THE ACTIVE SET AND THE FORD-FULKERSON COLUMN
GENERATION METHOD IN THE SOLUTION OF THE LONG-TERM
THERMAL POWER PLANNING USING THE BLOOM AND
GALLANT MODEL.

A. Pages and N. Nabona
Dept. of Statistics and Operations Research, UPC

DR 2002/25
31-12-2002

Postcript copies of this report may be obtained via anonymous ftp at ftp-eio.upc.es in directory
pub/onl/reports. It is the file named dr200325.ps.Z. It needs decompressing before printing (e.g.
via uncompress dr200325.ps.Z to get a postscript file).

corresponding author: Narcis Nabona
Dept. Statistics and Operations Research,
UPC Campus Sud, edifici U,
¢. Pau Gargallo 5, 08028 Barcelona,
tel. +34 934017035 fax +34 934015855

email:narcis.nabona@upc.es






THE ACTIVE SET AND THE FORD-FULKERSON COLUMN GENERATION METHOD IN THE SOLUTION
OF THE LONG-TERM THERMAL POWER PLANNING USING THE BLOOM AND GALLANT MODEL.!

Adela Pages and Narcis Nabona

Abstract: Bloom and Gallant have proposed an elegant model for finding the optimal thermal sched-
ule subject to matching the load-duration curve and general linear constraints. Their method is based
on a linear program with some linear equality constraints and many linear inequality constraints. There
have been applications of this procedure to multi-interval problems using the active set method, the
Ford-Fulkerson column generation method, and the direct application of linear optimization packages
using an available modeling language. This work describes the model of long-term electric power
planning adapted to use Bloom and Gallant’s procedure and compares the performance of the two
first techniques mentioned above to solve a number of long-term power planning problems of various
sizes. Several remarks are made on implementation issues of both procedures.

Keywords: Linear Programming, Active set optimization methods, Ford-Fulkerson column genera-
tion, Long-term power generation scheduling, Stochastic processes, Thermal power generation.

1 Introduction and motivation

Long-term generation planning is a key issue in the operation of an electric generation company. Its
results are used both, for budgeting and planning fuel acquisitions, and to give a frame where to fit
short-term generation planning.

The long-term problem is a well-known stochastic optimisation problem because several of its
parameters are only known as probability distributions, e.g., load, availability of thermal units, and
hydrogeneration (and generations from renewable sources in general).

A long-term planning period (e.g., a natural year) is normally subdivided into shorter time intervals
(e.g., a week or a month long), for which parameters (e.g., the load-duration curve) are known or
predicted, and optimized variables (e.g., expected energy productions of each generating unit) must
be found.

Predicted load-duration curves (LDC’s) — equivalent to cumulative probability load distributions
— for each interval are used as data for the problem, which is appropriate since load uncertainty can
be suitably described through the LDC. The probability of failure for each thermal unit is assumed
to be known.

Bloom and Gallant [2] proposed a linear model (having an exponential number of inequality con-
straints) and used an active set methodology [9] to find the optimal way of matching the LDC of a
single interval with only thermal units when there are load-matching and other operational non-load-
matching constraints such as limits on the availability of certain fuels, or environmental maximum
emission limits. The optimal loading order obtained by Bloom & Gallant’s method may include per-
mutations with respect to the merit order and splittings in the loading of units [2, 8]. In this way the
energies generated satisfy the limitations imposed by the non-load-matching constraints while having
the best placement possible, with respect to generation cost, in the matching of the LDC. (Changes in
loading order bring about discrete changes in energy generation, while splittings cause a continuous
variation in the energy generated depending on where the split starts [2].)

When the long-term planning power problem is to be solved for a generation company operating in
a competitive market, this company has not a load of its own to satisfy, but it bids the energies of its
units to a market operator, who selects the lowest-price bids of this and other generating companies
to match the load. In this case, the problem scope is no longer that of the generation units of a single
generation company but all units of all companies biding in the same competitive market matching
the load of the whole system. This makes the size of planning problems much larger than before and
is a reason for developing more efficient codes to solve the problem.
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The Bloom and Gallant model has been successfully extended to multi-interval long-term planning
problems using either the active-set method [9], the Dantzig-Wolfe column-generation method [5, 12],
or the Ford-Fulkerson column-generation (FFcg) method [6, 11]. The FFcg and the Dantzig-Wolfe
procedures have many common steps. The differences between them will be discussed later.

In this work, the theoretical bases for the implementation of the FFcg method for a multi-interval
long-term power planning problem are explained. The performance of the active-set procedure and the
column generation method with a set of power planning problems of different sizes are then compared.
The implementation of the obtention of new vertices where some components are zero, or close to
zero, is analyzed and some of the computational results reported show its influence.

A companion report to this one by the same authors [10] deals with the third solution procedure
mentioned above: the direct application of linear (and nonlinear) optimization packages using an
available modeling language, which is only able to solve small problems in a reasonable amount of
CPU time, and explains some modeling extensions appropriate for competitive markets [3].

2 The load-duration curve

The LDC is the most sensible way to represent the load of a future interval in an integrated way
(the load depends on random factors such as weather in several geographical areas, human decisions,
social events, etc.). The main features of an LDC (corresponding to the ith interval) can be described
through 5 characteristics:

% the duration T*

* the peak load power p
* the base load power P*
* the total energy E

* the shape, which is not a single parameter and is usually described through a table of durations
and powers, or through a function.

The LDC for future intervals must be predicted. For a past interval, for which the hourly load
record is available, the LDC is equivalent to the load over time curve sorted in order of decreasing
power (see Fig. 1).

It should be noted that in a predicted LDC random events such as weather, shifts in consumption
timing, etc., that cause modifications of different sign in the load tend to cancel out, and that the
LDC conserves all the power variability of the load.

2.1 Power and energy constraints imposed by the load-duration curve

The loading of thermal units in an LDC was first formulated in [1] and practical procedures to compute
the covering can be found in [13].

