then, as it is assumed that p;; = (ﬁi — by;) and we have concluded that 6 > pi},
by definition (52) p;; = (P; — by;). So, p;; = max{q;; < (P; —bx),p;; = (Pi —b)} =
(Pi = byy). _

(@.3) (P;—bu) < gq}; < p;i < (P;—by;) : On the one hand, conditions (37), (42) and the
non-negativity of the lagrange multipliers give p* = u} = pt = u3 = 0. On the
other hand, it is assumed that p;; < (P; — b;;) and thus condition (41) gives utzi’s =
0. These two results, combined with condition (36), give 7tt2i’s = fP‘%[D *_ which
together with (35) and (27) give:

AP
§k 1 i * s
o | T | = g8,
Pri l: ZC? ti ti

Then, as it is assumed that (P; — by;) < pSF < (P; —by;), so is 6; and, by definition
(52) pj; = 6;.. Therefore p; = max{q}; < 65,p;; = 6.} = 6.

(ad) (P;—by) < q;=psf < (Pi—by) : In this case the assumptions, together with (36),
(41) and (43), force ,utzi”s =t =0and ﬂtzi‘s = —PAP*. Analogous to case (a.3),
pii = 6% =p}; and, as it is assumed that gj; = pi}, then p!} = max{q}; = 0},p;; =
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@.5) (P;—by) = q; = piF < (P;—by) : Condition (41) sets u>* = 0 which, by taking
into account condition (36), provides > = —u** — PS4, This result, combined
with the definition gi7 = p;’ 4 b};, and together with (35), gives that:

Sk )’lD7x B CZ‘ * ‘u4'-,5
pi = [(241 —b; |+ 2ci~qlP“ > 0.

Then, as it is assumed that p}; = (P; — by;) and then 6;; < (P; — by;), by definition
(52) p;; = (B — bui)- So, pyi = max{qy; = (P; — bui), py; = (P; — bui) } = (P; — bi).
(b) by > P; = [P;— btiﬁf 0 _

(b.1) 0 < g}; = pif = (P; —by;) : In this case, assumptions g;; > 0 and g; > (P; — by;)
together with conditions (43) and (44) force ,u,‘t = ,ufi = 0. Then, (36) gives 71:,2[-"3 =
> — PsAP* that, analogously to case (a.2) gives 67 > p*™*, and then 6 > (P; —by;).
Therefore, by definition (52) p3 = (P; — by;) and p** = max{q}; = (P; — by;),p}, =
(Pi—bi)} = (Pi — bri).

(b.2) 0 < qj; < pii = (P;—by;) : This case is equivalent to (a.2) because the key is the
assumption g}; < piF = (P; — by;). Consequently, pf¥ = max{q;; < (P; — bs),p}; =
(Pi—byi)} = (Pi — byi).

(0.3) 0 < gqj; < pif < (P;—byi) : The reasoning for this case is equivalent to (a.3) until
the result pi¥ = 6. Then as it is assumed that 0 < pSf < (P; —by;), s0is 0 < 6 <
(P; — by;) and then, by definition (52) p3: = 65. Therefore, pif = max{q}; < 65, p% =
eti‘} =0;.

(b.4) 0 < q}; = pif < (Pi—by): Analogously to (a.4), it is concluded that pif = 6; and,
as it is assumed that 0 < pf} < (Fi — by;), the situation is analogous to case (b.3) and
therefore pif = max{q}; < 6},p;; = 65} = 65.

