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Abstract

The integrated refinery-planning (IRP), an instrumental problem in the petroleum industry, is made
of several subsystems, each of them involving a large number of decisions. Despite the complexity of
the overall planning problem, this work presents a mathematical model of the refinery operations char-
acterized by complete horizontal integration of subsystems from crude oil purchase through to product
distribution. This is the main contribution from a modelling point of view. The IRP, with a planning
horizon ranging from 2 to 300 days, results in a large-scale linear programming (LP) problem of up to
one million constraints, 2.5 million variables and 59 millions of nonzeroes in the constraint matrix. Large
instances become computationally challenging for generic state-of-the-art LP solvers, such as CPLEX. To
avoid this drawback, after the identification of the nonzero structure of the constraints matrix, structure-
exploiting techniques such as Dantzig-Wolfe and block coordinate-descent decomposition were applied
to IRP. It was also observed that interior-point methods are far more efficient than simplex ones in large
IRP instances. These were the main contributions from the optimization viewpoint. A set of realis-
tic instances were dealt with generic algorithms and these two decomposition methods. In particular
the block coordinate-descent heuristic, with a reverse order of the subsystems, appeared as a promising
approach for very large integrated refinery problems, obtaining either the optimal or an approximate
feasible solution in all the instances tested.

Keywords. Planning, petroleum industry, large-scale linear programming, decomposition techniques.

1 Introduction

The primary goal of refiners in transforming crude oil into products is to maximize profit while keeping the
pollution level within acceptable limits. A typical refinery operation involves a wide spectrum of activities,
starting from crude oil purchase and transportation to refineries, refining, blending and transportation of
products in demand to depots. The economics is extremely complex and heavily linked. Besides, the whole
process is usually described by massive amount of operational data and decision-making processes. These
situations, therefore, call for detailed planning over a specific period of time - typically one year. Often, the
production plans are further broken down into feasible operations throughout time with detailed schedule of
each activity and event in the refining operations. The scheduling horizons span from a few days to weeks,
depending on information availability and uncertainty, and decisions are taken on hourly basis.

The use of mathematical programming in refinery operations spans well over half a century. Since the
invention of the simplex algorithm in 1947 by G.B. Dantzig, linear programming (LP) has been routinely
used in the petroleum industry not only for blending of gasoline, but also for configuration selection, capital
investment analysis, long-range operations planning, supply and distribution planning. The limitations to
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progress are the matrix size capacity of the computer, the time required to get a solution, and the accuracy
of LP results which depend on the validity of input data. Refiners have therefore solved complex refinery-
planning problems by decomposing into subproblems and, to date, this is reflected in the way some refineries
operate its planning, central engineering, upstream operations, refining, supply and transportation.

In most cases, the integrated refinery-planning (IRP) problem is decomposed into three subproblems:
crude oil supply, refining and blending, and product distribution. As it will be reviewed in next paragraphs,
most of previous approaches dealt with these three subsystems independently, although few of them also
considered the integrated problem. The main contribution from a modelling point of view is that, unlike
earlier publications, all the three subproblems are modeled in detail and effectively integrated, i.e., several
groups of refineries are considered, instead of a single one. From an optimization viewpoint, the main
contribution is an extensive computational implementation and experimentation with large-scale realistic
instances applying generic algorithms and two decomposition approaches: Dantzig-Wolfe [10] and block
coordinate-descent heuristic [20]. As far as we know, this is the first attempt to apply the block coordinate-
descent method in this context, although it was applied in other production planning problems. It was
observed that interior-point methods are far more efficient than simplex ones in large IRP instances. However,
the largest instances were challenging for generic state-of-the-art LP solvers (such as CPLEX) even in
powerful computers. Using the reverse order of subsystems, the block coordinate-descent heuristic appeared
as a promising approach for very large integrated refinery subsystems, obtaining either the optimal or an
approximate feasible solution in all the instances tested.

Considerable research efforts have been directed towards the modeling of each subsystem. The planning
and scheduling of exploration and production of crude oil in oil fields were formulated as a Mixed-Integer
Linear Programming (MILP) problem [15], Mixed-Integer Nonlinear Programming (MINLP) problem [17],
or a Nonlinear Programming (NP) problem [39, 40]. Meister, Clark and Shah [24] described the optimal
selection of information-gathering process during the oil exploration phase which, at the same time, permits
the calculation of optimal operating policies. Daily operations of crude oil shipment from oil fields to storage
tanks in the wharf, unloading, transfer to storage tanks and inventory management are described as MILP
problem in Lee et al. [19], Maglhães and Shah [22] and Neiro and Pinto [29]. The MILP problem describing
the crude oil supply subproblem was further decomposed into two MILP problems in Más and Pinto [23].

In the area of refining and blending subsystem, examples of problems presented in literature are: NP
model of diesel production planning [26], production scheduling of several processes such as fuel oil, asphalt
and liquefied petroleum gas production [32], a NP model for obtaining increased gasoline yield in a group
of crude distillation units (CDUs) in the context of reducing energy requirements [30], and an LP model
for multi-period planning of oil refinery [33]. Recently, Méndez et al. [25] presented an MILP-based method
that addressed the simultaneous optimization of the off-line blending and short-term scheduling problem in
oil-refinery applications.

In the distribution subsystem, Van der Bruggen, Gruson and Salomon [38] presented a hierarchal approach
for the operations related to the delivery of gasoline and diesel oil between depots and clients while Persson
and Göthe-Lundgren [31] suggested an optimization model and a solution method for a shipment planning
problem. Rejowski and Pinto [34] presented a model composed of petroleum refinery, one multi-product
pipeline and several depots that were connected to local consumer markets.

The trend is not only in integrating the three subproblems but expanding the refining and blending
processes to include a group of refineries instead of one, and the inclusion of discrete and binary variables—
continuous and batch operations in multi-period planning [27]. Wenkai et al. [41] presented a solution
algorithm that iteratively solved two mixed-integer programming (MIP) problems for short-term scheduling
of crude oil unloading, storage, and processing with multiple oil types, multiple berths, and multiple process-
ing units. Buchanan et al. [5] developed a system capable of simultaneously considering multiple refineries,
multiple time periods, transportation of finished products to regional terminals, export and import options,
and capital investments.