Analytically, given the probability density function of load p(x), the cumulative load distribution
function Ly(z) is calculated as:

Lo(z) =1— /pr(y) dy

3 Thermal Units

As far as loading an LDC is concerned, the relevant parameters of a thermal unit are:
* power capacity: (C; for the 4™ unit) maximum power output (MW) that the unit can generate

x outage probability: (g; for the ji unit) probability of a unit not being available when it is
required to generate
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Figure 1: Load over time, above, and load-duration curve (LDC), below . (Data for a week — Monday
to Sunday — in January).

* linear generation cost: (E for the 51 unit) production cost in €/MWh
Other associated concepts are:
* merit order: units are ordered according to their efficiency in generating electric power (€/MWh)

o all units will work at their maximum capacity since no unit should start to generate until
the previous unit in the merit order is generating up to its maximum capacity (because the
price of its MWh is lower!)

x loading order: units will have load allocated to them in a given order

o loading order and merit order should coincide, but when there are other constraints to be
satisfied the most economical loading order may be different from the merit order.

4 Matching the load-duration curve

Due to the outages of thermal units (whose probability is >0), the LDC does not coincide with the
estimated production of thermal units. It is usual for the installed capacity to be higher than the peak
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Figure 2: Probability density function of load p(z) (above), and cumulative load distribution function
Lo(z) (below).

load: V% C;i>P, and it is normal to find that PO Ci~1.4P ..

The generation-duration curve is the expected production of the thermal units over the time
interval to which the LDC refers.

The energy generated by each unit is the slice of area under the generation-duration curve which
corresponds to the capacity of the thermal unit.

The probability that there are time lapses, within the time interval under consideration, where, due
to outages, there is not enough generation capacity to cover the current load, is not null. Therefore,
external energy (from other interconnected utilities), will have to be imported and paid for, at a higher
price than the most expensive unit in ownership.

The area under the LDC and the area under the generation-duration curve must coincide. (See in
Fig. 3 the generation-duration curve corresponding to a given LDp.)

The peak power of the generation-duration curve is ZZ]\L ‘| Ci+P and the area above power Zfi”l C;
is the external energy. In order to find the generation-duration curve from the LDC, the convolution
method of Balériaux, Jamoulle & Linard de Guertechin [1] was implemented.

4.1 Convolution method of finding the generation-duration curve

The method calculates the production of each thermal unit, given a loading order. The load is modeled
through its distribution (see Fig. 2):

1, forx <P
Ly(z) =< r€]0,1], for P<z <P
0, forz > P.

(Recall that Ly(x) is the probability of requiring z MW, or more).
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Figure 3: Generation-duration curve and load-duration curve (dotted line) for a weekly interval in a
32 unit problem.

4.2 Convolution of the j® thermal unit

Let:
C; : maximum power capacity in MW of unit j
gj : outage probability of unit j
1—g¢; : inservice probability of unit j

Lj_i(z) : probability distribution of uncovered load after loading units 1,2,...,5 — 1
Lj(z) : probability distribution of uncovered load after loading units 1,2, ...,5 — 1,
z : load in MW



the convolution computes L;(z) from L;_q(z) as [1, 13]:
Lj(2) = g Lj-1(2) + (1 = ¢j) Lj-1(z + Cj) (1)

Recalling that E=P-T, the energy generated by unit j is [1]:
Cj
Ej == (1 - qj) T/ Lj_l(.’L‘) dx . (2)
0

4.3 Unsupplied load after a set of thermal units is loaded

Let Lo(z) be the cumulative probability distribution of the power load corresponding to the LDC,
where z represents load. Once unit 7 (capacity C;, and outage probability ¢;) has been loaded, the
cumulative power distribution of the unsupplied load will be

Ly (z) = qiLo(z) + (1 — i) Lo(z + Cy) (3)
If we then load thermal unit j (Cj, g;) we are left with Ly, ()

L) = qiLiy(z) + (1 — ¢5) Ly (x + Cy)
which, taking into account (3), can be rewritten as

Lyjo(z) = dqigiLo(z) + (1 — ¢i)g;Lo(z + Ci) + (1 — gj)qiLo(z + Cj) (4)
+(1 = @)1 = gj)Lo(z + C; + Cy)

Note in (4) that, should we have loaded units i and j in the reverse order, Ly; j1(z) (having loaded
unit 7 first and then unit j) would have been the same as Ly;;j(z) (having loaded unit j first and
unit ¢ second).

It is not difficult to derive that, given a set of units whose indices 1,2, etc. are the elements of the
set of indices €, the unsupplied load after loading all the units in Q will have a cumulative probability
distribution Lq(z)

Lo(z) = Lo(x) [] am+

mes

> (Lo@+) G -a) [[0-a) [[a)

Uca iclU ieU iclU

We can thus say that the cumulative probability distribution L (z) of the unsupplied load is the
same no matter the order in which the units in {2 have been loaded.

4.4 Computation of the unsupplied energy
The unsupplied energy W () is computed as:

P
WQ) =T /0 Lo(z) dz (5)

Lq(x) being the probability distribution of the unsupplied load after loading (in any order) units
Jj e
The integration in (5) is to be carried out numerically.



4.5 Loading order and energy generation bounds of a given unit

Let € be a set of unit indices. It has been shown before that the distribution Lq(z) is independent

of the order in which the units have been loaded. However, the contribution of each unit to matching

the load will be different depending on the position in loading order, and the higher the position the

bigger the generation will be for the given unit. This is so because of (2) since L;1(z)<L;(z) Vz.
A given unit of index k€€ will have its generation bounded by:

Ck

Ch o
0<(1-q) T/O Low(@) dz = By < By < Ty = (1 - g) T/O Lo(z) dz (6)

where LQ\k(.T) corresponds to the probability distribution of uncovered load after loading all units in
2 but that of index k.
E, and Ej correspond respectively to loading unit & the last and the first.

