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Abstract

One of the best approaches for some classes of multicommodity flow
problems is a specialized interior-point method that solves the normal
equations by a combination of Cholesky factorizations and preconditioned
conjugate gradient. Its efficiency depends on the spectral radius—in
[0,1)—of a certain matrix in the definition of the preconditioner. In a
recent work the authors improved this algorithm (i.e., reduced the spec-
tral radius) for general block-angular problems by adding a quadratic
regularization to the logarithmic barrier. This barrier was shown to be
self-concordant, which guarantees the convergence and polynomial com-
plexity of the algorithm. In this work we focus on linear multicommodity
problems, a particular case of primal block-angular ones. General results
are tailored for multicommodity flows, allowing a local sensitivity anal-
ysis on the effect of the regularization. Extensive computational results
on some standard and some difficult instances, testing several regular-
ization strategies, are also provided. These results show that the regular-
ized interior-point algorithm is more efficient than the nonregularized one.
From this work it can be concluded that, if interior-point methods based
on conjugate gradients are used, linear multicommodity flow problems are
most efficiently solved as a sequence of quadratic ones.

Key words: interior-point methods, multicommodity network flows, precondi-
tioned conjugate gradient, regularizations, large-scale computational optimiza-
tion
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1 Introduction

Multicommodity flows are widely used as a modeling tool in many fields as, e.g.,
in telecommunications and transportation problems. This kind of models are
usually very large linear programming problems, and some difficult instances
have shown to be challenging for state-of-the-art solvers [8]. For these diffi-
cult instances, the specialized interior-point algorithm of [7] was a very efficient
choice. In this work that approach is improved by adding a quadratic regular-
ization. In particular, as it will be shown, the quality of the preconditioner of
the PCG solver used by the algorithm is improved by the regularization. The
resulting multicommodity flow code is more efficient than the original nonreg-
ularized one of [7]. The new multicommodity algorithm relies on theoretical
results developed in [11] for a more general class of problems.

In the last two decades there has been a significant amount of research in the
field of multicommodity flows, mainly for linear problems. Some of the solution
strategies can be broadly classified into four main categories: simplex-based
methods [12, 18], decomposition methods [4, 14, 15], approximation methods
[5], and interior-point methods [4, 7, 15]. Some of the approaches for linear
multicommodity flows were compared in [13]. Significant advances have also
been made for nonlinear multicommodity flows. Among them we find active set
methods [12], ACCPM approaches [3, 15], interior-point methods for quadratic
problems [9], proximal point algorithms [21], and bundle-type decomposition
[17]. A description and empirical evaluation of additional nonlinear multicom-
modity algorithms can be found in the survey [22].

The specialized interior-point algorithm for multicommodity flows extended
in this work was first suggested in [7]. Given a directed network of n′ arcs and
m′ + 1 nodes, the algorithm considers this general formulation for multicom-
modity flows:

min

k
∑

i=0

(ciT xi + xiT Qix
i) (1a)

subject to
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0 ≤ xi ≤ ui i = 0, . . . , k. (1c)

xi ∈ R
n′

, i = 1, . . . , k, are the flows per commodity i, while x0 ∈ R
n′

are the
slacks of capacity constraints. N ∈ R

m′×n′

is the node-arc incidence matrix of
the directed graph. Note we assume N has full row-rank, which can always be
achieved by removing one of the redundant constraints associated to some node.
I is the n′ × n′ identity matrix, used in the formulation of linking constraints.
u ∈ R

n′

is the vector of arc capacities for all the commodities, while ui ∈
R

n′

, i = 1, . . . , n′, are the individual capacities per commodity; u0 ∈ R
n′

are
the upper bounds of slacks x0, and in general we have u0 = u. Vectors bi ∈
R

m′

, i = 1, . . . , k, are the node supply/demands for each commodity. ci ∈
R

n′

, i = 1, . . . , k, are the arc linear costs per commodity, and the diagonal
positive semidefinite matrices Qi ∈ R

n′×n′

, i = 1, . . . , k, denote the arc quadratic
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costs. Note that the algorithm can also deal with linear costs c0 ∈ R
n′

and
quadratic costs Q0 ∈ R

n′×n′

(Q0 diagonal and positive semidefinite) for slacks;
this can be useful for problems that involve quadratic costs for the total flow
on arcs, since

∑k
i=1 xi = u − x0. Clearly, for linear multicommodity problems

Qi = 0. However, the regularized algorithm will make use of this quadratic
term.

The structure of this paper is as follows. Section 2 outlines the special-
ized interior-point algorithm for primal block-angular problems, provides the
main theoretical results about the improvement due to a quadratic term, and
describes the regularized variant of the specialized algorithm and its main prop-
erties. Section 3 particularizes general results for primal block-angular problems
to multicommodity flows. Using these particular results, Section 4 performs a
sensitivity analysis to the addition of a quadratic regularization term. Section
5 evaluates several regularization strategies. Finally, Section 6 provides compu-
tational results with an implementation of the regularized algorithm.

2 Outline of the regularized interior-point algo-

rithm for multicommodity flows

The specialized algorithm, initially developed for multicommodity flows [7], was
extended for general primal block-angular problems in [10]. The improved reg-
ularized version [11] was developed for this more general formulation:

min

k
∑

i=0

(ciT xi + xiT Qix
i) (2a)

subject to
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(2b)

0 ≤ xi ≤ ui i = 0, . . . , k. (2c)

The main differences between (2) and (1) are: (i) matrices Ni ∈ R
mi×ni and

Li ∈ R
l×ni may have any structure, and be of different dimensions for each

i = 1, . . . , k, l being the number of linking constraints; (ii) vectors xi ∈ R
ni and

bi ∈ R
mi , i = 1, . . . , k, are no longer related to flows and flow injections, respec-

tively; and (iii), the right-hand-side of linking constraints is b0 ∈ R
l instead of a

mutual capacity (and in general, b0 = u0). We also restrict our considerations
to the separable case where Qi ∈ R

ni×ni , i = 0, . . . , k, are diagonal positive
semidefinite matrices.