(b.5) 0=g};=pif < (P;—by;): In this case, lthe assumption pif < (P; — by;), together with
condition (41), gives that ,utzi’s = 0 and then condition (36) gives 7r,2l.’s = - ,u:t’s -
P“l,D"S. Following the same reasoning as in (a.5), this result, combined with the
definition g} = pi¥ + b}; and expression (35), gives that pj¥ > 6;’. Then 6;; <0 and,
by definition (52) p;; = 0. Therefore, p{f = max{q; =0,p5;=0}=0. O

Lemma 2 (Optimal matched energy, linear costs) Let x* be an optimal solution of the

(DAMB-FBC) problem. Then, for any unit i with linear generation costs (i.e. c? =0) com-

mitted at periodt (i.e. i € I, ), the optimal value of the matched energy p;} can be expressed
as:

% o2 Dys
o _ )i ifA " <c
Pii =5 s paDs — (55)
P;,— bti lf).t > ¢

As in Lemma 1, the proof of Lemma 2 is based on the fact that any optimal solution of the
(DAMB-FBC) problem must satisfy the KKT system (35)-(50).

3.2 Optimal Bid Function

The next theorem develops the expression of the optimal bid function associated with the(DAMB-
FBC) problem, that is, the bid function satisfying the optimality condition (23).

Theorem 1 (Optimal bid function) Let x*' = [u*,c**,c?*, g*, p*,q*, f*,b*]' be an optimal
solution of the (DAMB-FBC) problem and i any thermal unit committed in period t of the
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Fig. 2 Optimal bid function A2*(p?) when (a) b}; < P; (b) b}; > P..

optimal solution (i.e. i € I, ). Then, for a unit i with quadratic convex generation costs, the

bid function:

is optimal, i.e., it satifies p

ltli* (pfz) = {

0

if pi < q;

2 (ph+b%) + b if gy < pl < (Pi—bjy)

D.s
=0l ses,

(56)
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Fig. 3 Associated matched energy function p%’s*.

Proof. First, we consider the case where ¢ > 0. To illustrate this proof, the expression (56)
has been represented graphically in Figure 2 for two cases: the first one, when b}; < P;
(Figure 2(a)) and therefore g;; > P; — b;; and the second one, when b}; > P; (Figure 2(b))
and therefore gj; > 0. It is easy to see that the matched energy function associated with the

bid function /'Ltll?* at scenario s (i.e A” = l,D"v) is for both cases (Figure 3):

g; if AT<Ay
Y =46 it A <A < (57)
Pi—b if AP > Ay

where the threshold prices A,; and ,; are defined as:
Ao =260 (g +by) + et 5 A =26IPi+cf (58)

and 6;} is the parameter defined in equation (53). Thus, to demonstrate the optimality if bid
function (57), it is sufficient to prove that p//* (AP = pif = max{qj;,p;}. We verify this

equivalence for the three cases of expression (57) (Figure (3):

(a) If, for some k € .7, A,ID’k < A,; then 6}; <gj; < P; — b,; and, by definition (52), ptlj- =
max{6X, [P; — b};]* }, which will always be less than or equal to g;. Then, we can write

that pf,-* = max{ql*i,pt’}} = ¢}; and, as expression (57) gives p!* = ¢;, we can conclude
D,
that pM*(2,”") = pkr.
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(b) If, for some | € .7, A,; < )»,D’[ < Ay then [P; —by]" < g < 6. < (P; — b};) and, by
definition (52) pl; = 6% Then, pls = max{q;, p"' = 6. > ¢’} = 6}.. As expression (57)
gives pM* (AP = 6/, we can conclude that p%*(?ttD’l) =plr.

(c) If, for some r € .7, ltD’r > Ay then 6); > (P; — b};) which, together with definition
(52), sets pj; = (P; — b};) and thus piF = max{q};,,p}; = (Pi—b};) > q;} = (P, — b};). As
expression (57) gives pM*(AP") = (P; — b?), we can conclude that pM*(A>") = pr*.
O

Note that if cf.’ =0 (i.e., a thermal unit with linear generations costs), the bid function (56)
reduces to:
0 ifph<gqg’
M=, e
A 1fqzi < Py < (Pi 7bzi)

l

and the optimal matched energy function associated with this optimal bid function is:

* : D )

sy 0y _ ) i if A7 <c 59

pri (A7) {P,-—b;‘i if A'rD >Ef (59)

it is straightforward to see that this expression (59) is equivalent to expression (55) and then
in this case pM* (LD’S) = p;7 also applies.