In summary, subsystems of a refinery network with considerable simplifications have been studied at
reasonable level of details [29]. Obviously the idea of modeling the refinery network and subsequently solving
the subsystems sequentially does not guarantee the globally optimal operation of the system, because the
several problem features were not considered in a single and integrated model [23, 14]. In one of the leading
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multinational oil company operating today, different decisions are supported by sets of different tools and
work is done continuously to integrate those tools to support the entire decision process [18]. Jia and
Ierapetritou [16] successfully solved each of the subproblems and the integration of all the three subproblems
is work in progress. Escudero, Quintana and Salmerón [11] presented a modeling framework for a real-
life and stochastic supply, transformation and distribution scheduling problem for the oil industry, without
attempting the solution of the resulting large-scale formulation. Unlike those approaches, this work presents
a detailed integrated model, which is successfully solved by two decomposition methods.

The paper is organized as follows. Section 2 introduces the IRP problem and its general LP formulation.
Section 3 describes the set of realistic test cases considered and the nonzero structure of the constraints
matrix of IRP. Section 4 proposes the Dantzig-Wolfe and block coordinate-descent decomposition as solution
methods for IRP. Finally, the numerical results of Section 5 show the effectiveness of the proposed model
and solution methods.

2 Integrated refinery-planning problem

The system configuration of this planning problem is illustrated in Fig. 1. The system consists of a set of
crude oils and corresponding crude oil tankers that arrive in the refinery docking station and sends crude
oil to a set storage tanks from where crude oil is transferred to a set of charging tanks. In the charging
tanks, different crude oils are mixed according to component compositions and transfered to CDUs in a
set of refineries. In the CDUs different crude mixes are separated in processing units into different oil
fractions as illustrated in Fig. 2. These fractions are further processed or blended to obtain other products
that are stored or transported to a set of depots. Given necessary data, such as the cost of raw materials,
physical properties of materials, capacity of processing units, demand of products, initial inventory level
and capacity of tanks, the problem is to establish inventory levels in each tank, material flow rates between
processing units, amount of final products that should be made, revenue from all final product, and cost
of all purchased materials that translate to the maximum profit that can be made during a given planning
horizon. The operating rules that have to be obeyed are presented in subsection 2.1.

Figure 1: Graphical overview of the integrated subsystems
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Figure 2: Illustration of the refinery subsystem

2.1 Mathematical model

For simplicity, it is assumed that: (a) only mass balance of materials in the tanks and processing units and
inventory management of the tanks in the integrated system are included in the model; energy balance of
processing units is not considered; (b) only continuous variables that are linear are considered; decisions that
involve discrete variables like deciding which processing unit serves a given processing unit are determined at
the beginning and so are taken as parameters–for instance, each oil tanker delivers a specific crude oil to an
assigned storage tank; (c) the LP problem is deterministic within the planning horizon; (d) only specific key
component in crude or blended oil fix the property of crude and blended oil; (e) the flow rate of materials is
constant during the allocated time slot; (f) the mathematical formulations are based on discrete time domain
allowing processing tasks to take place at certain time points. Even with these assumptions, the resulting
LP problem is very large. The indices, sets, parameters, and variables used to model the IRP problem are
listed and defined in the Appendix. Note that, although the same name was used to refer to different groups
of variables, they can be distinguished by different subscripts (both in number and meaning). There is no
ambiguity since each index iterates over a different set of values (e.g., crude oil type, depot, storage tank,
blending tank, etc.). This license in notation was taken to improve the readability of the model.

2.1.1 Crude oil-supply model

The model presented in this section is taken from Song et al. [35]. The onset is the unloading of crude oil
from crude oil tankers to specified storage tanks. The flow rate, cumulative flow rate of a given crude oil
from corresponding crude oil tanker to storage tanks, the total volume and cost of crude oil consumed at a
given time interval and during the planning horizon are defined in (1)–(8).

CFc,i,t = CFc,i,t−1 + Fc,i,t ∀(c, i) ∈ CI, t ∈ T | t 6= 1 (1)

CFk,i,t = CFk,i,t−1 + Fk,i,t ∀k ∈ K, i ∈ I, t ∈ T | t 6= 1 (2)

Fk,i,t =
∑

c∈C|(c,i)∈CI

Fc,i,t ·
ρc

ρk

· φk,c ∀k ∈ K, i ∈ I, t ∈ T (3)
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CCR
t =

∑

c∈C

Vc,t · costc,t ∀t ∈ T (4)

Vc =
∑

t∈T

Fc,i,t ∀(c, i) ∈ CI (5)

Vc,t = Fc,i,t ∀(c, i) ∈ CI, t ∈ T (6)

V CR
t =

∑

(c,i)∈CI

Fc,i,t ∀t ∈ T (7)

V CR =
∑

(c,i)∈CI

∑

t∈T

Fc,i,t (8)

From a given storage tank, crude oil is sent to a group of assigned blending tanks where different crude
oils are mixed according to the concentration of sulfur in the crude oils. The flow rates and cumulative
flow rates of crude oil from the storage tanks to blending tanks are defined in (9)–(11). Constraints (12)–
(17) correspond to the volume and inventory costs of crude oil in the storage tanks and blending tanks;
maximal/minimal volume of crude in these tanks are written in (18) to (21). Constraints (22) impose the
mass balance of crude oil in and out of storage tank.