5 Bloom & Gallant’s modeling of matching the load-duration curve
when there are non-load-matching constraints

Let the Bloom & Gallant formulation (for a single interval) [2] be given by:

Nu+1 »
mlnﬁgmze 12_:1 i E; (7)
subject to ZEjSE—W(w) VwCQ={1,...,Ny,} (8)
JEwW
A> Ej > R> (9)
Nu+1
Y E;=E (10)
j=1
E;>0 j=1,..., Ny, Ny +1 (11)

where:
Nu+1 index representing the external energy

N> total number of non-load-matching inequality constraints
As> €IRV>*Nu  matrix of coefficients of non-load-matching inequality constraints
R>  rhs of non-load-matching inequality constraints
w subset of
W{w} energy not covered after loading all units j € w C 2

The objective function (7) can be simplified using (10), which leads to:

Ny,
S 5B+ fnnE  where fj=Ji - fxn
j=1

Given that fNu+1E is a constant, problem (7-11) can be recast as:

Ny
mlnﬁgmze ij j
j=1
subject to ZEj <E- Ww) YwCQ={1,...,N,} (12)
JEw
AZ Ej > RZ

E; >0 j=1,...,N,.



5.1 The case where no constraint (9) is active

Constraints (9) are the non-load-matching constraints. The Appendix of [8] contains a proof that the
merit-order loading energies correspond to a minimum of the formulation (7-11) when there are no
active constraints (9).

Assuming that units are ordered in merit order, the active constraints at the minimizer of the set
of inequalities (8) would be:

Ei= E-Ww{1}
Ey+E,= E-W{1,2}
Ei+Ey+BE= E—-W{1,23} (13)
Ei+FEy+Es+--+Ey, = E-W{1,2,...,N,}

Substracting the first from the second equality we get:
E,=W(1) -W(1,2) >0
and substracting the second from the third:
Es=W(1,2) - W(1,2,3) > 0.
Finally, substracting the last but one from the last we would have:

En, =W(1,2,...,N, = 1) = W(1,2,...,N,) >0

w

It must be stressed that all E; are E;>0 because W (1,2,...,i—1)>W(1,2,...,4) and that however
small W(1,2,...,7i — 1)—W(1,2,...,7) it may be it will never be zero, i.e., no nonnegativity bound
(11) will be active. Moreover, the energies of all units will be within its bounds (6)

The energy generation F; will coincide with that calculated in (2):

Ej = W(l,..,j—-1)-W(1,..,j-1,) Tfo i1z )dx—TfOﬁLjacd:c
= Tfo(al Lj(:v))dw—TfO(j 1(#) — qiLj—1(z) — (1 — ¢))Lj—1(z + C;)) dz (14)
= -4q fO (LJ—l(w) - Lj—l(w + C])) dz = T(l —qj fO J Lj—l .T) dzx

5.2 Cases in which a constraint (9) or nonnegativity bound (11) is active

In these cases at least one of the constraints in (9) or nonnegativity bound (11) will be active, which
means that at least one of the constraints in (13) is not satisfied as an equality.

Let us assume that j, k, and [ are three consecutive units in loading order (which may be different
from merit order), and that the k' equation of system (13) is not active, while the first equations up
to the j! are, and so are the equations from the /! onwards. The values of the energies up to Ej can
be obtained by subtracting from each equation its former one, as done in 5.1.

By subtracting the active 5! equation from the I*! we get:

Ex + Ey :W(laaj) _W(laa.]ak?l) (15)

The actual value of Ej and E; will come out as part of the solution of (7-11) and will satisfy (15)
and the rest of active constraint, including those of (9) and the nonnegativity bounds (11).

As noted in [2], as regards energies E}, and Ej, the solution can be viewed as a splitting of a unit by
the other. Let us suppose that unit & is split by unit [, i.e., unit k is decomposed into two independent
pseudounits with the same probability of failure g, price fr and capacities Cr1>0 and Cie>0, such



that Ck1+Cka=C}, whose corresponding energies will be Ey; and Ejo (Ey1+Exe=E)). The splitting
means that the loading order is: unit 7, pseudounit k1, unit /, pseudounit k2. Ej; is:

Cr1
B =1(0=a) [ Lio)s (16)

Since Ly is:
Li(z) = qpLj(z) + (1 —qx)Lj(z + Cr1) ,

E is then:
E = T(-gq) fOCLkl )dx a7
T~ @)ar, [ Li(z) de +T(1 — ) (1 — i) [ Lj(z + Cp1) da
L; can be written:
Li(z) = qaLj(z) +q(1 — qg)Lj(z + Ck1) (18)
+(1 = q)aLj(z +C) + (1 — @) (1 — q) Lj(z + Cp1 + C1)
and FEj is:
Ep = T —q) [{¥ Liz
= T(1- Qk){QIQk fo L )d:E +a(l = ar) J ¥ Lj(z + Cpr) dz . (19)
+(1 - @)ar fy* L( m+cl)d:c+<1—ql)<1 ~a fo ¥ Li(o + O + C)) da |

From (16), (17) and (19) it can be appreciated that, as C; increases, Ey; increases, and E; and
Eys decrease, so that there may exist a value of Cy; for which Ey;+Eys and E; from (16,17,19) match
the results of (7-11) for Ey and Ej.

Instead of unit & being split by unit [, we could have considered unit / being split by unit &k, which
would lead to similar results. Considering the case of k being split by [, there is a maximum for E;
(corresponding to a minimum of Ej) obtained when Cj;=0. Should E; (from (7-11) be higher than
this maximum, the instance of [ being split by & should be taken up.

(An important related issue is that loading a unit of capacity C' and probability of failure ¢ is not
equivalent to loading two units that both have probability of failure ¢ and capacities C1>0 and Cy>0
such that C14+Co=C. Only if g=0 are both loadings equivalent.)

