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Abstract

In a recent work [3] the authors improved one of the mdéstient interior-point approaches for
some classes of block-angular problems. This was achigvadding a quadratic regularization
to the logarithmic barrier. This regularized barrier waevsh to be self-concordant, thus fitting
the general structural optimization interior-point frameek. In practice, however, most codes
implement primal-dual path-following algorithms. Thisosshpaper shows that the primal-dual
regularized central path is well defined, i.e., it exists @iglunique.
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1. Introduction

Let us consider the linear programming problem

min c¢'x
s.to Ax=bhb Q)
0<x<u,

wherex, c,u € R", b e R™, andA € R™", Note that any bounded problem can be formulated as
(1). The standard logarithmic barrier problem, used inrintgpoint methods, associated to (1)
is

n n
min  B(x,u) £ c'x+pu —Zlnxi —Zln(ui - %)
= =

@
s.to Ax=Dh,
u being the barrier parameter. Previously used regulariaeidnts replaced&(x, 1) by
Br(x k) 2 CTx+3(x=R)TQp(x- ) @)

+ (-2 In% - 20 In(u - X)),
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Qp being a positive definite matrix andthe current point obtained by the interior-point algo-
rithm. For instanceQp was the identity matrix in [5]; an@p was a diagonal matrix with small
entries—dynamically updated at each interior-point iferat-in [1]. Unfortunately, these prox-
imal point regularizations depend on the current peinand then they do not fit the general
theory of structural optimization for interior-point mettts [4]. In [3] the authors suggested the
alternative regularized barrier problem

Bo(x, 1) £ c"x + %XTQX—mei—Zln(Ui_Xi)] 4)
= =

Q being a diagonal positive semidefinite matrix. This regaéat barrier function was shown to
be a self-concordant barrier [3] for upper-bounded probklamd thus it fits the general interior-
point theory of [4]. It was shown in [3] than, due to this regpidation term, the spectral proper-
ties of a preconditioned system were significantly improvEkis allowed the ficient solution
of the normal equations of some very large primal block-degaroblems by means of a scheme
that combines Cholesky factorizations and preconditiamgugate gradients [2].

The KKT conditions for (2) are [6]:

AX = b,
Aly+z-w = ¢
XZe = pue, )

(U-X)We = pue
(zw) > 0 u>x>0;

e € R"is a vector of 1's;y € R™, zw € R" are the Lagrange multipliers (or dual variables)
of AXx = b, x > 0 andx < u, respectively; and matrices, Z,U,W € R™" are diagonal ma-
trices made up of vectorg z, u,w. The first two sets of equations of (5) impose, respectively,
primal and dual feasibility; the last two impose complenaeity. The solutions of system (5) for
differentu values gives rise to an arc of strictly feasible primal-da@ihts known as the primal-
dual central path. Ag tends to 0, the solutions of (5) converge to those of (1) andugl. A
primal-dual path-following algorithm attempts to folloWet primal-dual central path. This is the
algorithm implemented in packages like, e.g., CPLEX, XBr&#OSEK, etc.

The KKT conditions for (2) replacin®(x, 1) by the regularized version (4) are

AX = b,
Ay —uQx+z-w = ¢,
XZe = pe (6)

(U-X)We = e
(zw) > 0 u>x>0.

Note (5) and (6) only dfer in the dual feasibility. System (6) will be referred as tie regular-
ized KKT conditions, and the arc of primal-dual solutionsddferentu values as the regularized
primal-dual central path.

The purpose of this short paper is to show that the reguthprienal-dual central path is well
defined for (primal and dual) feasible problems: it existd &ris unique (i.e., for any: there
is a solution to (6), and this solution is unique). Sectiom@ves the existence and uniqueness.
We extend previous results [6] for the standard central gafimed by (5) to the new regularized
version (6).
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2. Existence and uniqueness

To simplify the notation, we will consider that (1) has beesnsformed to an equivalent
problem without upper bounds (i.e., adding slasksRR", and constraintg + s = uto Ax= b,
and including slacks in the vector of variables). The sifigdiregularized KKT conditions (6)
are

AX = b,

Aly—uQx+z = ¢,
XZe = pue 7

(x2 > O

The primal-dual feasible s€t and the strictly feasible sgt° are defined by
F = {(x, v, 2)lAx=b, Aly—uQx+z=c, (x, 2 > O}, (8)
7O = {(x, y,2)|Ax=b, ATy - uQx+z=c, (x, 2 > 0}. (9)
We start by proving the following preliminary Lemma, to beddater:
Lemmal. If 7% # @ (i.e., the problem is strictly feasible) then for eactekR, K > 0, the set
{(x2)1(xy.2) € F for some y and X z< K} (10)
is bounded.

Proof. Let (X,Y,2) be any point inF° and(x,y, 2) be any point inF such thatx"z < K. Since
AX = bandAx = bthenA(X— X) = 0. Similarly, A" (y - y)+(Z— 2) —uQ (X - X) = 0. Therefore,

X-%"@Z-2 =(Xx-%" g—AT V- y) +uQ(X- X))
= u(x=%)" Q(x=)
~(X=-XTATG-y)
=u(X=XTQ(X-x)-0-(y-y)
=u(X=XTQ(X-X),
which can be recast as
Xz+Zx=XZ+Xz-pu(X-X)" Q(X-X).

Sincex"z < K andu (X— X)" Q(X - X) > 0 becaus® is positive semidefinite,

XZ+ZXx<K+XZ-u(X-X)"QX-X)<K+XZ (11)

.....

which means 1 1
Oﬁxasg(K+>?Tf), OszaSE(K+>?T?),i=1,...,n,

and hence (10) is bounded. O



To show existence and uniqueness we first define the new set
H = {(x.2) | (x.y,2) € F° for somey}.