Fk,i,j,t =
∑

c∈C|(c,i)∈CI

Fc,i,j,t ·
ρc

ρk

· φk,c ∀k ∈ K, i ∈ I, j ∈ J, t ∈ T (9)

CFc,i,j,t = CFc,i,j,t−1 + Fc,i,j,t ∀(c, i) ∈ CI, j ∈ J, t ∈ T | t 6= 1 (10)

CFk,i,j,t = CFk,i,j,t−1 + Fk,i,j,t ∀k ∈ K, i ∈ I, j ∈ J, t ∈ T | t 6= 1 (11)

CINV ST
t =

∑

i∈I

cinvi · Vi,t ∀t ∈ T (12)

CINV BT
t =

∑

j∈J

cinv jj · Vj,t ∀t ∈ T (13)

Vi,t =
∑

c∈C:(c,i)∈CI

Vc,i,t ∀i ∈ I, t ∈ T (14)

Vk,i,t =
∑

c∈C|(c,i)∈CI

Vc,i,t ·
ρc

ρk

· φk,c∀k ∈ K, i ∈ I, t ∈ T (15)

Vj,t =
∑

c∈C

Vc,j,t ∀j ∈ J, t ∈ T (16)

Vk,j,t =
∑

c∈C

Vc,j,t ·
ρc

ρk

· φk,c ∀k ∈ K, j ∈ J, t ∈ T (17)

∑

c∈C|(c,i)∈CI

Vc,i,t ≤ vmax
i ∀i ∈ I, t ∈ T (18)

∑

c∈C|(c,i)∈CI

Vc,i,t ≥ vmin
i ∀i ∈ I, t ∈ T (19)

∑

c∈C

Vc,j,t ≤ vmax
j ∀j ∈ J, t ∈ T (20)

∑

c∈C

Vc,j,t ≥ vmin
j ∀j ∈ J, t ∈ T (21)

Vc,i,t = v0c,i +
∑

c∈C|(c,i)∈CI

∑

t∈T

Fc,i,t −
∑

j∈J

∑

t∈T

Fc,i,j,t ∀(c, i) ∈ CI, t ∈ T (22)
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2.1.2 Refining process model

The constraints in this subsystem are adapted from Aronofsky, Dutton and Tayyabkhan [2]. Crude blend
from a given blending tank is sent to an assigned CDU in the refinery where the crude blend is separated
into different intermediate fractions. Some of these intermediate fractions are further processed and blended
in processing units. The processing units in the refinery are catalytic reformer (CR), catalytic cracker (CC),
hydro treater (HT), and blend header (BH). Use of these processing units should not exceed specified capacity
(23). Besides, the demand of blended crude by all processing units must be covered by the amount flowing
from all the blending tanks (24) and the amount of intermediate fraction must cover the amount required
for blending to make the products (25).

∑

pr∈PR

utilu,pr ·
∑

c∈C

LEV PR
pr,c,t ≤ capu ∀u ∈ U, t ∈ T (23)

∑

pr∈PR

iomr,c,pr · LEV PR
pr,c,t + Fc,j,l,t ≥ 0 ∀mr ∈ MR, c ∈ C, (j, l) ∈ JL, t ∈ T (24)

∑

pr∈PR

iomi,c,pr · LEV PR
pr,c,t + (Fmi,c,t | mi ∈ MP ) ≥

∑

(p,mi)∈BL

LEV BL
p,mi,c,t ∀mi ∈ MI, c ∈ C, t ∈ T (25)

Constraints (26)–(28) define the volume of product that must equal the volume of all intermediate frac-
tions blended to make the product, and the minimum/maximum quality attributes of the products that must
be met. The cost of all intermediate fractions purchased from a third party and the total cost of operating
all the operating units are computed in (29)–(30).

Fp,pt,t =
∑

(p,mi)∈BL

∑

c∈C

LEV BL
p,mi,c,t ∀(p, pt) ∈ PPT, t ∈ T (26)

∑

mi∈MI|(p,mi)∈BL

∑

c∈C

attrmi,c,q · LEV BL
p,mi,c,t ≥ attrmin

p,q · Fp,pt,t ∀(p, pt) ∈ PPT, t ∈ T, q ∈ Q | attrmin
p,q 6= 0 (27)

∑

mi∈MI|(p,mi)∈BL

∑

c∈C

attrmi,c,q · LEV BL
p,mi,c,t ≤ attrmax

p,q · Fp,pt,t ∀(p, pt) ∈ PPT, t ∈ T, q ∈ Q | attrmax
p,q 6= 0 (28)

CPUR
t =

∑

mp∈MP

∑

c∈C

costmp,t · Fmp,c,t ∀(j, l) ∈ JL, t ∈ T (29)

COP
t =

∑

pr∈PR

(costpr ·
∑

c∈C

LEV PR
pr,c,t) ∀t ∈ T (30)

2.1.3 Product distribution model

The final products from the blend headers are stored in corresponding product tanks from where the products
are transported to depots. In this subsystem, the constraints are simply defined as follows: the volume of
products in the product tanks should fall within the specified minimum/maximum capacity of the product
tanks—constraints(32)–(33), and the total inventory cost of the product tanks is defined in (31). The total
demand of a given product at a given depot should be satisfied by the flow of the product from all the product
tanks—constraints (34)–(35). The cost of transportation of products to depots and the total revenue from
all products are defined by (36) and (37) respectively. The material balance constraint for a given product
in a given product tank is written in (38).

CINV PT
t =

∑

(p,pt)∈PPT

Vp,pt,t · cinvpt ∀t ∈ T (31)
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∑

p∈P |(p,pt)∈PPT

Vp,pt,t ≤ vmax
pt ∀pt ∈ PT, t ∈ T (32)

∑

p∈P |(p,pt)∈PPT

Vp,pt,t ≥ vmin
pt ∀pt ∈ PT, t ∈ T (33)

DEMp,pt,t =
∑

dp∈DP |(p,pt,dp)∈PPTDP

Fp,pt,dp,t ∀(p, pt) ∈ PPT, t ∈ T (34)

Fp,pt,dp,t = demp,pt,dp,t ∀(p, pt, dp) ∈ PPTDP, t ∈ T (35)

CTR
t =

∑

(p,pt,dp)∈PPTDP

Fp,pt,dp,t · ctp,pt,dp ∀t ∈ T (36)

REVt =
∑

(p,pt,dp)∈PPTDP

∑

t∈T

revp,t · Fp,pt,dp,t ∀t ∈ T (37)

Vp,pt,t = v0p,pt + Fp,pt,t − DEMp,pt,t ∀(p, pt) ∈ PPT, t ∈ T (38)

2.1.4 Linking constraints

Material balance around units that are situated at the border of two subsystems generates linking constraints.
The volume of crude in blending tanks and the flow rates of the material from a given blending tank to a
specified CDU in the refinery are given by (39)–(41) and the material balance for crude in a particular
blending tank corresponds to (42).