2.1 The specialized algorithm

Problem (2) can be written as

min cT x + 1
2xT Qx

subject to Ax = b
0 ≤ x ≤ u

(3)

3



where c, x, u ∈ R
n, A ∈ R

m×n, Q ∈ R
n×n and b ∈ R

m. Note that n = ñ + l
and m = m̃ + l, where ñ =

∑k
i=1 ni and m̃ =

∑k
i=1 mi; for the particular

case of multicommodity problems (1), ñ = kn′, m̃ = km′ and l = n′, and thus
n = (k + 1)n′ and m = km′ + n′. Replacing inequalities in (3) by a logarithmic
barrier with parameter µ > 0 we obtain the logarithmic barrier problem

min B(x, µ) , cT x +
1

2
xT Qx + µ

(

−
n

∑

i=1

lnxi −
n

∑

i=1

ln(ui − xi)

)

subject to Ax = b.
(4)

The KKT conditions of (4) are [24]:

Ax = b, (5a)

AT y − Qx + z − w = c, (5b)

XZe = µe, (5c)

(U − X)We = µe, (5d)

(z, w) > 0 u > x > 0; (5e)

e ∈ R
n is a vector of 1’s; y ∈ R

m, z, w ∈ R
n are the Lagrange multipliers

(or dual variables) of Ax = b, x ≥ 0 and x ≤ u, respectively; and matri-
ces X,Z,U,W ∈ R

n×n are diagonal matrices made up of vectors x, z, u, w.
Equations (5a)–(5b) impose, respectively, primal and dual feasibility; (5c)–
(5d) impose complementarity. The normal equations for the Newton direction
(∆x,∆y,∆z) of (5) reduce to (see [10] for details)

(AΘAT )∆y = g (6)

Θ = (Q + (U − X)−1W + X−1Z)−1, (7)

for some right-hand-side g. For linear (i.e., Q = 0) or separable quadratic
problems Θ is a diagonal positive definite matrix and it can be easily computed.
Exploiting the structure of A and Θ in (2), the matrix of (6) can be written as

AΘAT =



















N1Θ1N
T
1 N1Θ1L

T
1

. . .
...

NkΘkNT
k NkΘkLT

k

L1Θ1N
T
1 . . . LkΘkNT

k Θ0 +
∑k

i=1 LiΘiL
T
i



















=

[

B C
CT D

]

,

(8)

B ∈ R
m̃×m̃, C ∈ R

m̃×l and D ∈ R
l×l being the blocks of AΘAT , and Θi,

i = 0, . . . , k, the submatrices of Θ associated with the k + 1 groups of variables
in (2), i.e., Θi = (Qi + (Ui −Xi)

−1Wi + X−1
i Zi)

−1. Appropriately partitioning
g and ∆y in (6), the normal equations can be written as

[

B C
CT D

] [

∆y1

∆y2

]

=

[

g1

g2

]

. (9)
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By eliminating ∆y1 from the first group of equations of (9), we obtain

(D − CT B−1C)∆y2 = (g2 − CT B−1g1) (10a)

B∆y1 = (g1 − C∆y2). (10b)

System (10b) is solved by a Cholesky factorization for each diagonal block
NiΘiN

T
i , i = 1 . . . k, of B. The system with matrix D − CT B−1C, the Schur

complement of (9), is solved by a precondintioned conjugate gradient (PCG).
The dimension of this system is l, which is the number of linking constraints.
In [7] it was proved that the inverse of (D − CT B−1C) can be computed as

(D − CT B−1C)−1 =

(

∞
∑

i=0

(D−1(CT B−1C))i

)

D−1. (11)

The preconditioner M−1, an approximation of (D − CT B−1C)−1, is thus ob-
tained by truncating the infinite power series (11) at some term h. In practice,
h = 0 or h = 1 provide the best computational results.

2.2 Effect of the quadratic term

The effectiveness of the preconditioner depends on the spectral radius of matrix
D−1(CT B−1C), which is always in [0, 1) [7, Theorem 1]. The farther away
from 1 is the spectral radius of D−1(CT B−1C), the better is the quality of the
approximation of (11) obtained by truncation with h = 0 or h = 1. The next
theorem and proposition from [11] show that the quadratic term in the objective
function effectively reduces this spectral radius.

Theorem 1 Let A be the constraint matrix of problem (2), with full row rank
matrices Ni ∈ R

mi×ni i = 1, . . . , k, and at least one full row rank matrix Li ∈
R

l×ni , i = 1, . . . , k. Let Θ be the diagonal positive definite matrix defined in (7),
and B ∈ R

m̃×m̃, C ∈ R
m̃×l and D ∈ R

l×l the submatrices of AΘAT defined in
(8). Then, the spectral radius ρ of D−1(CT B−1C) is bounded by

0 ≤ ρ ≤ max
j∈{1,...,l}

γj
(

uj

vj

)2

Θ0j + γj

< 1, (12)

where u is the eigenvector (or one of the eigenvectors) of D−1(CT B−1C) for
ρ; γj, j = 1, . . . , l, and V = [V1 . . . Vl], are respectively the eigenvalues and

matrix of columnwise eigenvectors of
∑k

i=1 LiΘiLi
T ; v = V T u; and, abusing

of notation, we assume that for vj = 0, (uj/vj)
2 = +∞.

Proposition 1 Let assume the hypotheses of Theorem 1, and consider a linear
problem and a quadratic one obtained by adding (likely small) quadratic costs
Qi ≻ 0, i = 1, . . . , k. Assume ûj/v̂j ≤ uj/vj, j = 1, . . . , l, where “hatted” and
“non-hatted” terms refer, respectively, to the linear and quadratic problems,
and u and v are defined as in Theorem 1. Then bound (12) is smaller for the
quadratic than for the linear problem.

Preliminary computational results showed that the quadratic term in prac-
tice reduces the spectral radius, as predicted by the theory, and the overall num-
ber of PCG iterations and CPU time is significantly reduced. This explained the
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empirical results of previous works [9], where the specialized algorithm was more
efficient for quadratic than for linear instances, where the quadratic instances
were obtained from the linear ones by adding a separable quadratic convex cost.

2.3 The regularized algorithm

To reproduce the good behaviour of quadratic problems in linear ones a quadratic
regularization term is added to the linear formulation (i.e., with Q = 0) of (3).
Previously used regularized variants replaced B(x, µ) in (4) by a proximal point
regularization

BP (x, µ) , cT x+
1

2
(x−x̄)T QP (x−x̄)+µ

(

−
n

∑

i=1

lnxi −
n

∑

i=1

ln(ui − xi)

)

, (13)

QP being a positive definite matrix and x̄ the current point obtained by the
interior-point algorithm. For instance, QP was the identity matrix in [23]; and
QP was a diagonal matrix with small entries—dynamically updated at each
interior-point iteration—in [2]. Unfortunately, these proximal point regulariza-
tions depend on the current point x̄, and then they do not fit the general theory
of structural optimization for interior-point methods [19]. In [11] the authors
suggested the alternative regularized barrier problem

BQ(x, µ) , cT x + µ

(

1

2
xT Qx −

n
∑

i=1

lnxi −
n

∑

i=1

ln(ui − xi)

)

, (14)

Q being a diagonal positive semidefinite matrix. In this variant the regulariza-
tion affects to the variables x (flows and slacks of (1)) instead to the directions as
in (13). The regularized barrier function (14) was shown to be a self-concordant
barrier [11] for upper-bounded problems and thus it fits the general interior-
point theory of [19]. Since Q is diagonal, the self-concordant barrier

FQ(x) =
1

2
xT Qx −

n
∑

i=1

lnxi −
n

∑

i=1

ln(ui − xi)

of (14) can be written as a sum of self-concordant barriers for each component:

FQ(x) =

n
∑

i=1

Fqi
(xi) =

n
∑

i=1

(

1

2
qix

2
i − lnxi − ln(ui − xi)

)

, (15)

qi being the diagonal entry of Q. The complexity of the interior-point algorithm
in number of iterations is O(

√
ν ln 1/ǫ), where ǫ is the accuracy of the solution,

and ν is the parameter of the self-concordant barrier of (14), which can be
computed as ν =

∑n
i=1 νi, where νi is the parameter of the barrier Fqi

(xi) of
(15) for component i (see [19] for details). In [11] the following result about νi

was proved:

Proposition 2 The parameter of the self-concordant barrier Fqi
(xi) of (15) in

its domain {xi : 0 < xi < ui} is

νi = 1 if 0 ≤ qi ≤ 1/u2
i ,

νi = qiu
2
i if qi ≥ 1/u2

i .
(16)
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The value νi = 1 is the lowest possible one for any self-concordant barrier [19,
Lemma 4.3.1], and therefore for small regularizations the regularized algorithm
is in theory as efficient as the standard interior-point one. When qi ≥ 1/u2

i

the complexity increases, but, as will be shown in next subsections, there is a
wide range of values for which the number of interior-point iterations do not
increase with the regularization term. Since the regularization term means
less PCG iterations, the overall CPU time is reduced, making the regularized
algorithm an effective approach for primal block-angular problems. It is also
worth noting that the only (minor) change in the interior-point algorithm due
to the regularized barrier problem (14) is that the dual feasibility condition (5b)
is replaced by

AT y − µQx + z − w = c. (17)

For linear problems, (17) and (5b) are equivalent when µ tends to zero. If the
proximal point regularization (13) is used, the dual feasibility becomes

AT y − QP (x − x̄) + z − w = c. (18)

Although, for linear problems, (18) is equal to (5b) when x = x̄, the expression
of Θ associated to (18) is

Θ = (QP + (U − X)−1W + X−1Z)−1, (19)

while for (17) is

Θ = (µQ + (U − X)−1W + X−1Z)−1. (20)

Note that when µ tends to zero (20) is a better approximation than (19) of the
linear version of (7) (i.e., when Q = 0 in (7)).

3 The case of multicommodity flow problems

The bound provided by Theorem 1 is difficult to compute for general primal
block-angular problems. However, for the particular case of multicommodity
flow problems it reduces to a simple and computable form. Indeed, since l = n′,
Ni = N and Li = I for i = 1, . . . , k we have that: (i) Ni and Li have full row-

rank; (ii)
∑k

i=1 LiΘiLi
T =

∑k
i=1 Θi is a diagonal matrix, and its eigenvalues

are γj =
∑k

i=1 Θij with eigenvectors Vj = ej (ej being the jth column of I),
j = 1, . . . , n′; (iii) V = [V1 . . . Vn′ ] = I, and then v = V T u = u, i.e., uj/vj = 1
for j = 1, . . . , n′. Therefore, for multicommodity problems bound (12) can be
written as

ρ ≤ max
j∈{1,...,n′}

k
∑

i=1

Θij

Θ0j +

k
∑

i=1

Θij

< 1, (21)

where Θ was defined in (7).
In addition, for multicommodity flows the strong assumption ûj/v̂j ≤ uj/vj

of Proposition 1 is satisfied, since uj/vj = ûj/v̂j = 1. Therefore bound (21) is
effectively reduced by adding even a small quadratic term Qi ≻ 0, i = 1, . . . , k,
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to a linear multicommodity problem. The quadratic term of the regularized
algorithm thus guarantees such a reduction. Although a reduction in the bound
does not mean a reduction in the spectral radius (which is the instrumental
factor), we note that in the last interior-point iterations, because of the ill-
conditioning of Θ, the spectral radius tends to one [7], and then a reduction in
the bound will also mean a reduction in the spectral radius. It is also worth
noting that if N , the node-arc incidence matrix, is a square matrix then

(D−1(CT B−1C)) =
(

Θ0 +
∑k

i=1 Θi

)−1 (

∑k
i=1 ΘiN

T
i

(

NiΘiN
T
i

)−1
NiΘi

)

=
(

Θ0 +
∑k

i=1 Θi

)−1 (

∑k
i=1 Θi

)

,

which is equal to a diagonal matrix whose jth component is
(

Θ0j +
∑k

i=1 Θij

)−1 (

∑k
i=1 Θij

)

.

In this case, (21) does not actually provide a bound, but the true spectral radius.
Although problems with N square are not of practical interest (they have at
most one feasible solution), it shows how tight the bound is in a limit situation.
Another interesting observation from this result is that slacks are instrumen-
tal: otherwise Θ0 would be 0, and the bound would be one, independently of
the regularization performed. This suggests that, even for primal block-angular
(or multicommodity problems) with equality linking constraints (i.e. saturated
arcs) it is worth to consider slacks with negligible upper bounds. This justifies
what was empirically observed in [10], where a quadratic multicommodity flow
problem—from the statistical disclosure control field— with equality capacity
constraints (all arcs were saturated) was solved very efficiently with this algo-
rithm considering slacks with very small upper bounds. Additional arguments
over the benefits of the regularization term for decreasing the spectral radius
are provided by the computational results of next sections.

4 Local sensitivity analysis

The simple expression of bound (21) allows us to perform a local sensitivity
analysis on small regularizations. Let us consider that j ∈ {1, . . . , n′} is the
index providing the maximum in (21). By (7), the elements Θij , i = 0, . . . , k,
are

Θij =
1

Qij + (Uij − Xij)−1Wij + X−1
ij Zij

, (22)

where Qij , Uij , Wij , Xij and Zij are scalars. For linear problems Qij = 0.
Adding a small quadratic regularization Qij = δi, i = 0, . . . , k, both the spectral
radius of matrix D−1(CT B−1C) and the bound (21) will change. Performing an
accurate sensitivity analysis on the spectral radius is not possible [16, Section
8.1.2], but it can be done for the bound. Defining ti = (Uij − Xij)

−1Wij +
X−1

ij Zij > 0, i = 0, . . . , k, the bound (21) can be written as a continuous

function of ~δ = (δ0, . . . , δk):

f(~δ) =

k
∑

i=1

1

δi + ti

1

δ0 + t0
+

k
∑

i=1

1

δi + ti

. (23)
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We next show the effect of regularizing either the flows, slacks, or both of them.
In the first case we consider a regularization on flows only, thus δ0 = 0, and

to simplify the notation we assume that δi = δ, i = 1, . . . , k. In this case (23)
and its derivative are

f (δ) =

k
∑

i=1

1

δ + ti

1

t0
+

k
∑

i=1

1

δ + ti

, f ′ (δ) =

−1

t0

k
∑

i=1

1

(δ + ti)
2

(

1

t0
+

k
∑

i=1

1

δ + ti

)2 . (24)

Since t0 > 0, f ′(δ) < 0 and f(δ) is a monotonically decreasing function. This
holds not only for the jth component associated to the maximum in (21), but
for all the components. Therefore the bound is always reduced if flows only are
regularized. This is consistent with Proposition 1, which only considered the
addition of quadratic costs Qi ≻ 0, i = 1, . . . , k, with Q0 = 0.