4 Efficient solution of the (DAMB-FBC) problem: the perspective cuts formulation

As stated in Section 2, problem (DAMB-FBC) is a mixed integer quadratic programming
problem. These kind of optimization problems can be solved with the help of commercial
optimization software (i.e. CPLEX (2009)) through the use of nonlinear branch and cut algo-
rithms, at the expense of high computational execution times. The perspective cut formula-
tion is an alternative to the nonlinear branch and cut that was successfully applied in the past
(Frangioni and Gentile (2006)) to solve some unit commitment problems. Perspective cuts, a
method specially conceived to deal with quadratic objective function over semi-continuous
domains, is a sort of outer approximation to the quadratic objective function built through
a set of special supporting hyperplanes related with the perspective function, the so called
perspective cuts. To see how this outer approximation is developed, lets consider the objec-
tive function (21a)-(21b) that, taken into account that the sum of the probabilities P® is one,
can be expressed in the following way:

E;»p [C(u,c“,cd,g,p;lD)} = z; Zj (c}‘,»—l—cz- + Z}PX [f(gf,»,ut;) —A,D"Ypfi} ) (60)
teTJic st SEY

with:
S8t wi) = C?(gfi)z +cigh+ i,

In the rest of the section we drop the indices for notational simplicity. An approach to prop-
erly linearize the quadratic function:

flg.u)=clg*+clg+cu (61)

is to use the outer approximation based on ideas developed by Frangioni and Gentile (2006).
Note that the domain of the function (61), defined by (10) and the binary nature of variable
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h(g,u)

Fig. 4 Graphic of the function A(g,u), together with the perspective cut over (g, 1)

u, can be expressed as 2 = (0,0) U ([P, P] x 1), and that, consequently, function f(g,u) can
be rewritten as (see Figure 4):

P if u=0
7” = .
8 flg)=cig*+clg+c, if u=1,

Moreover, when we use the branch and cut methods in order to find lower bounds for
the optimal value, we solve continuous relaxations of the mixed integer linear problem, i.e.
with u € [0,1]. Therefore, a natural question is whether we can obtain a convex function
with a tighter epigraph for f(g,u), which can be used to calculate those lower bounds. This
leads us to take into account the convex envelope of f(g,u) over the disconnected domain 2.
This is the convex function with an epigraph equal to the convex envelope of the epigraph of
f(g,u), which corresponds to the cone generated by epi(f(g,1)) and (0,0,0)) (see Figure
4). As it is shown in Frangioni and Gentile (2006) this convex envelope is :

0, if (g,u) =(0,0)
clg? if uP < g <uP,
h(g,u) = Tg +clg+ctu, { fo;u_eg(a 1 } (62)

oo, otherwise,



A new optimal electricity market bid model solved through perspective cuts 19

This function is the perspective-function f(g,u) = uf(g/u) of f(g), for u limited to be
in (0,1], which is convex if f(g) is convex, see Hiriart-Urruty and Lemaréchal (1993). In
addition, to show that & is a tighter objective function than f for the continuous relaxation
it is enough to compare (61) and (62) for 0 < u < 1. Note that the definition of 4(0,0) is

redundant, as if & is the domain of A, i.e. the pyramid having as base [P, P] x {1} and vertex
[0,0], then for all sequence {g,u;} C & that converges to [0,0] we have

2
0<uf (ﬁ> <uy |+t (&> +c (ﬁ) <u | sup f(g)
Uy Ug Uy g€[P,P)|

and, therefore, limy_,eo i f (gx/utx) = 0, as f is convex and finite on the compact [P, P].