CFc,j,l,t = CFc,j,l,t−1 + Fc,j,l,t ∀c ∈ C, (j, l) ∈ JL, t ∈ T | t 6= 1 (39)

CFk,j,l,t = CFk,j,l,t−1 + Fk,j,l,t ∀k ∈ K, (j, l) ∈ JL, t ∈ T | t 6= 1 (40)

Fk,j,l,t =
∑

c∈C

Fc,j,l,t ·
ρc

ρk

· φk,c∀k ∈ K, (j, l) ∈ JL, t ∈ T (41)

Vc,j,t = v0c,j +
∑

i∈I|(c,i)∈CI

∑

t∈T

Fc,i,j,t −
∑

l∈L|(j,l)∈JL

∑

t∈T

Fc,j,l,t ∀c ∈ C, j ∈ J, t ∈ T (42)

2.1.5 Objective function

The objective is to minimize costs and maximize profit over the entire planning horizon. It is formulated as
follows:

min
∑

t∈T

COP
t +

∑

t∈T

CCR
t +

∑

t∈T

CINV ST
t +

∑

t∈T

CINV BT
t +

∑

t∈T

CPUR
t +

∑

t∈T

CINV PT
t +

∑

t∈T

CTR
t −

∑

t∈T

REVt+ (43)

3 Case studies and problem structure

The IRP model described by (1)–(43) was implemented using the AMPL modeling language [1]. A suite of
seven IRP instances with planning horizons T ranging from T = 2 to T = 300 days were considered. The
system consists of 10 crude oil and crude tankers, 10 storage tanks, 5 blending tanks, a network of 4 refineries,
5 final products, and 60 depots. The realistic input data were taken from Song et al. [35], Aronofsky, Dutton
and Tayyabkhan [2] and U.S. Department of Energy [37]. Following the deterministic assumption (c) of
Subsection 2.1, some data that are stochastic in nature were generated randomly. For instance, the lowest
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Table 1: Dimensions for the IRP problem suite
T in days m n nz m′ n′ nz′

2 7211 13697 45389 3012 5798 24996
3 10883 20540 70049 4838 9022 40374
60 220187 410591 3409679 97520 181390 2809890
120 440507 821171 11031779 195080 362830 9831870
180 660827 1231751 22865879 281840 533470 21044250
240 881147 1642331 38911979 375800 711310 36483030
300 1101467 2052911 59170079 469760 889150 56133810

and highest cost of “Arabian light” crude oil from January to December 2005 was 33.80 and 60.32 $/bbl
respectively [37]; the daily prices of this crude oil were randomly generated within this range of values.
Dimensions for these seven instances are reported in Table 1. Columns m, n and nz show respectively the
number of constraints, columns and nonzeroes of the constraints matrix. Columns m′, n′ and nz′ show
dimensions after applying the problem presolving of the generic solver CPLEX. Although it significantly
reduced the size of the model, the memory requirements were still too large for standard computers and 32
bits version of CPLEX. For instance, the interior-point approach (the most efficient one, as it will be shown
in Section 5) required more than 4, 7 and 10 GB of memory for the three largest instances, respectively.
MPS files for the seven instances are available from http://www-eio.upc.es/~jcastro/srd data.html.

It is worth noting that many constraints of the model of Section 2 define a positive variable as a sum of
other positive variables, and thus it would be possible to substitute them, reducing the number of columns
and rows of constraints matrix. However, this was not done for three reasons. First, if necessary, this
substitution is automatically performed by the preprocessing of the solver, as shown in Table 1. Second,
substitutions would hinder the readability of the current model. And third, for the interior-point solver,
which as shown in Section 5 is more efficient than the simplex method in this problem, it is not clear
whether these substitutions are helpful. Indeed, the cost of an interior-point iteration is not related with the
number of constraints and/or variables, but with the density of AAT , A being the constraint matrix. This
density may increase if substitutions of variables are performed. Indeed, in other block angular problems (e.g.
[21]), it was shown that the addition of new redundant variables and constraints improved the performance
of an interior-point solver.

As shown in Section 5, a 32 bits version of CPLEX-9.1 could only solve the first four instances and
failed in the remaining three by memory limitations on a SUN Fire V20Z server with two AMD Opteron
250 2.46 GHZ processors—without exploitation of parallelism capabilities—and 8 GB of RAM. The three
largest instances needed a 64 bits version of CPLEX-11 on a Dell PowerEdge 6950 server with four dual
core AMD Opteron 8222 3.0 GHZ processors —without exploitation of parallelism capabilities—and 64 GB
of RAM. As far as we know, such large IRP instances have not been tried before in the literature. Because
of the difficulty of solving real large-scale IRP instances by state-of-the-art generic solvers, even with a well
equipped server, we exploited the constraints structure to apply some suitable decomposition procedure.