In the second case, if we only regularize the slacks, i.e., δ0 = δ and δi = 0,i =
1, . . . , k, (23) and its derivative become

f (δ) =

k
∑

i=1

1

ti

1

δ + t0
+

k
∑

i=1

1

ti

, f ′ (δ) =

k
∑

i=1

1

ti
(

1 + (δ + t0)

k
∑

i=1

1

ti

)2 . (25)

Since ti > 0, i = 1, . . . , k, f ′(δ) > 0, and thus f(δ) is monotonically increasing,
which means that locally the bound on the spectral radius will get worse.

Finally, the more general case considers a regularization on both the flows
and slacks. To simplify the notation we assume that δi = δ, i = 0, . . . , k. In
this case (23) and its derivative are

f(δ) =

k
∑

i=1

1

δ + ti

1

δ + t0
+

k
∑

i=1

1

δ + ti

, f
′

(δ) =

1

(δ + t0)
2

k
∑

i=1

(ti − t0)

(δ + ti)
2

(

1

δ + t0
+

k
∑

i=1

1

δ + ti

)2 . (26)

In this case f ′(δ) can be either positive or negative depending on
∑k

i=1
(ti−t0)

(δ+ti)
2 .

According to the previous results, the safest option for multicommodity flow
problems is to perform a regularization on the flows only. Regularizing both
flows and slacks can be even more effective, but it will depend on the particular
values of Θ (and it may be computationally expensive to perform a check).
Regularizing only the slacks is in general not a good choice. Indeed, in the
implementation developed, and tested in next Subsection, the default option
is to regularize the flows only. It is worth noting, however, that, first, this
sensitivity analysis is local; and second, it is only valid for the bound on the
spectral radius, not the spectral radius. Therefore, it might happen that for
some instances the regularization of slacks even provided good results.
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5 Evaluating the regularized algorithm

The original code IPM [7] implementing the specialized interior-point algorithm
for multicommodity flows has been extended with the regularized barrier (14).
The new code will be denoted as RIPM. RIPM is mainly written in C, with
only the sparse Cholesky factorization routines coded in Fortran [20]. RIPM is
available from the authors on request. The three main parameters to be adjusted
in the algorithm are h, the number of terms (minus one) of the power series
(11) considered in the preconditioner; ǫ0, the initial PCG tolerance requested,
which is updated at each interior-point iteration; and Q, the diagonal positive
semidefinite regularization matrix of (14). As for IPM, the default values for h
and ǫ0 in RIPM are 0 and 10−2 respectively. They have been used in all the
computational results of Section 6, excluding some few that are clearly marked.
For the third and new parameter, an empirical study—based on the results
of Subsection 2.3—has been performed for an appropriate choice of Q; this is
shown in below Subsection 5.3.

The termination criteria for RIPM are the same than for IPM: the code
stops when the current primal and dual feasible point (i.e., it solves (5a), (5b)
and (5e)) has a relative optimality gap

∣

∣cT x −
(

bT y − uT w
)∣

∣

1 + |(cT x)| (27)

below some optimality tolerance (by default 10−6). We note that in theory the
code should stop when µ = 0 in (5c) and (5d), such that (5) corresponds to
the KKT conditions of (3). However, such a strong condition µ = 0 can not be
imposed, specially using a PCG for the solution of normal equations. Therefore,
in practice the regularization term µxT Qx could take a non-negligible value in
the optimal point, perturbing the optimizer of the original problem. For this
reason RIPM adds an additional control at the optimal solution: it checks that

xT Qx

|cT x| (28)

is below some tolerance (by default 10−6). If this check fails, the problem should
be solved by reducing or removing the regularization term, or increasing the code
tolerances (optimality tolerance and ǫ0).

5.1 Problem instances

We considered three kind of problems. They are used both in this Section 5 and
next Section 6.

The first type corresponds to the well-known PDS problems [6]. Problems
obtained with this generator are denoted as PDSt, where t is associated to the
planning horizon in days of a military logistic problem. The PDS instances can
be retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.
The second kind was obtained with the implementation of [14] of the Mnet-
gen generator [1]. It can be retrieved from the above URL. These instances
will be denoted as m′-k-d, where m′ is the number of nodes, k the number
of commodities, and d is related to the density of the network; the larger
d the denser is the network. The last set of instances was obtained with
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Figure 1: Interior-point iterations for instance PDS1 using Q = δI

the Tripartite generator and with a variation for multicommodity flows of the
Gridgen generator. They are known to be difficult linear programming in-
stances, and interior-point algorithms outperformed simplex variants on them
[5, 8]. Five such test examples are available. They can be obtained from
http://www-eio.upc.es/~jcastro/mmcnf_data.html.

5.2 Effect of Q on the number of iterations

According to Proposition 1 and Section 4, the bound on the spectral radius
is reduced if a regularization is considered, and we can expect a reduction in
the number of PCG iterations needed. On the other hand, by Proposition 2,
the diagonal elements Qij , i = 1, . . . , k, j = 1, . . . , n′, of the regularization
matrix should be less or equal than 1/u2

ij to have the same complexity result
in number of iterations than the nonregularized interior-point algorithm, uij

being the capacity of arc j for commodity i. The complexity increases for larger
Qij values. In many instances the term 1/u2

ij would be very small—almost
negligible—, causing no reduction in the spectral radius.

Fortunately, in practice it has been observed that there is wide range of
regularization values (much larger than 1/u2

ij) that maintain the number of
interior-point iterations; this number of iterations only increases when large
regularizations are used. For instance, let us consider problem PDS1, one of the
smallest instances considered, and the simple regularization matrix Q = δI for
some δ ∈ R, δ ≥ 0. Figure 1 shows the number of iterations for several δ. Note
that for many arcs of PDS1, the value 1/u2

ij was about 10−7, which is much
smaller than the values used in Figure 1.

It is also worth noting how Q affects to the number of PCG iterations. Fig-
ure 2 shows the average number of PCG iterations needed per interior-point
iteration, again for instance PDS1 and the simple regularization matrix Q = δI
for several δ. It is shown that for small regularizations this average ratio is kept
constant, it decreases for δ between 10−1 and 102, and it significantly increases
when δ ≥ 5 · 102. This does not contradict that the regularization term de-
creases the number of PCG iterations; indeed, the significant increment of PCG
iterations happened in the last interior-point iterations, when the regularization
term is very small. This is observed in Figure 3 which shows the evolution of the
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Figure 2: Ratio between PCG and interior-point iterations for instance PDS1
using Q = δI

Figure 3: Evolution of percentage of PCG iterations for instance PDS1
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number of PCG iterations (in percentage) for instance PDS1 using both RIPM
(regularized algorithm with rule Q = δI and δ = 104) and IPM (nonregularized
algorithm). As stated before, the number of PCG iterations for RIPM only
increased significantly (i.e., with the same slope that for IPM) in last iterations;
the overall number of interior-point iterations of RIPM was also much larger
due to the too large regularization considered. Indeed, this example suggests
that such large initial regularizations should be avoided in practice.