Also, for g € [P, P] and u € [0,1] it can be shown that the maximum value of h(g,u) —

f(g,u) over the domain & of both functions is 1P’ /4, attained at (P/2,1/2), i.e. h penal-

izes the highest non-integrality in the domain. Nevertheless, due to the strong nonlinearity

and the non-differentiability of h(g,u) at (0,0), it is not practical to use it as the objective

function instead of f(g,u). A way of overcoming this difficulty is to replace h(g,u) with the

point-wise supremum of affine functions, which is possible because of the convexity of /.
The subgradient inequality for h over (g,u) is given by

) > W@ + (51.52) (8.0~ (3.7, (63)

where (s1,s2) € dh(g,u). Then, all (v,g,u) in the epigraph of & must verify this inequality
for all (g,u) € Z. In order to characterize the epigraph of h we notice, first, that every
element (g,u) in & belongs to the line g = gu for a given g € [P, P] and, second, that the
subgradient (sy,s;) is constant along this line, and equal to (s1,s2) = (2¢9g+ ¢, c? — ¢9g?)
making only necessary to consider the subgradient inequality (63) over the points (g,1).
Therefore, the epigraph of & is defined by the subset of:

{(v.gu) | uP<g<uPand0<u<1}

that is the solution of this infinite linear-inequality system:

v> (298 +c)g+ (" —c%gP)u,  taking g€ [P,P] (64)

For each g € [P,P] we have an inequality so-called a perspective cut (PC), which is the
unique supporting hyperplane to the epigraph of the function passing by (0,0) and (g,1)
(see Figure 2).

4.1 PCF formulation of problem (DAMB-FBC)

PC formulation (PCF) consists of using the perspective cuts (64) to construct an objective
function that is the point-wise maximum of the linear functions of these hyperplanes, i.e. it
is a polyhedral outer approximation of the function / over the domain &. A more detailed
explanation can be found in Frangioni and Gentile (2006). In this section we will outline
how this PCF is used to solve efficiently problem (DAMB-FBC). In the PCF of problem
(DAMB-FBC) the quadratic function f(g;,u;) in (60) is replaced by its perspective cut
approximation v;;:

minEyp [Cluc’ ! g, pviAP)| = ¥ Y (chiteir ¥ P [i=2"p)) (69
teTics s
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where, for each ¢, i, and s, v{; must satisfy a finite subset of the inequalities (64) defined over
the elements of a given finite discrete domain € C [P;, P;], that is:

v > (2c0g+chghi+ (P —clghun g€, ice S 1€ T, s€S (66)

P —

As a result of these formulation, the problem to be solved in the PCF of model (DAMB-
FBC) is:

min E;p [6(u7c“,cd,g7p7v ;XD)}

s.t.
(DAMB-FBC-PCF) Eq. (1) —(4) BC and FC constraints
Eq. (5)—(9) DAM and total gen. constraints
Eq. (11) —(20) Unit commitment constraints
Eq. (66) Perspective cuts

which is a MILP that can be solved with a branch and cut algorithm. The set of constraints
(66) (or, equivalently, the elements in €}) are defined dynamically as the branch and cut
algorithm proceeds, in the following manner. At the first iteration of the algorithm, the con-
straints (66) include, for each s, i and 7, just the two inequalities defined over the extreme
values of the interval [P;, P;], that is %;ll = {P;,P;}. At every subsequent iteration k, once a
solution (v*, g*,u*) to the relaxed subproblem is found, if u;; > 0 then new inequalities (64)
are generated over g = g)" /u; and, if violated by the current solution (v);",g);",u};), they
are added to the set of constraints (66), i.e. €5 ' := €3 ¥ U {g}.