From the AMPL model, an MPS file format was generated for each instance. This results in an unstruc-
tured general LP problem

z∗ = min cx = z
s.t. Ax ⊲⊳ b

x ≥ 0
(44)

of m constraints and n variables, the symbol ⊲⊳ representing an arbitrary set of inequality and equality
symbols (≤, =,≥). Using an in-house code that read the MPS file and extracted the IRP constraints
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Table 2: Dimensions of IRP problem and subproblems, instance T = 2 days
Problem range rows n. rows range columns n. columns
IRP problem (matrix A) 1:7211 7211 1:13697 13697
Supply subproblem (matrix B1) 1:1291 1291 1:1931 1931
Refining subproblem (matrix B2) 1292:4919 3628 1932:11765 9834
Distribution subproblem (matrix B3) 4920:6851 1932 11766:13697 1932
Linking constraints (matrix [A1 A2 A3]) 6852:7211 360 1:13697 13697

structure of (44), the following formulation was obtained:

z∗ = min c1x1 + c2x2 + c3x3 = z
s.t. B1x1 ⊲⊳ b1

B2x2 ⊲⊳ b2

B3x3 ⊲⊳ b3

A1x1 + A2x2 + A3x3 ⊲⊳ b0

x1 , x2 , x3 ≥ 0.

(45)

Problem (45) shows a primal block-angular structure, each block Bi ∈ R
mi×ni , i = 1, 2, 3, related to re-

spectively the crude supply, refining and distribution subsystems. Linking constraints defined by Ai ∈
R

m0×ni , i = 1, 2, 3 correspond to equations (39)–(41). For instance, Figure 3 shows the structure of the con-
straints matrix for the smallest instance of T = 2 days. Submatrices Bi, i = 1, 2, 3, for the three subsystems
of this particular instance are detailed in Figures 4, 5 and 6, respectively. Figure 7 shows the structure of the
linking constraints matrix [A1 A2 A3]. Table 2 summarizes the range of rows in matrix A (“range rows”),
number of rows (“n. rows”), range of columns in matrix A (“range columns”), and number of columns (“n.
columns”) for the submatrices of instance T = 2. It can be observed that the number of linking constraints
is small compared to constraints of Bi, i = 1, 2, 3. It is also observed that the three subsystems are loosely
coupled, since, from Figure 7, linking constraints only involve variables in the border of subsystems 1 and
2, and 2 and 3.

4 Decomposition techniques

Primal block-angular problems such as (45) can be solved by several effective decomposition techniques
(see Conejo et al. [8] for a comprehensive and practical description of them). In this work we focused on
Dantzig-Wolfe and block coordinate-descent decomposition. This choice is justified by the relative small
number of linking constraints of IRP. Dantzig-Wolfe is equivalent to a particular implementation of the
Lagrangian relaxation algorithm; they only differ in the type of variables used in the master problem: dual
variables in Lagrangian relaxation, primal ones in Dantzig-Wolfe decomposition. Unlike Dantzig-Wolfe, block
coordinate-descent does not guarantee convergence to an optimum for linear problems. However, it was able
to provide either and optimal or an approximate feasible solution in all the instances tested, resulting in the
fastest approach. Some recent specialized interior-point decomposition approaches have not been considered
because, either they have shown to be more efficient for problems with many (even nonlinear) subproblems
[9], or they rely on some specific properties of the linking constraints [6, 7]. Attempting the solution of IRP
by these recent interior-point approaches is, however, part of the future work to be done. We briefly outline
Dantzig-Wolfe and block coordinate-descent decomposition in next two subsections.

4.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition is a classic solution approach for structured models with linking constraints,
such as (45), which can not be solved by the standard simplex algorithm due to its large dimension. Im-
plementations of the Dantzig-Wolfe decomposition algorithm have been described in, among others, Ho and
Loute [12, 13], Tebboth [36].
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Figure 3: Nonzero structure of the constraints
matrix of the integrated system (T = 2 days)
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Figure 5: Nonzero structure of the constraints
matrix of the refining subsystem (T = 2 days)
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Briefly, the feasible polyhedron P of (45) decomposes into three polyhedra Pk, k = 1, . . . , 3, of smaller
dimension representing each subsystem block and a polyhedron P0 representing the linking constraints of
the problem. Minkowski’s representation theorem states that every point in a given polyhedron can be
expressed as a linear combination of its extreme points, {xi}i∈I , and extreme rays, {rj}j∈J . For simplicity
let xi represent both extreme points and extreme rays, where i ranges over E = I ∪ J and let λi represent
the coefficient of xi in Minkowski’s representation. The convexity constraint is written as

∑

i δiλi = 1,
where the constant δi is one if xi is an extreme point, and zero if xi is an extreme ray. Minkowski’s
representation of the three polyhedra Pk, k = 1, . . . , 3, is therefore defined as: Pk = {xk ≥ 0 : xk =
∑

ik∈Ek
(λk)ik

(xik

k );
∑

ik∈Ek
(δk)ik

(λk)ik
= 1; (λk)ik

≥ 0, ik ∈ Ek}. Substituting the linear combination into
(45), the master problem is then expressed as:

z∗ = min
∑

i1∈E1

(c1x
i1
1 )(λ1)i1 +

∑

i2∈E2

(c2x
i2
2 )(λ2)i2 +

∑

i3∈E3

(c3x
i3
3 )(λ3)i3 = z

s.t.
∑

i1∈E1

(δ1)i1(λ1)i1 = 1

∑

i2∈E2

(δ2)i2 (λ2)i2 = 1

∑

i3∈E3

(δ3)i3 (λ3)i3 = 1

∑

i1∈E1

(A1x
i1
1 )(λ1)i1 +

∑

i2∈E2

(A2x
i2
2 )(λ2)i2 +

∑

i3∈E3

(A3x
i3
3 )(λ3)i3 ⊲⊳ b0

(λ1)i1∈E1
, (λ2)i2∈E2

, (λ3)i3∈E3
≥ 0,

(46)

The master problem and the original problem are equivalent. Although the number of rows is reduced in the
new formulation, the number of columns is substantially increased. However, the method does not compute
and store all these columns, but generates only very small subset of the more “attractive” columns of the
master problem—restricted master problem—, as follows:

Step 1. Initialization: choose E′
k ⊆ Ek, k = 1, . . . , 3, an attractive subset of columns leading to a basic fea-

sible solution for the master problem. This could be done for IRP exploiting the particular information
we have about the problem. Otherwise, it that was not possible, any standard procedure should be
used: phase-I [4] or big-M [8]. Initialize the best known lower bound z∗ = ∞ of the unknown optimal
objective value z∗.