5.3 Selection of Q

For the selection of a good rule for matrix Q in RIPM, four alternatives were
evaluated. The first, the simplest one, is

Q = δ/µ0I, (29)

where δ ∈ R is a positive value, and µ0 is the value of the centrality parameter
at the first iterate: since Q is multiplied by µ, this term guarantees that at the
first iteration µQ = δI.

The second variant computed the regularization matrix as

Q = δ/µ0X
(0)(Z(0))−1, (30)

where the diagonals of X(0) and Z(0) are the starting values of x and z. This
choice satisfies that, excluding the upper bounds term of (7), Θ = (Q+X−1Z)−1

will be initially well conditioned (since Q is large when (X0)−1Z0 is small, and
vice-versa).

The third and fourth variants are obtained from (29) and (30) by multiplying
them by the iteration counter, i.e., they are, respectively,

Q(t) = tδ/µ0I, (31)

and
Q(t) = tδ/µ0X

(0)(Z(0))−1, (32)

t being the number of interior-point iteration. Note that the definition of Q
changes with t. These two variants are justified because it was observed that
the effect of the regularization term (which is multiplied by µ) could disappear
too early when the solution is being reached (i.e., µ approaches zero). For
instance, Figure 4 shows for instance PDS1 and Q = 1/µ0I the evolution of
µt/µ0, tµt/µ0 and t2µt/µ0, using a log scale for the vertical axis. Compared
to µt/µ0, tµt/µ0 provides a smoother decrement at last iterations, and it does
not result in a very large regularization term, mainly at first iterations, unlike
t2µt/µ0.

Other variants were tried, but are not reported here since they did not im-
prove the nonregularized algorithm in IPM. One of them, based on Proposition
2, consisted on Q = U−2, such that the parameter of the regularized barrier
would be 1, the best possible one. In practice, it provided poor results, since in
many instances this resulted in a negligible regularization.

The four regularization variants (29)–(30) were implemented and applied
to a subset of 16 instances of the PDS, Mnetgen and Tripartite suite. The
dimensions of these 16 instances are provided in Table 1: columns k, m′ and
n′ provide the number of commodities, nodes, and arcs, respectively; columns
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Figure 4: Evolution of µt/µ0, tµt/µ0 and t2µt/µ0 for instance PDS1 and Q =
1/µ0I

Table 1: Dimensions of the subset of 16 instances

Instance k m′ n′ n m
PDS1 11 126 372 4464 1758
PDS5 11 686 2325 27900 9871
PDS10 11 1399 4792 57504 20181
PDS15 11 2125 7756 93072 31131
PDS20 11 2857 10858 130296 42285
PDS25 11 3554 13580 162960 52674
PDS30 11 4223 16148 193776 62601
32-32-12 32 32 486 16038 1510
64-64-12 64 64 511 33215 4607
128-64-12 64 128 1171 76115 9363
256-64-12 256 64 2320 150190 18030
256-256-12 256 256 2204 566428 67740
tripart1 16 192 2096 35632 5168
tripart2 16 768 8432 143344 20720
tripart3 20 1200 16380 343980 40380
tripart4 35 1050 24815 893340 61565
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Table 2: Best results for regularization (29): Q = δ/µ0I

RIPM PIPM
instance δ ǫ0 it. PCG CPU δ ǫ0 it. PCG CPU
PDS1 10−1 10−2 38 463 0.08 10−2 10−2 39 489 0.08
PDS5 10−1 10−2 59 965 1.54 10−1 10−2 56 863 1.42
PDS10 10−2 10−2 76 1601 7.13 10−3 10−2 77 1536 6.84
PDS15 10−2 10−2 86 2304 19.0 10−1 10−2 89 2481 19.4
PDS20 10−1 10−2 105 4333 49.7 10−3 10−2 107 3877 47.2
PDS25 1 10−2 105 2374 55.6 1 10−2 108 2882 67.7
PDS30 10−1 10−2 113 3050 92.0 10−2 10−2 111 2808 89.6
32-32-12 10−1 10−2 48 2309 0.66 1 10−2 37 1213 0.42
64-64-12 10−1 10−2 63 1445 1.87 10−2 10−2 48 700 1.14
128-64-12 10−1 10−2 70 3793 12.3 10−1 10−2 66 2632 9.19
256-64-12 10−2 10−3 62 3762 34.7 10−2 10−3 62 3964 35.9
256-256-12 10−1 10−2 115 3820 165 10−1 10−2 113 3905 165
tripart1 10−3 10−2 74 3711 2.78 10−1 10−2 63 2682 2.07
tripart2 10−1 10−3 67 2894 11.8 10−1 10−2 72 2368 10.9
tripart3 10−1 10−2 97 5233 47.2 10−2 10−2 83 5490 48.0
tripart4 1 10−2 123 4381 113 1 10−2 127 8313 178

n and m show the overall number of variables and constraints of the result-
ing linear problem. The four regularizations were tested for 10 different val-
ues of δ ∈ {10−8, 10−7, . . . , 1, 101}, and two values for the PCG tolerance
ǫ0 ∈ {10−2, 10−3}. Each resulting combination was also solved with the prox-
imal point regularization barrier problem (13), defining QP = µQ, and com-
puting Q using the four previous regularization variants; that implementation
will be denoted by PIPM. This way, RIPM and PIPM are compared under the
same conditions, being the only differences the dual feasibility conditions (17)
and (18), and the definitions of Θ (19) and (20)—theoretically, there is an im-
portant difference: the barrier in RIPM is self-concordant, unlike that of PIPM.
This amounts to 2560 executions. Tables 2–5 show respectively for each regular-
ization variant, the best results obtained (i.e., best combination of δ and ǫ0) for
each instance, and for both RIPM and PIPM. Columns “it.” and “PCG” report
the number of interior-point and overall number of PCG iterations. Columns
“CPU” provide the CPU time; all the executions were carried on a Linux SUN
Fire V20Z server, credited of 367 Mflops, with two AMD Opteron 2.46GHz
processors and 8 GB of RAM (multiprocessor capabilites were not exploited in
these runs).