5 Numerical tests

In this section we present some results of the numerical tests done in order to evaluate the
computational advantages of these optimization techniques for the presented model. Table 1
shows the main characteristics of the set of instances of the (DAMB-FBC) problem used to
evaluate the performance of the perspective cuts method. These instances are defined based
on real data of a GenCo operating in the MIBEL. These instances have a pool of bilat-
eral contracts with 300MWh committed for each interval, a set of 3 futures contracts with
700MWh committed, 9 thermal units (see Table 2 for the units’ operational characteristics)
and 24 hourly intervals. The difference between the set of problems presented are the sce-
nario prices and probabilities used, they are generated with different statistical methods. In
Table 1, |.#|, ||, |-#| and |.7 | are the cardinality of the corresponding sets. | %8| means the
number of bilateral contracts, # var is the number of variables in problem (DAMB-FBC),
# varpcr is the number of variables in problem (DAMB-FBC) for the PC formulation, #
bin is the number of binary variables and # constr represents the number of constraints in
problem (DAMB-FBC). Note that, if we use the PC formulation, the number of variables
increases in m = |7 | - |.Z] - |.#], due to the addition of variables v. Moreover, the number
of constraints also increases due to the presence of the perspective cuts (66): initially there
are 2 - m extra constraints and, at the termination of the branch and cut algorithm, there is a
variable number of perspective cuts dynamically added, which is stated in column # PC.

In our numerical tests we have used CPLEX 12.1, which allows to input directly the
(DAMB-FBC) problem as a mixed-integer linearly constrained quadratic program and solve
it. Moreover, for PCF the dynamic generation of PCs can be easily implemented by means
of the cutcallback procedure. Thus, apart from the basic formulation, the same sophis-
ticated tools (valid inequalities, branching rules, ...) are used for both formulations: MIQP
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Table 1 Test problems, CPU times and number of PC

Prob. |- #var  #varpcp  #constr #PC tmiopP tpcr effi
A5 5 4320 5520 9396 4797 7.19 2.59 2.78
A6 6 4800 6240 10596 6189 16.94 3.56 4.76
A8 8 5760 7680 12996 9613 38.38 7.60 5.06
A10 10 6720 9120 15396 11212 52.83 9.30 5.68
Al2 12 7630 10560 17796 22956 99.59 23.47 4.24
Al4 14 8640 12000 20196 27359 142.76 32.26 443

Al6 16 9600 13440 22596 15471 210.82 22.61 9.32
Al18 18 10560 14880 24996 17920 239.14 30.76 7.77
A20 20 11520 16320 27396 20055 369.15 36.96 9.99
B10 10 6720 9120 15396 8548 333.80 745 4481
B20 20 11520 16320 27396 16700 786.99 26.04  30.22
B30 30 16320 23520 39396 24184  1290.93 57.01 22.64
B40 40 21120 30720 51396 60185  2280.04 257.54 8.85
B50 50 25920 37920 63396 50196  3362.26 249.64  13.47
B61 61 31200 45840 76596 58309  3659.10 33455 10.94
C75 75 37920 55920 93396 68276  6651.98 544.83 1221
C100 100 49920 73920 123396 117437 115775  2046.25 5.66
CI25 125 61920 91920 153396 144800 11336.8  3358.92 3.32

[ 7= |%]=3.].7] = 10, |7 | = 24, # bin = 240

Table 2 Operational characteristics of the thermal units used in the study

i I cl ol P; P; " i i1
€ €/MWh €MWh? MWh MWh € € h
1 151.08 40.37 0.015 160.0  350.0  412.80 412.80 3
2 55421 36.50 0.023 2500 5632 803.75 803.75 3
3 97.56 43.88 0.000 80.0 2842 244.80 244.80 3
4 327.02 28.85 0.036 160.0  370.7 438.40 438.40 3
5 64.97 45.80 0.000 30.0 65.0 100.20 100.20 3
6  366.08 -13.72 0.274 60.0 166.4 188.40 188.40 3
7 19793 36.91 0.020 160.0  364.1 419.20 419.20 3
8  66.46 55.74 0.000 110.0 313.6  1298.88  1298.88 3
9 372.14 105.08 0.000 90.0 350.0 131544 131544 3

and PCF. In both cases we have set the default gap (0.01%) and have used only one CPU
thread.