Step 2. Solve the restricted master problem. Let µ ∈ R
3 and π ∈ R

m0 be respectively the dual variables
for the convexity and linking constraints at the optimal solution, and z̄∗ the objective function value
(the best known upper bound of z∗).

If the restricted master problem is unbounded, then the problem is unbounded, and any unbounded
ray identified in the restricted master is an unbounded ray of the problem. stop.

Step 3 Solve the pricing problem for column generation. Solve iteratively for k = 1, 2, 3 the subproblems

zk = min (ck − πAk)xk = z
s.t. Bkxk ⊲⊳ bk

xk ≥ 0,

until at least one basic feasible solution is found with zk < µk or an unbounded extreme ray is found
with zk = −∞. Any such solutions found correspond to λk columns with negative reduced cost, and
thus candidates to enter the basis of the current restricted master problem.

Step 4. Optimality test. If zk ≥ µk for each k = 1, . . . , 3, then no column prices out negative to enter the
basis of the restricted master problem. The current restricted master problem solution is an optimal
solution to the problem. stop.
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Step 5. Near-optimality test. If the restricted master problem is feasible, and the pricing problems are all
feasible and bounded, compute a new lower bound (see, e.g., Bertsimas and Tsitsiklis [4])

z = z̄∗ +
3

∑

k=1

(zk − µk).

If z > z∗, update the best known lower bound z∗ = z̄.

Compute the absolute optimality gap dA = z̄∗−z∗ and the relative optimality gap dR = dA/(1+|z̄∗|). If
they are within the specified optimality tolerances, then the current restricted master problem solution
solves the master problem to the requested tolerances. stop.

Step 6 Update the restricted master problem. As the optimality test failed, at least one column (λk)ik
was

identified in Step 3 that is a candidate to enter the basis of the restricted master problem. Choose at
least one to add to the current restricted master problem, i.e., update E′

k by adding the chosen ik.

Any current non-basic variable (λk)ik
of the restricted master problem with positive reduced costs may

be removed, i.e., update E′
k by removing the chosen ik.

Return to Step 2 with the updated E′
k.

Since, as shown in Section 5, the number of iterations performed by the algorithm (i.e., added columns
to the restricted master problem) was not excessive, no removing of inactive columns was performed at Step
6 above in the implementation developed.

4.2 Block coordinate-descent decomposition

The block coordinate-descent method optimizes the objective function with respect to columns in a given
subproblem or block, while the columns in the remaining block(s) are kept constant. This is iteratively
repeated until the difference between subsequent and current objective function is less than a specified
optimality tolerance. This algorithm is appropriate in our situation because subsystems are loosely coupled
by a few variables in the linking constraints. The convergence of this algorithm to a stationary point
of a convex optimization problem is guaranteed if the minimum for each subproblem (associated to each
subsystem, see step 2 of the algorithm below) is uniquely attained [3, Prop. 2.7.1]. Strict convexity of the
objective function guarantees such uniqueness, thus it is sufficient, but not necessary condition. On the other
hand, subproblems of linear objectives may have alternative solutions, and thus convergence to an optimal
solution is not guaranteed. However, it usually behaves properly in practical applications [8].

For strictly convex functions, the order of blocks is irrelevant, since convergence to the unique optimizer
is guaranteed. For linear functions, in principle, there is no rule, and one can start by minimizing the
objective function with respect to columns of any given subproblem. However, for all the instances of the
IRP problem considered in this work, the block coordinate-descent method failed to converge when the
objective function was first minimized with respect to columns in the crude supply subproblem (subproblem
1 in (45)) keeping constant the columns in the refining and distribution subproblems (subproblems 2 and 3 in
(45), respectively). After a careful analysis, it was observed that most parameters in the IRP problem occur
in the distribution subsystem. Parameters such as demand for products in the distribution subsystem act
as the driving force that determines the value of most of the variables in the other subsystems. Therefore,
the algorithm was implemented by first minimizing the objective function with respect to the distribution
variables, next with respect to the refining ones, and finally with respect the crude supply decisions. With
this subsystem reverse order, block coordinate-descent was able to provide the optimal or an approximate
feasible solution solution for all the instances. The algorithm implemented is outlined below:

Step 1. Initialization: let ν = 0; assign arbitrary values of the optimal solution x
∗(ν)
k , for k = 1, 2.
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Step 2. Let ν = ν + 1. Solve iteratively for k = 3, 2, 1, the subproblems:

x
∗(ν)
k = arg min ckxk

s.t. Bkxk ⊲⊳ bk

Akxk ⊲⊳ b0 − b
′

k

xk ≥ 0

where

b
′

k =











A1x
∗(ν−1)
1 + A2x

∗(ν−1)
2 if k = 3;

A1x
∗(ν−1)
1 + A3x

∗(ν)
3 if k = 2;

A2x
∗(ν)
2 + A3x

∗(ν)
3 if k = 1.

Step 3. Compute the objective function of the primal block angular LP problem for the current iteration,

z∗(ν) =

3
∑

k=1

ckx
∗(ν)
k

Step 4. Compute the optimality gap |z∗(ν)−z∗(ν−1)|. If the value is less than a specified optimality tolerance,
then the current solution is reported as the solution of the LP problem. stop.

Otherwise, return to Step 2.

Note that safeguards for infeasible subproblems were not needed: since the number of variables shared
(thus fixed) between subproblems is small, subproblems were not over-constrained and, therefore, a feasible
solution was always obtained for all the instances tested.

It is worth noting that the sequential solution of subsystems, instead of the solution of the integrated
model, is equivalent to applying just one iteration of the above algorithm. From the computational results
of Section 5 it was observed that block coordinate-descent stops after many iterations (from 10 to 32) in
large instances, and this number increases with the size of the problem. Thus, it outperforms the simple
sequential solution of subsystems. In addition, as stated above, it was found that the order of subsystems
in the sequence is instrumental. The block coordinate-descent approach in this work uses a reverse order. If
subsystems are solved in forward order they may lead to infeasible or poor solutions.