Looking at Tables 2–5 there is not a definitive best approach: neither RIPM
nor PIPM always outperformed the other approach; and any of the four reg-
ularizations was the most efficient choice for some instance. To have a clearer
picture, the results of Tables 2–5 are summarized in Tables 6 and 7. Table 6
shows the CPU time of the best variant for both RIPM and PIPM, and the
CPU of the nonregularized algorithm IPM obtained by setting Q = 0. The
fastest execution is marked in boldface. Last row reports the total time for all
the instances. It is clearly shown that the regularization that provided more
“fastest executions” is (32); it is also the variant with the minimum total CPU
time. The nonregularized variant never provided the best run. Table 7 shows
the information of Table 6 in relative performance with respect to the nonreg-
ularized code IPM, i.e., CPU time of the regularization variant divided by the

15



Table 3: Best results for regularization (30): Q = δ/µ0X
(0)(Z(0))−1

RIPM PIPM
instance δ ǫ0 it. PCG CPU δ ǫ0 it. PCG CPU
PDS1 1 10−2 43 506 0.09 1 10−2 41 479 0.09
PDS5 101 10−2 57 726 1.33 1 10−2 61 962 1.61
PDS10 10−2 10−2 74 1294 6.18 10−2 10−2 73 1481 6.93
PDS15 10−1 10−2 77 1610 14.3 10−1 10−2 89 2326 18.7
PDS20 10−2 10−2 96 2947 38.0 1 10−2 106 4899 56.0
PDS25 101 10−2 98 1741 44.3 1 10−2 112 3808 73.2
PDS30 10−3 10−2 118 3568 102 1 10−2 118 3852 109
32-32-12 10−3 10−2 39 1179 0.43 1 10−2 40 1523 0.48
64-64-12 10−3 10−2 53 947 1.41 1 10−2 81 5649 4.80
128-64-12 10−2 10−2 60 2304 8.42 1 10−2 68 2968 10.4
256-64-12 1 10−2 86 5149 48.3 1 10−2 96 8886 74.9
256-256-12 1 10−2 113 3774 164 1 10−2 115 3855 167
tripart1 10−4 10−2 53 1646 1.46 1 10−2 71 2440 2.14
tripart2 10−2 10−2 79 3368 13.5 1 10−2 119 11162 36.6
tripart3 10−2 10−2 80 4401 39.6 1 10−2 94 5055 46.5
tripart4 10−1 10−2 131 5835 138 1 10−2 124 7107 153

Table 4: Best results for regularization (31): Q(t) = tδ/µ0I

RIPM PIPM
instance δ ǫ0 it. PCG CPU δ ǫ0 it. PCG CPU
PDS1 10−2 10−2 43 579 0.11 10−2 10−2 47 563 0.09
PDS5 10−2 10−2 57 911 1.46 10−2 10−2 63 1262 1.82
PDS10 10−3 10−2 78 1784 7.51 10−2 10−2 73 1481 6.58
PDS15 10−3 10−2 84 2494 19.4 10−2 10−2 85 2036 17.0
PDS20 10−2 10−2 106 4260 49.1 10−1 10−2 103 4408 51.8
PDS25 10−4 10−2 114 3929 73.3 10−2 10−2 113 3625 72.2
PDS30 10−2 10−2 120 4275 116 10−3 10−2 115 3235 96.5
32-32-12 10−3 10−2 38 1260 0.42 1 10−2 40 924 0.36
64-64-12 10−4 10−2 54 1173 1.52 10−1 10−2 54 1203 2.11
128-64-12 10−2 10−2 65 2301 9.65 10−1 10−2 64 1736 7.00
256-64-12 1 10−2 85 3108 36.0 10−5 10−2 82 3849 38.5

256-256-12 5(∗) 10−2 113 2965 140 10 10−2 114 2764 135
tripart1 10−1 10−2 86 1305 1.87 1 10−2 88 1662 2.01
tripart2 10−4 10−2 79 3517 13.9 10−2 10−2 75 3036 12.5
tripart3 10−2 10−2 95 2935 32.6 10−3 10−2 80 4154 38.2
tripart4 10−2 10−2 131 5065 126 10−1 10−2 124 6438 148
(∗)using δ = 10 check (28) failed, i.e., xT Qx/|cT x| > 10−6
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Table 5: Best results for regularization (32): Q(t) = tδ/µ0X
(0)(Z(0))−1

RIPM PIPM
instance δ ǫ0 it. PCG CPU δ ǫ0 it. PCG CPU
PDS1 10−3 10−2 38 472 0.08 1 10−2 42 413 0.08
PDS5 10−4 10−2 56 927 1.47 1 10−2 54 755 1.31
PDS10 10−1 10−2 77 1777 7.44 10−2 10−2 73 1481 6.58
PDS15 1 10−2 81 1607 14.8 1 10−2 84 1961 16.5
PDS20 1 10−2 96 2364 33.9 1 10−2 97 3036 38.6
PDS25 1 10−2 94 1633 42.4 1 10−2 100 2116 49.0
PDS30 1 10−2 99 1667 64.5 1 10−2 121 4388 116
32-32-12 1 10−3 35 1165 0.38 10−2 10−2 41 1137 0.40
64-64-12 10 10−3 45 1235 1.45 10−1 10−2 54 1203 1.54
128-64-12 10 10−3 51 1833 6.79 1 10−2 65 2557 9.06
256-64-12 10 10−3 59 2112 22.8 1 10−2 86 4071 39.8
256-256-12 10 10−3 98 3772 154 1 10−2 110 3354 148
tripart1 1 10−3 142 3844 3.7 1 10−2 86 1907 2.01
tripart2 1 10−2 80 2121 10.5 1 10−2 125 5371 21.3
tripart3 1 10−2 114 1755 28.0 1 10−2 115 7857 66.0
tripart4 0.01 10−2 127 6222 146 1 10−2 149 8191 176

Table 6: Comparison of regularizations: CPU time (seconds)

Reg. (29) Reg. (30) Reg. (31) Reg. (32) No Reg.
instance RIPM PIPM RIPM PIPM RIPM PIPM RIPM PIPM IPM
PDS1 0.08 0.08 0.09 0.09 0.11 0.09 0.08 0.08 0.09
PDS5 1.54 1.42 1.33 1.61 1.46 1.82 1.47 1.31 1.66
PDS10 7.13 6.84 6.18 7.92 7.51 6.58 7.44 6.58 7.25
PDS15 19 19.4 14.3 19.9 19.4 17 14.8 16.5 21.9
PDS20 49.7 47.2 38 56 49.1 51.8 33.9 38.6 56.5
PDS25 55.6 67.7 44.3 73.2 73.3 72.2 42.4 49 74.6
PDS30 92 89.6 102 109 116 96.5 64.5 116 111
32-32-12 0.66 0.42 0.43 0.48 0.42 0.36 0.38 0.4 0.44
64-64-12 1.87 1.14 1.41 4.8 1.52 2.11 1.45 1.54 1.49
128-64-12 12.3 9.19 8.42 10.4 9.65 7 6.79 9.06 13.2
256-64-12 59.6 47.1 35.9 74.9 36 38.5 22.8 39.8 62.4
256-256-12 165 165 164 167 158 135 154 148 203
tripart1 2.78 2.07 1.46 2.14 1.87 1.01 3.7 2.01 1.7
tripart2 15.5 10.9 13.5 36.6 13.9 12.5 10.5 21.3 17.3
tripart3 47.2 48 39.6 46.5 32.6 38.2 28 66 62.4
tripart4 113 178 138 153 126 148 146 176 265
Sum 643 694 609 764 647 629 538 692 900
Reg. (29): Q = δ/µ0I