A few differences remain: e.g. the need for invoking the callback functions disables the
more efficient dynamic search of CPLEX 12.1 for adding cuts, whereas this skill is used
when the (DAMB-FBC) problem is solved by CPLEX as a MIQP. Apart from these, the
same tools are used with both formulations, allowing a fair comparison.

The tests have been performed on HP with Intel(R) Core(TM)2 Quad CPU Q8300
2.50GHz 4 CPU under SUSE Linux Enterprise Desktop 11 (x86_64).

In Table 1, ty7gp points out the CPU-times (in seconds) used by CPLEX to solve these
problems by MIQP techniques; under tpcr we have the time used by CPLEX with PC for-
mulation and MILP techniques; effi = tyop/tpcr gives us the PCF efficiency with regard
to MIQP. As can be observed, in the solution of these (DAMB-FBC) problems CPLEX with
PCF has been significantly more efficient than without it, as is suggested in Frangioni and
Gentile (2006), in fact the average of the efficiency without the extreme values is 9.91 and
the maximum efficiency, 44.81, is obtained for the problem “B10”. Moreover, PCF not only
converges faster than the MIQP counterpart, but also gives the optimal solution to the origi-
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nal quadratic problem (DAMB-FBC): the relative discrepancy between the actual quadratic
objective function (60) computed over the PCF-MILP and the MIQP solutions is around
108 in all the cases shown in Table 1, which is absolutely negligible. In summary, the PCF
formulation has been able to find the optimal solution of all the (DAMB-FBC) instances
in 1/10 the execution time of the MIQP formulation, on the average. This reduction of the
execution time which, for the largest case C125 means to change from more than 3 hours to
less than 1 hour on an standard personal computer, is of special value for the electric utilities
because this problem usually has to be solved several times within the same working day.

Let’s now illustrate different situations concerning the bid strategy. We use the problem
C75 and we represent some optimal bid curves (Figure 5). In Figure 5(a), the optimal bid
curve is shown for thermal unit 1 at interval 23. It can be seen that, in this case, b33 | = 80 is
lower than the minimum capacity. Thus, the instrumental price bid must be at least the min-
imum capacity minus this quantity that is committed to BCs. In this case, the instrumental
price bid quantity g5; | = 179. In the other case, Figure 5(b), the optimal bid curve of unit 6
at interval 18 is represented. Contrary to the previous case, the quantity committed to bilat-
eral contracts is greater than the minimum capacity (b“f&6 = 86); therefore, the instrumental
price bid quantity is forced, by the coverage of the FCs, to be greater than 0.

6 Conclusions

In this work we have presented a mixed-integer quadratic stochastic programming model
for the integration of the physical futures and classical bilateral contracts into the day-ahead
bidding problem of a GenCo operating in the MIBEL. The rules for the integration of the
BCs and FCs in the DAM process have been described and the analytical expression of
the optimal bid function that maximizes the expected long-run benefits of the GenCo was
obtained. The optimal solution of our model determines not only the optimal bid to the
DAM but also the optimal operation of the units (unit commitment), and the optimal way to
procure both the futures and bilateral contracts.

It also has been studied and presented an implementation of the perspective cut method-
ology in the solution of decision problems under uncertainty. We have applied this method-
ology to the model for day-ahead market bid with bilateral and futures contracts. The com-
putational experience shows that if we use a commercial software as CPLEX together with
these techniques to solve (DAMB-FBC) problems, an average speed-up factor of ten is ob-
tained with respect to the running time of standard MIQP branch and cut methods. There-
fore, these results show that appropriate formulations of (DAMB-FBC) problems can be
used to find good-quality solutions in relatively short time by using general-purpose opti-
mization software. The computational tests were performed using real data on the thermal
units of a price-taker producer operating in the MIBEL.
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