5 Computational results

Both block coordinate-descent and Dantzig-Wolfe decomposition algorithms, as described in previous section,
were implemented in Matlab. Subproblems were solved with both the interior-point and dual simplex CPLEX
options. These two generic algorithms, barrier and dual simplex, without exploiting the structure of the
problem, were also considered. This amounts to six solution approaches for each IRP instance. Table 3 shows
the results obtained using the generic barrier (columns “IP”) and dual simplex (columns “dual simplex”) of
CPLEX. For each algorithm we provide the number of iterations and CPU time in seconds. The optimal
objective function found is given in column f∗. Runs for the smallest four instances were performed with a 32
bits versions of CPLEX-9.1 on a “standard” computing environment: a SUN Fire V20Z server with two AMD
Opteron 250 2.46 GHZ processors and 8 GB of RAM (without exploiting the parallelism capabilities). The
three largest instances could not be solved in that environment by memory limitations, e.g., they required,
respectively, more than 4, 7 and 10 GB of RAM with the interior-point algorithm. For these instances we
used a 64 bits version of CPLEX-11 on a Dell PowerEdge 6950 server with four dual core AMD Opteron
8222 3.0 GHZ processors —without exploitation of parallelism capabilities—and 64 GB of RAM. Processors
of both machines are similar in performance, and we performed no transformation of CPU time. Clearly, the
interior-point algorithm outperformed the dual simplex. For instance, for the largest instance the CPLEX
interior-point algorithm took 215531 seconds to find the optimal solution, whereas the dual simplex, after
more than 842000 seconds (about 10 days of CPU), was still very far from optimality. This is partly explained
by the high degeneracy of this problem. In particular, the objective function did not change after the first
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Table 3: Results with CPLEX for the IRP problem suite
Instance dual simplex IP
T (days) iter. CPU (sec.) iter. CPU (sec.) f∗

2 4933 0.4 28 0.5 146320.4
3 9070 1.8 26 0.9 290699.5

60 383629 2834.8 28 1798.8 4232012.8
120 844162 37337.5 30 14689.9 8655432.5
180 1388429 235214.0 29 37432.1 12625528.7
240 > 1081000 † > 878081.3 † 31 99907.6 16731729.3
300 > 540000 ‡ > 842000.3 ‡ 35 215531.9 20888039.6

† stopped very far from optimality, with an objective value of 3887976.3
‡ stopped very far from optimality, with an objective value of -4596190.7

Table 4: Results with decomposition approaches for the IRP problem suite
Instance IP BCD simplex BCD IP DW simplex DW IP
T (days) CPU (sec.) CPU (sec.) CPU (sec.) CPU (sec.) CPU (sec.)

iter. iter. iter. iter. iter.
2 0.3 1.2 0.8 7.5 5.4

16 3 2 7 5
3 0.9 3.8 1.3 9.7 8.2

26 12 10 170 91
60 1798.8 3569.5 1787.9 5758.9 3183.9

28 15 12 182 154
120 8814.0 22903.6 14596.4 25783.0 22440.7

18 22 18 194 169
180 24523.8 26487.8 18701.2 31783.6 28966.2

19 28 20 205 182
240 58010.5 32543.1 23194.8 33981.6 29255.9

18 30 27 209 193
300 92370.4 34009.5 26369.5 39128.9 31014.6

15 35 32 219 205

100 iterations using the dual simplex method. This forced CPLEX to perturb the problem coefficients after
that iteration. However, even with that perturbation, the number of degenerate steps was significant. For
instance, for the four smallest instances the percentage of degenerate steps was, respectively of 17.59%,
17.04%, 14.22% and 21.24%.

Table 4 reports the results obtained with the decomposition approaches. Results are provided for block
coordinate-descent decomposition using either dual simplex or interior-point algorithm for the subproblems
(columns “BCD simplex” and “BCD IP”), Dantzig-Wolfe decomposition using either dual simplex or interior-
point algorithm for the subproblems and restricted master (columns “DW simplex” and “DW IP”), and for
the interior-point algorithm applied to the whole LP problem (column “IP”) which was the most efficient
generic algorithm according to Table 3. For each (instance, solution approach) pair, Table 4 shows two
values: the CPU time in seconds (top entry) and the number of iterations (entry “iter.”). For column “IP”,
entry “iter” provides the number of interior-point iterations; for columns “BCD simplex” and “BCD IP”,
entry “iter” gives the number of iterations of the block coordinate-descent algorithm (i.e., the number of
times Step 2 of the algorithm of Subsection 4.2 is performed); and for columns “DW simplex” and “DW
IP”, entry “iter” gives the number of iterations of the Dantzig-Wolfe method (i.e., the number of times Step
2 of the algorithm of Subsection 4.1 is executed). The CPU time reported for the decomposition algorithms
corresponds to the CPU time needed by CPLEX for the solution of all the LP subproblems, including the
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significant overhead due to pass of parameters between Matlab and CPLEX, but not the time spent in the
Matlab language (which is meaningless, since it is an interpreted language).

Block coordinate-descent provided the optimal solution for the three smaller instances, while for the four
largest ones it stopped in suboptimal feasible solutions of objective values 11.8e+6, 17.9e+6, 36.0e+6 and
48.2e+6, respectively. However it was the fastest method to reach such a feasible solutions. Therefore, for a
fair comparison, Table 4 provides the CPU time needed by the several algorithmic approaches to reach such
feasible solutions. The block coordinate-descent was always superior to Dantzig-Wolfe. Indeed, Dantzig-
Wolfe never outperformed the standard algorithm in the smaller instances, where optimality was reached;
this is consistent with the observed behaviour of Dantzig-Wolfe in other applications [4]. As a summary, it
could be stated that, in general, interior-point methods should be used for optimal solutions of IRP, while
block coordinate-descent is the most effective choice for approximate feasible solutions of very large instances
(to be used as upper bounds or for warm-starting any other algorithm).