Reg. (30): Q = δ/µ0X(0)(Z(0))−1

Reg. (31): Q(t) = tδ/µ0I

Reg. (32): Q(t) = tδ/µ0X(0)(Z(0))−1

No Reg.: Q = 0
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Table 7: Comparison of regularizations: relative performance with respect to
IPM

Reg. (29) Reg. (30) Reg. (31) Reg. (32)
instance RIPM PIPM RIPM PIPM RIPM PIPM RIPM PIPM
PDS1 0.89 0.89 1 1 1.22 1 0.89 0.89

PDS5 0.93 0.86 0.8 0.97 0.88 1.1 0.89 0.79

PDS10 0.98 0.94 0.85 1.09 1.04 0.91 1.03 0.91
PDS15 0.87 0.89 0.65 0.91 0.89 0.78 0.68 0.75
PDS20 0.88 0.84 0.67 0.99 0.87 0.92 0.60 0.68
PDS25 0.75 0.91 0.59 0.98 0.98 0.97 0.57 0.66
PDS30 0.83 0.81 0.92 0.98 1.05 0.87 0.58 1.05
32-32-12 1.5 0.95 0.98 1.09 0.95 0.82 0.86 0.91
64-64-12 1.26 0.77 0.95 3.22 1.02 1.42 0.97 1.03
128-64-12 0.93 0.7 0.64 0.79 0.73 0.53 0.51 0.69
256-64-12 0.96 0.75 0.58 1.2 0.58 0.62 0.37 0.64
256-256-12 0.81 0.81 0.81 0.82 0.78 0.67 0.76 0.73
tripart1 1.64 1.22 0.86 1.26 1.1 0.59 2.18 1.18
tripart2 0.9 0.63 0.78 2.12 0.8 0.72 0.61 1.23
tripart3 0.76 0.77 0.63 0.75 0.52 0.61 0.45 1.06
tripart4 0.43 0.67 0.52 0.58 0.48 0.56 0.55 0.66
average 0.96 0.84 0.76 1.17 0.87 0.82 0.78 0.87
Reg. (29): Q = δ/µ0I

Reg. (30): Q = δ/µ0X(0)(Z(0))−1

Reg. (31): Q(t) = tδ/µ0I

Reg. (32): Q(t) = tδ/µ0X(0)(Z(0))−1

CPU time of IPM (last column of Table 6 would result in a column of 1’s and
it is removed from Table 7). The best runs are also marked in boldface, and
the average relative performance is provided in last row. Unlike for Table 6, the
variant that provides the best results is (30), but closely followed by regulariza-
tion (32). Since (32) was the best regularization in Table 6 and was very close
to the best one in Table 7, it was chosen as the default option in RIPM for the
computational results of Section 6.

This section is concluded by noting that, from previous tables, and for
these multicommodity instances, the quadratic self-concordant regularization
in RIPM was a bit more efficient than the proximal point one in PIPM; and
both of them outperformed the nonregularized algorithm. This is shown in
Figure 5, which plots the CPU time of IPM, RIPM and PIPM (for the above
selected variant, i.e., it plots the last three columns of Table 6) by the number of
variables of the instances, dividing them into two groups: “smaller” (left plot)
and bigger instances (right plot). Note that RIPM is more efficient for larger
problems. In general, however, there is not a significant difference between the
two regularized approaches, and the results may be different by tuning some of
the parameters. For instance, looking at the number of PCG iterations required
for RIPM and PIPM for the particular instance PDS5, for different δ values
ranging from 0 to 5000, the results of Figure 6 are obtained. The (unexpected)
oscillatory behaviour of RIPM and PIPM shows there is not a definitive better
approach, though it is worth noting that the minimum and maximum number
of PCG iterations are achieved by RIPM and PIPM, respectively.
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Figure 5: CPU time for RIPM, PIPM and IPM. Left plot: smaller instances.
Right plot: bigger instances

Figure 6: PCG iterations of RIPM and PIPM for different δ, in problem PDS5
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Table 8: Results for PDS instances with IPM and RIPM

Problem dimensions IPM RIPM
Instance k m′ n′ n m it. PCG CPU it. PCG CPU
PDS10 11 4792 1399 53526 16192 80 3830 12.2 86 2964 10.9

PDS20 11 10858 2857 121137 33115 106 11011 100 100 3667 44.9

PDS30 11 16148 4223 180027 48841 126 9717 204 114 4287 114

PDS40 11 22059 5652 245848 65360 135 12700 469 135 9261 367

PDS50 11 27668 7031 308281 81263 135 13603 718 138 8707 518

PDS60 11 33388 8423 371945 97319 135 19264 1350 147 15577 1170

PDS70 11 38369 9750 427663 12546 150 18526 1830 158(∗) 9998 1230

PDS80 11 42472 10989 472863 126539 152 19701 2340 162 10360 1570

PDS90 11 46161 12186 513635 139899 149 18644 2560 171 13207 2180

(∗) check (28) failed, i.e., xT Qx/|cT x| >= 1.5071 > 10−6

6 Computational results

From the empirical analysis of Section 5, for the computational results we have
considered RIPM with the regularized version (32), and ǫ0 = 10−2 as default
options. The parameter δ was set to 1 for the Mnetgen and Tripartite/Gridgen
instances, while it was 0.1 for the PDS ones. These default settings have been
used for all the runs of this Section, unless otherwise stated for some few ex-
ecutions (due to numerical issues associated to PCG). Note that tuning those
parameters it is possible to obtain better results (as in Section 5). However,
the purpose of this Section is to show that RIPM with default values may be
an efficient interior-point approach for some multicommodity flows, much more
than the nonregularized algorithm. As in Section 5, executions were performed
on a Linux SUN Fire V20Z server with two AMD Opteron 2.46GHz processors
and 8 GB of RAM (without exploiting multiprocessor capabilites).

Tables 8, 9 and 10 provide the results obtained for some PDS, Mnetgen and
Tripartite/Gridgen instances, described in Subsection 5.1. The meaning of the
columns is the same than in previous tables. The fastest execution for each
instance is marked in boldface. For the PDS and Tripartite/Gridgen problems
RIPM was always more efficient than IPM. The efficiency is more notorious in
the Tripartite/Gridgen instances, when for the larger problems RIPM was more
than twice faster. For the Mnetgen problems RIPM was more efficient in all the
cases but four. In some instances the benefit added by the regularization term
to the solution of systems with PCG is instrumental: in the largest Mnetgen
instance 512-512-12, IPM required an average number of 67 PCG iterations per
interior point iteration, while RIPM only needed 29.