5.3 The multi-interval Bloom and Gallant model

As power planning for a long time period cannot take into account the changes over time of some
parameters, the time period is subdivided into shorter intervals in which all parameters can be assumed
to be constant. We will use superscript * to indicate the variables and parameters that refer to the it
interval.

Therefore, some constraints refer only to variables of a single interval, while other may refer to
variables in several intervals. For example, constraints on the minimum consuption of gas may affect
several or all the intervals, while emission limit constraints, or the constraint associated with the units
comprising a combined-cycle unit refer to each single interval.

Overhauling of thermal units must be taken into account, so, there will be intervals where some
units must be idle. The set of available units in each interval may be different. Let Q' be the set of
available units in the i*® interval, and let N} be N:=|Q?| (the cardinality of this set).

The Bloom and Gallant linear optimization model extended to N; intervals, and with inequality
and equality non-load-matching constraints, can then be expressed as:



Ni Ny

minimize Z Z fi E; (20)

Ejt =1 j=1
subject to: ZE; <E - Wiw) YweQ® i=1,...,N; (21)
JEW
ALE' > R, i=1,...,N; (22)
D AZE > R} (23)
%
ALE'=R. i=1...,N (24)
> AYE =R (25)
%
E;>0 j=1,...,N,, i=1,...,N; (26)

where:
AQEIR]WZ *Nu  matrix of coefficients of inequalities that refer only to energies of it" interval,
AY eRM> >N matrix of coefficients of inequalities that refer to energies of more than one
- ~ interval related to energies of it interval,
RQEIRNZZ right-hand sides of inequalities that refer only to energies of it! interval,
RY cRM right-hand sides of inequalities that refer to energies of more than one interval
AL €RN=*Nu  matrix of coefficients of equalities that refer only to energies of it interval,
A% RN SxNu  matrix of coefficients of equalities that refer to energies of more than one
interval related to energies of it interval,
R cRV z right-hand sides of equalities that refer only to energies of 2 interval,
RY cRW 2 right-hand sides of equalities that refer to energies of more than one interval
The number of variables is now 32V N and there are 37V (2 u—1) load-matching constraints plus
N_=N2+}", N non-load-matching equalities and N>=NJ+Y", N¢ non-load-matching inequalities.
Note that supraindices 0 indicate constraints which affect variables of more than one interval.
Should constraint sets (23) and (25), which are the multi-interval constraints, be empty, the prob-
lem would be separable into N; subproblems, one for each interval. Otherwise, a join solution must
be found.

5.4 Approximate model of hydrogeneration

The long term model described is appropriate for thermal generation units but not for hydrogeneration,
which requires additional variables to represent the variability of water storage in reservoirs and
discharges, necessary for the calculation of the hydroenergy generated.

A coarse model of hydrogeneration, which does not consider any of the reservoir variables, can be
employed. In it, the whole, or a part, of the reservoir systems of one or several basins are considered
as a single pseudo-thermal unit k¥ with cost fy=0, outage probability ¢;=0 and capacity Cj (normally
lower than the maximum installed hydropower capacity), but having a constraint binding the intervals’
hydrogenerations over the successive intervals so that they add up to a total expected hydrogeneration
R(}{k for the whole period:

N;

i _ 0
ZEk = R »
1

which is a constraint of the type (25).



6 The Ford-Fulkerson column-generation method applied to the
multi-interval problem

Constraints (21) and (26) define, for each interval, a convex polyhedron whose vertices can be easily
calculated. To apply the Ford-Fulkerson procedure, energies E‘€IR™"* must be expressed as convex
combinations of all vertices V}! of the it interval polyhedron:

Ei:Vz‘Az" ViGIRNuxN{', AiZQ’ TA =1 Vi

I'=[1 1 ... 1] being the all one vector.

The number Ny, of vertices of one such polyhedron is very high as the number of constraints
(21) that define it, jointly with the nonnegativity bounds (26), is exponential: 2V« (which is over a
million for N,=20). Note that no account is made of extreme-rays as the nature of the constraints
and nonnegativity bounds prevents these.

Problem (20-26) can be rewritten as:

N;
minimize Sy fvia (27)
=1
subject to: T'A'=1 i=1,...,N* (28)
ALViAt = RL : ;
AZ;VZAZ>RZ} Z:].,...,NZ (29)
Nii o -
> AV VIA =RY (30)
=1
N1 o
> ALY VA > RY (31)
=1
A'>0 i=1,...,N* (32)

which is linear in A* and lends itself to being solved by the column-generating method of Ford-
Fulkerson. ,
The convex coefficients A*‘€RMV, i=1,...,N; are only a part of the problem variables. The rest

of the variables are the surpluses SiE]RNIZ, 1=1,..., N; of the inequalities that refer to energies of a

single interval, and the surpluses SOcRM? of the inequalities that refer to energies of several intervals.
The problem to be solved by the FFcg method is thus:

N;
minimize Z fevear (33)
S0, St At i1
subject to: T'A'=1 i=1,...,N° (34)
ALVIAT = RL . i
AZZVZAZ—SZ:RZZ} Z—].,...,N (35)
Nz o
Yy AV VA =R (36)
=1
Ni . . .
> AV VI -0 =RY (37)
=1

S°>0 S'>0, A'>0 i=1,...,N". (38)



6.1 Application of Ford-Fulkerson’s procedure

Since the problem is linear with linear equalities and nonnegativity bounds on all variables, the active
constraint matrix A at a basic feasible point can be reordered so that the basic and nonbasic columns

and variables are separated:
~. | B N X | | R
-l v ][ ][0 @)

Subindices g and n will be used in order to tell the basic variables from the nonbasic variables.
The number of basic variables is that of constraints: N;4+N_+N> (and is independent of the number
of vertices!): BeIRWitN=FN2)x(Ni+N=+N>)  The number of nonbasic variables is the total number
of variables minus the basic ones: Y ; Ni,+N>—N;—N_—N>=Y". N\, —N;—N_ which is a function of
the number of vertices and will be extrenely large even for a modest N,,.