6 Conclusions

The IRP problem has been modeled and implemented as a large primal three-blocks-angular LP problem.
It has been effectively approached by interior-point algorithms and two decomposition techniques, Dantzig-
Wolfe and block coordinate-descent. Interior-points and block coordinate-descent with a particular order
of the variables (i.e., distribution-refining-supply) resulted in the most effective approaches for respectively
optimal solutions and approximate feasible ones.

Among the future tasks to be done, we mention two of them. First, since both interior-point-based
Dantzig-Wolfe and block coordinate-descent outperformed their simplex-based variants, it is worthwhile to
study the use of alternative interior-point decomposition techniques. Among them we find, for instance,
those of Conejo, Nogales and Prieto [9] and Castro [7]. A second task is the inclusion of binary decisions
in the models for the three subsystems (e.g., to which storage tank is delivered a specific crude oil from
some oil tanker). Even if the planning horizon is significantly reduced (i.e., T ≪ 120 days) the resulting
MILP problem is still very large, and additional decomposition approaches should be applied (e.g., Benders
decomposition).
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Appendix: Nomenclature

Indices, Sets

(Note: to simplify notation, numeric sets, e.g. {1, . . . , T}, are denoted by its cardinality, i.e. T .)

bl, BL product-intermediate material blend
c, C crude oil type
ci, CI crude oil type-storage tank pair
dp, DP depot
i, I storage tank
j, J blending tank
jl, JL blending tank-CDU pair
k, K component
l, L CDU in refinery

15



mi, MI intermediate material
mp, MP purchased material
mr, MR raw material
p, P final product
ppt, PPT product-product tank pair
pt, PT product tank
pptdp, PPTDP product-product tank-depot pair
pr, PR refinery process
q, Q quality attribute
t, T time interval,planning horizon
u, U unit

Decision variables

CCR
t cost of all crude consumed during time period t

CFc,i,j,t cumulative flow rate of crude c from storage tank i to blending tank j
during time period t

CFc,i,t cumulative flow rate of crude c into storage tank i during time period t
CFc,j,l,t cumulative flow rate of crude c from blending tank j to CDU l during

time period t
CFk,i,j,t cumulative flow rate of component k from storage tank i to blending tank j

during time period t
CFk,i,t cumulative flow rate of component k into storage tank i during time period t
CFk,j,l,t cumulative flow rate of component k from blending tank j to CDU l

during time period t
CINV BT

t inventory cost of all blending tank during time period t
CINV PT

t inventory cost of all product tanks during time period t
CINV ST

t inventory cost of all storage tank during time period t
COP

t cost of all refining operations during time period t
CPUR

t cost of all purchased materials during time period t
CTR

t transportation cost of all product trucks or pipeline during time period t
DEMp,pt,t demand of product p from product tank pt during time period t
Fc,i,j,t flow rate of crude c from storage tank i to blending tank j

during time period t
Fc,i,t flow rate of crude c into storage tank i during time period t
Fc,j,l,t flow rate of crude c from blending tank j to CDU l during time period t
Fk,i,j,t flow rate of component k from storage tank i to blending tank j

during time period t
Fk,i,t flow rate of component k into storage tank i during time period t
Fk,j,l,t flow rate of component k from blending tank j to CDU l

during time period t
Fmp,c,t flow rate of purchased material mp derived from crude c

during time period t
Fp,pt,dp,t flow rate of product p from product tank pt to depot dp

during time period t
Fp,pt,t flow rate of product p from product tank pt during time period t
LEV BL

p,mi,c,t level of intermediate material mi from crude c blended into final
product p during time period t

LEV PR
pr,c,t level of process pr using crude c during time period t

REVt revenue from all products during time period t
Vc volume of crude c consumed during planning horizon
Vc,i,t volume of crude c in storage tank i during time period t
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Vc,j,t volume of crude c in blending tank j during time period t
Vc,t volume of crude c consumed during time period t
V CR volume of all crude consumed during planning horizon
V CR

t volume of all crude consumed during time period t
Vi,t volume of all crude in storage tank i during time period t
Vj,t volume of all crude in blending tank j during time period t
Vk,i,t volume of component k in storage tank i during time period t
Vk,j,t volume of component k in blending tank j during time period t
Vp,pt,t volume of product p in product tank pt during time period t

Parameters

attrboth
mi,q quality attribute q of intermediate material mi

attrcr
mi,c,q amount of quality attribute q contributed

to blend by intermediate mi that is derived from crude c
attrmax

p,q upper bound specification of quality attribute q for final product p
attrmi,c,q attrcr

mi,c,q if attrcr
mi,c,q > 0, attrboth

mi,q otherwise
attrmin

p,q lower bound specification of quality attribute q for final product p
capu processing capacity of unit u
cinvi inventory cost of storage tank i
cinvj inventory cost of blending tank j
cinvpt inventory cost of product tank pt
costc,t cost of crude c during time period t
costmp,t cost of purchased material mp during time period t
costpr cost of operating process pr
ctp,pt,dp transportation cost of product p from product tank pt to depot dp
demp,pt,dp,t demand of product p from product tank pt at depot dp during time period t
iomr,c,pr input or output of raw material or intermediate material mr, when using

crude c, per unit level of operation
φk,c of process pr wt.% of component k in crude c
revp,t revenue from product p during time period t
ρc density of crude c
ρk density of component k
utilu,pr 1 if process pr uses unit u, 0 otherwise
v0c,i initial volume of crude c in storage tank i
v0c,j initial volume of crude c in blending tank j
v0p,pt initial volume of product p in product tank pt
vmax

i maximum capacity of storage tank i
vmax

j maximum capacity of blending tank j
vmax

pt maximum capacity of product tank pt
vmin

i minimum capacity of storage tank i
vmin

j minimum capacity of blending tank j
vmin

pt minimum capacity of product tank pt
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