It is known than interior-point methods are not the best approach for PDS
and Mnetgen instances. For this reason Tables 11 and 12 show the results
obtained with CPLEX-11 for, respectively, the PDS and Mnetgen instances.
Results are provided for all the CPLEX-11 options: “primal” simplex, “dual”
simplex, “hybrid” (network simplex followed by dual), and “barrier” (interior-
point). The fastest execution is marked in boldface. For the PDS instances not
only the “dual”, the fastest CPLEX-11 option, outperformed RIPM, but also
the generic “barrier” did. This can be explained by the highly efficient ordering
and factorization routines in CPLEX-11. For the Mnetgen instances, the “dual”
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Table 9: Results for Mnetgen instances with IPM and RIPM

Problem dimensions IPM RIPM
Instance k m′ n′ n m it. PCG CPU it. PCG CPU

128-64-10 64 128 1182 76566 9046 70 4953 14.6 69 4441 13.4

128-64-11 64 128 1201 77786 9050 76 5481 16.5 64 3020 10.3

128-128-12 128 128 1204 155044 17188 97 3839 26.8 90 2779 21.2

256-64-10 64 256 2336 151293 18109 90 5770 54.3 85(∗) 5204 50.4

256-64-11 64 256 2334 151154 18098 83 4748 46.3 73 6467 59.9
256-64-12 64 256 2320 150190 18030 132 87698 620 61 3018 29.5

512-128-12 128 512 4786 616189 68989 117 6164 396 113 4105 344

512-256-12 256 512 4810 1234949 134405 139 6945 883 139 6433 829

512-512-12 512 512 4786 2454022 265222 179 12074 2760 163(∗) 4782 1560

(∗) δ = 2

Table 10: Results for Tripartite/Gridgen instances with IPM and RIPM

Problem dimensions IPM RIPM
Instance k m′ n′ n m it. PCG CPU it. PCG CPU

tripart1 16 192 2096 35632 5168 58 1976 1.7 74 587 1.26

tripart2 16 768 8432 143344 20720 87 4092 17.3 142 2299 14.7

tripart3 20 1200 16380 343980 40380 90 6978 62.4 146 3236 42.3

tripart4 35 1050 24815 893340 61565 133 14660 265 151 2405 96.8

gridgen1 340 1025 3072 986112 331072 242 96877 7400 241 31280 2420

simplex is also the fastest CPLEX-11 option. However, in those problems the
“barrier” solver is significantly slower than RIPM (an academic code with stan-
dard factorization routines), specially for the larger instances, which exceeded a
time limit of 3000 seconds. On the other hand, the Tripartite/Gridgen instances
are known to be difficult instances for simplex-like methods, and interior-point
algorithms outperform them. This is clearly seen in Table 13 which shows the
results with CPLEX-11 on these instances. The results for the simplex are those
of the fastest variant (either “primal” or “dual”), which is reported in column
“solver”. It can be seen that the “barrier” solver was by far the most efficient
CPLEX-11 approach. However, RIPM (and also IPM) was significantly faster
than CPLEX-11 “barrier”. As far as we know, up to now IPM was the most
efficient algorithm for these difficult instances [8]; this no longer holds, since
RIPM is a more efficient approach.

As stated above, the results of Tables 8, 9 and 10 were obtained with default
options, since this was the purpose of this Section. However, we note they
are not the best results that can be obtained with RIPM; specially for the
larger instances, there is room for improvement by tuning the parameters. For
instance, problem PDS60 could be solved in 147 iterations, 5954 PCG iterations
and 610 seconds (instead of the 1170 seconds of Table 8); problem PDS90 could
be solved in 140 iterations, 6018 PCG iterations and 1280 seconds (instead of the
2180 seconds of Table 8); and problem “gridgen1” was solved in 219 iterations,
5703 PCG iterations and 618 seconds (significantly reducing the 2520 seconds
of Table 10, and making it even more competitive against general solvers like
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Table 11: Results for PDS instances with CPLEX-11

primal hybrid dual barrier
Instance it. CPU it. CPU it. CPU it. CPU
PDS10 8409 0.94 9176 1.69 5116 0.88 33 7.07
PDS20 78508 15.77 29798 14.30 17830 7.37 39 30.76
PDS30 298932 105.38 49264 34.09 29336 17.27 38 123.76
PDS40 451783 331.52 78014 80.95 49160 46.25 38 191.87
PDS50 218455 339.26 95327 130.32 62983 62.34 38 297.66
PDS60 700718 1138.4 122125 172.54 73610 76.50 40 485.10
PDS70 764918 957.4 154221 251.69 97271 99.46 38 645.24
PDS80 828482 1144.8 197605 281.48 117281 138.36 40 719.63
PDS90 864758 1378.3 197754 336.34 118797 139.14 40 814.56

Table 12: Results for Mnetgen instances with CPLEX-11

primal hybrid dual barrier
Instance it. CPU it. CPU it. CPU it. CPU
128-64-10 242539 421.2 33383 148.96 17686 12.98 18 55.92
128-64-11 272249 534.0 36518 95.03 19295 11.72 18 57.97
128-128-12 275263 519.5 73941 308.4 39987 33.83 21 145.6
256-64-10 534984 2823.6 90611 1220.14 36462 40.05 18 360.34
256-64-11 589623 2821.9 78142 535.97 35246 31.27 17 362.11
256-64-12 — >3000 68890 208.64 36193 33.96 11 302.49
512-128-12 — >3000 — >3000 98856 88.27 — >3000
512-256-12 — >3000 — >3000 181380 157.3 — >3000
512-512-12 — >3000 — >3000 342622 399.0 — >3000

Table 13: Results for Tripartite/Gridgen instances with CPLEX-11

barrier simplex
instance it. CPU it. CPU solver
tripart1 21 3.99 4197 1.12 dual
tripart2 25 36.01 58316 106.97 dual
tripart3 28 138.8 96592 382.47 dual
tripart4 29 1323.2 165668 1638.12 dual
gridgen1 64 12288 — >15000 any
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CPLEX-11).

7 Conclusions

From the results of this work, it is clear that the new regularized version out-
performs the specialized interior-point method for multicommodity flows im-
plemented in IPM. This means that linear multicommodity flow problems are
more efficiently solved by specialized interior-point methods based on PCG, if
they are dealt with as a sequence of quadratic multicommodity flow problems.
However, for some standard classes of multicommodity flow problems, as the
PDS and Mnetgen ones, dual simplex algorithms are still more efficient than
the new regularized approach. However, for some classes of difficult multicom-
modity problems, interior-point methods outperform simplex variants; for those
instances, the regularized specialized interior-point algorithm could be consid-
ered one of the most efficient available approaches. The automatic tuning of
parameters of the algorithm for particular instances, and the application of
the regularized algorithm to nonlinear convex separable multicommodity flow
problems is part of the future research to be done.
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