Let A’é be the basic convex coefficients and ng and S% the basic surpluses of the inequality
constraints. The basic matrix B and the basic variables will satisfy:

- ]]:[ — B 1 T
T 1
- Al - .
I of 1
ALvy i RL
ALVE -1f s RL
Az:Vé , C | =] BRZ (40)
B .
AV 5 R
ATV -1y L Sp R@.
AV A02y72 . ANy 7
AUV ALVE L AN ~1% RO

where the matrix on the left is B and the rhs vector contains the independent terms of the constraints.
The nonbasic submatrix of the constraints is:

I i
]II
]II
ALVI%,
ALVy 1§ .
AZVN -1y
< N;
AV
AZlVN]\; -1,
2 N; i
Ay A2?V2 . ANV
| ALV ALV o AL —1% |
and the vector of nonbasic variables is:
Al Sk A% 8% ... AN SN SY

Here follows an example of active set A with N;=3, N1=1, N1=2 and both basic surpluses s,lc
being basic, N2=2, N1=2 one of the surpluses s% being basic and the other nonbasic, N3=1, N3=1
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Figure 4: Example of the active constraint matrix for a case with N;=3 and N_+N>=14.

with nonbasic surplus, and N2=2 and N%=3 with one surplus 52 being basic and the other two
nonbasic; see Fig. 4. There are 17 basic variables in all (as there are 17 constraints, 3=N; of these are
the coeflicient convexity constraints of )\;) Of the 17 basic variables, there are 13 convex coeflicients
/\j- of vertices and there are 4 surpluses. These numbers of coefficients and surpluses may change with
iterations, but they will always add up to 17.

6.2 Calculation of Lagrange multipliers

In problems with equality constraints and nonnegativity bounds they are calculated as follows:

B o] [ Cs BIT=Cp — II
[N’ ]1”2]_[01\,] - { S =Cy— NI (42)



From the first equation we have:
1 va'AL" v ALY vyAL vAlY

I Vgi'Aﬁi' VéViIANiI Vév"'A‘;Ni' VéVi’AgNi'
7 N Iy

— v

_]IO’ >

L B | i
173
- ‘}élfl_ 3
0

Vévi’fNi

0
0

(43)
From this equation we obtain the expected result that all components of multipliers IT%, i=1,2, ...,
N;,0 corresponding to nonactive inequality constraints are zero.

From the equations that yield the multipliers 3 two possible types of equation follow. Either:
m o+ Vi (AL T + AV TS + A% 0 + AY'ITY) + 0t = Vi f
1=1,2,...,N;
hence: . . . I . . ’ . ‘I I . .
ol = (f* = ALTIL — ALTT, — AL IS — ALV TIY)' Vi — 74 (44)
1=1,2,...,N;

i.e., there is a nonbasic vertex of interval 7 if 0{',,6<0, and this will be so if for the modified costs
fi— Ai:IHZ: — Ag'ﬂg — Agilﬂg — Agilﬂg the vector of energies E!= ]f,k yields a cost lower than 7r§\.
The other equation we obtain from the ¥ equations is:

—7rli2 -l-afgl =0 — Jfgl :ﬂfz 1=1,2,...,N;,0
which tells that the surplus sty i=1,2,..., N;,0 will become basic (relaxing the active constraint A¢.)
whenever i, ;. <0.
6.3 Efficiency of the obtention of new vertices

The problem of finding a (nonbasic) vertex E% such that
{fi-Alm - AL m - A2 - AV Y E, <7 i=12,....N;
appears to be simple, because given
Fi=fi—Al'm — AL m — A% 1m0 — A% 11 (45)

it is straightforward to sort the elements of ﬁ in increasing value determining a loading order, and
compute the elements of E} by successive convolution (1) and integration (2). (And checking whether
-~/ . .
f" Ej<m for some interval i .)

It is in the calculation of vertices that the nonavailability of units — by programmed overhauling
during the interval — is taken into account.



6.4 Creation of vertices with some zero energy elements

There are vertices that cannot be generated by the former procedure, as all components of E}C will be
within its bounds (6) and there may be vertices required that have a given component of zero or, in
general, lower than the lower bound in (6). This is the case with some intervals when there are fuel
or generation upper limits over several intervals for a given unit, and the optimizer is such that this
unit generates zero at some of the intervals.

It is thus necessary to create vertices with zero generation units at certain intervals as if these
were not available (even though they have no programmed overhauling in the interval). Otherwise,
the optimizer will not be reached.

The procedure for generating vertices with zero generation elements is simple. Once the modified
costs f\’ (45) have been obtained and sorted in increasing modified cost order, and the energies E,Zc

have been calculated using this order, the total modified cost Z;\Z‘l ]’”}E',’c j is computed and checked
with ¢ (44) to find out whether

N
O-Vk_ijEkj_ﬂ-/\<0
i=1

If this is not the case, a vertex without any number of the last loaded units (in increasing modified
cost order), as if these were not available, would be equally acceptable. Given that any component
E} j>07 and that the last terms of f* (in increasing modified cost order) might be positive, excluding

these terms from the sumation (by making zero the corresponding component E',’c j) will help to obtain

a negative a%, p-Excluding terms with f}<0 would act against this goal.
The following algorithm could thus be employed to obtain acceptable vertices with zero components
where appropriate.
Using the variables:
negsig variable employed to compute a negative oi,, for a vertex Ei of the il interval
ior(-) the order vector of increasing modified costs J/”\’
everti(-) unit energies of a vertex E}c of the i*! interval (initially containing the vertex
calculated with no zero elements, on end it may contain some zero elements,
if necessary)
modcost (-) vector of modified costs ﬁ
neg_to_pos logical variable that indicates when negsig would change from negative to

positive

Nui number of available units in interval 7 (dimension of vectors everti, ior and
modcost)

pii 5

the following code will obtain the correct vertex, if any, everti(.):
neg_to_pos=.false.
negsig=-pii
for k=1 until Nui do
jor=ior (k)
aux=modcost (jor) *everti(jor)
if (negsig<0 and aux>-negsig) neg_to_pos=.true.
if (neg_to_pos=.false.) negsig=negsig+aux
if (aux>0 and neg_to_pos=.true.) everti(jor)=0
endfor
if (negsig<0) then
exit l'everti(-) is an acceptable vertex
else
exit !a vertex of a different interval must be tried
endif



If no acceptable vertex can be found for any interval and no nonbasic surplus variable should
increase its value, the current point is the optimizer.