We also define the barrier function
1 n
L9 = 2x'z- ) log(x2), (12)
i=1

with the following properties:

Lemma2. 1. f, tends torco wheneve(x, z) approaches the boundary #f°, i.e., when any
Xj or z; approaches.
2. f, is strictly convex or°.
3. f, is bounded below of{®.
4. Givenu > 0, and anyk € R, points(x, 2) of the level set, = {(x,2) € H°| f,(x.2) <«}
satisfy
X €[M,M], ze[M,My], i=1,...,n, (13)

for some positive numbers,nd M,, and thus they are contained in compact subsets.

Proof. (We remark that the regularization term does not intervengroofs of properties 1, 3
and 4, and they are the same than for the standard centralgpgthiay, we recall them here for
completeness).

Property 1 is straightforward.

For property 2, note that the second terrx , log (xiz) is strictly convex (since its Hessian
is positive definite. The first term is shown to be conve¢h Indeed, ifxis any point for which
AX = b, we have for anyx,2) € Hthatx"z= x"(c— ATy + uQx) = c"x - X' ATy + ux" Qx =
c'x=X"(C—z+uQX) + ux"Qx = c"x - c"X+ X" z— uX" Qx+ ux" Qx, which is convex inx, 2)
sinceQ > 0. Hence,f,(x,2) is the sum of a convex and a strictly convex function, thus it
strictly convex.

To show property 3, we defirg{t) = t — logt — 1 and rewritef,(X, 2) as

N[z
f.(x,2) = Zg(#)+n—nlog,u. (14)
=K
Functiong(t) is strictly convex in(0, ), g(t) > 0 fort € (0, ), and tends teo when either
t — 0 ort — oo. Usingg(t) > 0 in (14) we have
f,(x,2 > n—-nlogu =n(1-logu),

i.e., f,(x, 2) is bounded below.
Property 4 is shown by noting that by (18)x, 2) < « if and only if



Therefore, using thaj(t) — oo when eithett — 0 ort — oo, there exists a valub®l such that

1 .
M SXESMo =10 (15)

Adding the terms in this expression we get
n

xTz=Zx;z; <nM. (16)
i=1

By (16) and the boundedness established by Lemma 1 we knoer ¢kists a numbeW, such
thatx € (0, My] andz € (0, M] foralli = 1,...,n. Using (15), we have tha > 1/ (Mz) >
1/ (MMy) for all i; for z we obtain the same lower bound. (13) holds by setkihg- 1/ (MM,).

O

Finally, next Theorem 1 shows that for gy O the barrier functiorf,(x, z) defined by (12)
reaches its minimum if{°, that the minimizer is unique, and that this means that thelagized
KKT conditions (7) have a unique solution.

Theorem 1. If F® # @ andu > 0, then f,(x,2) has a unique minimizer if°, and (6) has a
unique solution.

Proof. By property 4 of Lemma 2 we have that level sdis = {(x, pANS ‘Hoifﬂ(x, 2 < K} of

f.(x,2) are contained in a compact subset’é?, and thusf,(x, 2) has a minimizer ir+°. By
property 2 of Lemma 2{,(x, 2) is strictly convex, thus the minimizer will be unique.

We next show this unique minimizer corresponds to the ungmpletion of (6). This mini-
mizer solves the linearly constrained minimization prale

min f,(x, 2) s. toAx =D, Aly+z-puQx=c, (x,2) > 0. a7
From the Lagrangian

L%y, Zzv,W) = f,(x, 2 + V' (Ax-b)
+WT (ATy + 2 - uQx—-©)

we obtain the KKT conditions of (17)

dc _ df o
a = —X+AV—,UQW
= “Ze-Xle+ Alv—puQw=0,

K (18)
%—5 = Aw=0,

df
aL _ —“+w:}Xe—Z‘1e+W:O.
dz dz u

By combining the first and third equalities of (18) we obtain
T L a1
A'lv=X"e-—-Ze+uQ(Z e—;Xe). (19)
7]
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By combining the second and third we find that
1 1
A(Z'e- —Xg =0,
o)

which means 1
(Zle- =xe"ATv=0.
M
Using the above result in (19) we have
-1 1 Try-1 1 -1 1
(Z'e— —Xe' (X 'e- —Ze+uQ(Z"e—- -X@) =0,
H M H
or equivalently,
1 1
(Zle- =X (X te- =Z¢
A M (20)
+ (Z'e-=X9'uQ(Zle-=Xe =0
H H

The first term of (20) can be written as

I TV DL N T N B
(Z'e—- X' (X Z)(X°Z2° )X e-=-Z¢
7 7

=1 -1 ]_ 1 1 =1 -1 ]_ 1 1
(X?Z2%e-=X’2""(X*Z2%e-=X"Z%¢)
u K

2

\%

H(XZ)‘l/Ze - 1(x2)1/2e 0.
M

2

| I, being the Euclidean norm. Using that> 0 andu > 0, the second term of (20) is equivalent

to
2

‘z—le— Ex% >0,
L 7o)
I l|,q being the norm induced hyQ. Therefore (20) holds if and only if

2

H(xzrl/ze— L (xzy7d 0,
H 2
1 2
”z—le— —Xe( = 0.
HolQ

From the first equality we havexg)/%e = I%(XZ)Me, and thereforéXZe = ue. The second

equality meanZ e = 1Xeand we obtain the same result. Therefore, the unique miemoiz
(17) satisfy not only the feasibility conditions of (7), kalso theu-complementarity condition,
and the proof is complete. O
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