6.5 Ford-Fulkerson column generation algorithm

Although Ford and Fulkerson designed their procedure for multicommodity network-flow problems [6],
it can be generalized to other linearly constrained problems.

For a linear objective function problem with N; stages formulated as (33-38) the FFcg algorithm
starting from a basic feasible point would be:

0) Let {A%,S%,S%, i=1,... ,Ni} be the set of basic variables, and let B be the basic matrix,
whose structure is as that in (40)

1) Solve system (43) to compute the Lagrange multipliers 74 of the convexity equations (34), and
1L, 10% ,i=1,...,N; and II2 IT3 of constraints (35-38)

2) Pricing of nonbasic surplusses:

o if ITL <0 ,i=1,...,N;or 13<0 — Hsf for some i=1, ..., N;,0 that should enter the basis;
go to step 4) B

o if Hg >0,:=1,...,N; and Hg >0 (no nonbasic surplus can enter the basis); go to step 4)
3) Pricing of new nonbasic vertices for the intervals i=1,..., N;:

1) form the modified cost vector Fi (45)

3.2) sort the elements of fz and determine energies E',’c of new nonbasic vertex k through con-
volution (1) and integration (2)

o if for some ¢ O'%/ k:f“ E,i—7r§\<0 vertex E}C of interval 7 should enter the basis; go to step 5)

o if for all 4 a%, k:fz’E,i—wf\ZO (no vertex of any interval can enter the basis); : the
current basic set is optimal

4) Compute change of basic variables when a surplus enters the basis

4.1) being 0€IRY™: and & the I column of TeIRN=1"> solve for the direction of change
Adg | | 0
o[ 3s )L

4.2) compute maximum step length @ for basic convex coefficient and basic surplus decrease

'y
J— . J o .
@ = min = Viji=1,...,N;
{A)\’Bj

. Si . ]
ANp; <0, Afl]:k Vki= 1,---,Ni,0‘Assz <0}

N . o oth - .
Bi vertex j of it interval leaves the basis

* if o=
AN

* if a= As;Bg:k surplus s% i leaves the basis
4.3) set the new basic surplus value s%l:a and go to 6)
5) Compute change of basic variables when a vertex enters the basis

5.1) being & the it column of 1€RN and VERN=T"> the product of all constraint coefficients
of (22-26) by the new vertex E}, solve for the direction of change

plaen =1V



5.2) compute maximum step length for basic convex coefficient and basic surplus decrease @

i i
& = mi Bi vii=1,.... Nj|ANy. <0, =Bk VEi=1... . N;,0|Ash, <0
« mm{AxBj 71 , , IV; Bj ’ASZBk ? ) » 4Vi, SBk

S . th - .
* if a=—-34 vertex j of & interval leaves the basis
Bj
* if EZAS—SB%EE surplus s% « leaves the basis
5.3) set the convex coefficient value A, =@ of the new basic vertex and go to 6)

6) Update old basic variables:
AB = AB + EAAB
Sgp = Sp+aAdSp

7) Update basic set, discard leaving basic column in B, substitute it by new basic column, and
return to 1)

It should be noted that the only place in the algorithm where operations are specific to the problem
solved is step 3.2, which is the obtention of the values that characterize a new vertex in the long-term
electric planning problem. The rest of the steps are the standard FFcg procedure.

6.6 Differences between Ford-Fulkerson’s and Dantzig-Wolfe’s column generation
algorithms

The two methods are similar, and Dantzig and Wolfe admit in their article [5] that the Ford and
Fulkerson proposal [6] inspired their work. The main difference with the Dantzig and Wolfe method
is that the discarded basic columns are kept as nonbasic columns N and, before generating a new one,
existing nonbasic columns are priced to check if one of them could enter the basis. This step avoids
computing the same column more than once, which, in our problem, requires finding a new vertex
through sorting modified costs, convolution and integration, and multiplying constraints (22-25) by
the vertex.

To adapt the Ford-Fulkerson algorithm introduced in the section above to the Dantzig-Wolfe
procedure, some small changes should be introduced. A new step between 3.1 and 3.2 must be added,
and step 3) must be about the pricing of old and new nonbasic vertices:

3) Pricing of old and new nonbasic vertices for the intervals i=1,..., N;:

3.1) form the modified cost vector Fi (45)
3.1’) price old nonbasic vertices EJZ ot j:f“ E'Ji-—7r§\
o if for some ¢ 3%/ ;<0 vertex E; of interval i should enter the basis; go to step 5)
o if for i 0%, ;20 (no old vertex of interval ¢ can enter the basis) go to 3.2)
3.2) sort the elements of ﬁ and determine energies E! of new nonbasic vertex k through con-
volution (1) and integration (2)
o if for some ¢ 0'%/ k:f\“ E,ic—7r§\<0 vertex E,Zc of interval 7 should enter the basis; go to step 5)

o if for all 4 a%, k:ﬁ’E,i—wf\ZO (no vertex of any interval can enter the basis); : the
current basic set is optimal

Step 5.1) should now read:

5.1) being &; the i column of 1€RY: and VERN="> the product of all constraint coefficients
of (22-26) by the old (E;) or new vertex (E}) as appropriate, solve for the direction of
change



Also N must be updated, so step 7 should be:

7) Update basic set, discard leaving basic column in B, substitute it by new basic column. If
necessary, update nonbasic set N. Return to 1).

6.7 Obtention of a feasible point

Obtaining a feasible point is not trivial when there are non-load-matching constraints.

As with the active set methodology [9], the feasible point is obtained from a point satisfying only
the load-matching constraints of all intervals and adding one constraint at a time, plus either an active
surplus for the constraint added or a new vertex, until all constraints are satisfied. The details of this
process can be found in [11]. (Inequality constraints are here considered to be >.)

A point satisfying all load-matching constraints for a given interval (a vertex) is easily obtained
by calculating, through convolution and integration, the energies of the available units loaded in any
order. The initial basis of the FFcg procedure is thus B=1":*"i where each 1 in B is the convex
coefficient of the only vertex of each interval. Fig. 5 shows the initial basis B and the initial matrix
of basic vertices Vp.

o
VB

Figure 5: Initial basic matrix

Let us assume that we have a former basis and that a new inequality constraint must be satisfied.
If, with the current basis and feasible point, the constraint is already satisfied, a surplus becomes
basic. Otherwise a non-basic vertex must be found. At the end of the feasibility process the basic
matrix dimension shall be B € IR(NitN=+N>)x(Ni+N=+N>) (A satisfied equality constraint could also
be incorporated into the base by adding a degenerate zero surplus column.)

Suppose that a basic matrix BY~1) for the first g—1 constraints is available and it has to be
extended for the ¢! constraint, with coefficients A9, which is some non-load-matching constraint (22-
25) with nonzero coefficients in one or more intervals. A new basic variable must be determined to
extend the basis as depicted in Fig. 6
where Cy = [1;| V}, A9 |0, 1; being the & row of 1€IR"*Ni| when the new basic variable is a
vertex from the 7 interval, or the new basic variable is simply the surplus of the [*! constraint added,
in which case Cy = [0| — 1]’; I could correspond to the constraint being added g.

In general, one of the following cases will take place when the available basis BU~1), which makes
feasible the first g—1 constraints, is extended to include the ¢ constraint with coefficients AY:

e the gt constraint is satisfied with the current basis

— the gt constraint is an equality
The (degenerate) g™ surplus is the new basic variable (with zero value, and will be elimi-
nated whenever it becomes non-basic).

— the ¢*2 constraint is an inequality
The new basic variable is the surplus of the gt constraint.

In both cases, the column added to the basic matrix is Cy=[0---0 — 1]'.
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Figure 6: Scheme of the basic matrix expansion for a case with three intervals, having 8 basic vertices
and 2 basic surpluses

e the gt constraint is not satisfied with the current basis

There are also two cases and, in both, the goal is satisfying the new constraint as an equality.
Let us assume that A9V A < r9 when the gt constraint is an equality or a > constraint. Then
we must solve the problem

miniAmize —AIV A (46)
. A4y 0 |14 RY™Y
subject to: A(zg_l)V _1q [ g ] = R(zg,l) ]
IA=1 4i=1,...,N;
A,5>0

Should A9VBA > r9 and g be an equality or < constraint, the opposite must be solved. The
problem is the same except the objective function (46) which is now

miniAmize AIVA

A single implementation is possible for both cases and only special attention must be paid to
the sign criterion of the Lagrange multipliers calculated. This problem is solved by the Simplex
algorithm and is stopped when a base satisfying A9V = r9 is achieved. The steps are:

— Look for a candidate non-basic variable to become basic (through the Lagrange multiplier
signs)

— Compute the increase/decrease of basic variables due to the increase of the entering variable

— Stop before the maximum step is reached if the entering constraint g is satisfied as an
equality, upon which the process is stopped having added the gt constraint and the nonbasic
variable column in the basis.

The calculation of Lagrange multipliers is as explained in sections 6.2 and 6.3. The candidate
variable could be a vertex V]f, i of some interval ¢ in which the g2 constraint has some element,
or a surplus s; of the I active constraint. When some variable changes its value the others
modify their value proportionally. Once the new candidate variable is known, the changes in the
basic variables must be calculated as:

AA
(9-1) B | _ _
B [ASB]_ o



where C is the column associated with the new basic variable in the basis, B():

0
O .
Cny=| —1 | « (INV; +1) position, if o; <0 or
0
- 0 -
- 0
0 .
1 + ™ position, if oy <0
Cy =
0
0
| ATV,

The largest step, @, that basic variables can take without being out of bounds is,

«a = min —ﬁ
—= "

Moreover, as we wish to satisfy A9VpA = 9, the maximum increase that the new basic variable
should achieve must be calculated as

VAN, < 0, — b ‘VAsl < o}
Asl

r9 — AgVBAB
o = -
" AV Adg + Vi)

if V]f,k is the new candidate vertex.

Should the new basic variable be the surplus , we would have:

_ r9 — AgVBAB
new = T A9V Adg

If aey <@, a new non-basic variable, V]f,k or s; has been found that satisfies the gt constraint
as an equality. In case @<ayey, the candidate variable replaces a basic variable and another
iteration must be performed.

The updating of variables is,

Aj=Xj+ad)\; ,jEB

sj=s;+ads; ,j€B

Sp=a , if the candidate variable is a surplus, or
fc =« , if the candidate variable is a vertex,

where the step length is @ = min{ayey, @}.

Obtaining a feasible point is similar to minimizing costs with a different objective function. There-
fore, the procedure for creating vertices with zero or very small generation described in 6.4 must also
be employed. If when one is trying to get feasibility with respect to a given constraint, no vertex with
negative a%/  can be obtained for all intervals, and no nonbasic surplus should increase its value, the
problem is infeasible.



7 Computational results

7.1 Test cases

The characteristics of the test cases employed are summarized in Table 1. The fourth column, ), N¢,
is the number of variables and the last but two column contains Zi(2N5 — 1), which is the number of
load-matching inequality constraints. All cases except 1tp06 correspond to a certain Spanish generation
company together with the rest of the Spanish power pool with a different degree of desaggregation
of the generation units; the loads satisfied are those of the Spanish power pool. Case ltp06 refers
to the planning of a single German generation company considering only its own load. One or more
pseudo-units represent, in all cases, the hydrogeneration of one or several basins using the approximate
hydromodel of section 5.4.

Table 1: Test cases for long-term electric power planning

N; | Ny Zz Nzi ZzNZ: N2 Zz Né N§ Zi@Nﬁ_l) Zz Z;'Vuﬂ ij;'
case solver €
ItpOla || 11 | 13 140 0 2 0 2 79861 || Cplex 4837512292
ItpO1b || 11 | 13 140 0 2 1 4 79861 || Cplex 4854704625
Itp02a || 11 | 15 162 0 2 33 3 319477 || Cplex 3587429530
Itp02b || 11 | 15 162 0 2 34 5 319477 || Cplex 3622023526
Itp03a || 11 | 17 183 0 2 54 5 1245173 || Cplex 3580260681
ItpO3b || 11 | 17 183 0 2 55 7 1245173 || Cplex 3624657306
ItpO4a || 11 | 18 193 0 2 64 6 2457589 || Cplex 3579624419
Itp04b || 11 | 18 193 0 2 65 8 2457589 || Cplex 3624160513
Itp06 15| 29 416 0 1 15 3 3758096369 || ac.set 1070527267
Itp08 14 | 40 543 42 0 141 | 30 || 10599979286510 || ac.set 3118958218

Cases ltp01 to 1tp04, with 13, 15, 17 and 18 units, are the same problem with more or less
aggregation of units and there are two subcases of each case with a different number of constraints.
They were employed in another report by the authors [10] to test an AMPL [7] plus Cplex 7.5 [4]
direct linear programming solution of these problems, and the objective function value there obtained
will be checked with that obtained using the FFcg and active set procedures. Extra details about
these problems can be found in the reference given.

7.2 Performance of the Ford-Fulkerson procedure and comparison with the active
set method

Both the active set and the FFcg methods require a considerable number of iterations to reach a
feasible solution. Their numbers appear under the heading “feas. iters.” (feasibility iterations) in
Table 2; the number of iterations to achieve the optimizer is shown next. After that, the required
CPU time, and the number of figures of agreement of the objective function value with that obtained
with a different solver are shown, as indicated in the last two columns of Table 1. The last three
columns in Table 2 show the results obtained using an AMPL plus Cplex 7.5 solution [10], the last
column giving the long computation times required, in hours(!), to have the rhs’s of the },;(2V«—1)
load-matching constraints (21).

Several conclusions can be drawn from the results of Table 2. The first is that the FFcg method
is quicker to get to the solution and that the rate of increase of the time required with problem size
is lower in the case of FFcf than with the active set or the direct linear programming solution.

The next issue is precision. Direct linear programming, the active set method and the FFcg
procedure reach practically the same optimizer (the number of agreement digits of these methods’
solution is 9 or more for all cases except 1tp08). Four agreement digits would be fairly acceptable from



Table 2: Comparison of the active set, and the Ford-Fulkerson column generation method

active set method Ford-Fulkerson column generation Cplex 7.5

feas. | total | time | dig. || feas. | total | time | ver. | ver. | dig. | total | time rhs
case iters. | iters. (s) | ag. || iters. | iters. (s) | gen. | opt. | ag. || iters. (s) (h)
ltp0la 193 | 246 6.6 | 10 21 79| 72| 147 15| 10 781 1.3 | 0.44
Itp01b 239 312 9.0 9 21 224 | 16.4 | 396 18 9 2354 | 235 | 0.44
1tp02a 450 | 642 | 62.5 | 10 128 | 357 | 144 | 254 | 20| 10| 3285 | 11.0 | 2.28
1tp02b 513 | 734 | 80.1 9 128 | 516 | 16.1 | 293 | 24| 10| 7646 | 16.9 | 2.28
1tp03a 672 | 964 | 197.1 | 10 310 | 831 | 20.5 | 348 | 23| 10 | 12622 | 56.8 | 9.52
1tp03b 781 | 1096 | 348.0 9 310 | 1213 | 21.6 | 354 | 33 9 | 23213 | 86.2 | 9.52
1tp04a 938 | 1233 | 508.2 | 10 400 | 796 | 23.7 | 383 | 25 9 || 17447 | 115.1 | 19.27
1tp04b | 1075 | 1404 | 756.6 | 10 400 | 1768 | 38.5 | 603 | 45 9 || 42785 | 212.0 | 19.27
1tp06 1803 | 2646 | 24.3 - 51| 585 | 50| 466 | 31| 10 n.a. | na.| na.
1tp08 4311 | 5593 | 43724 - 726 | 6296 | 629. | 2025 | 112 9 n.a. n.a. n.a.

an engineering view-point, given that many data in this problem are approximations or predictions.
Therefore it could be thought that the optimization process could be stopped when the objective
function does not change in the first five or six figures over a number of iterations. It must be borne in
mind that the active set method for a linear program behaves like linear programming, and obtaining
the right set of active constraints produces exactly the same optimizer. However, the FFcg procedure
generates the optimizer as the convex combination of vertices of the polyhedrons of feasible points
(one for each interval in long-term power planning). Thus the calculation of the optimizer, and its
objective function value, requires many more arithmetic operations. The column with header “ver.
opt.” contains the number of vertices at the optimizer. On average, we have 2 vertices for each interval
(except in case 1tp08).

Through the -pg option in the Fortran compilation of the programs and the standard Unix pro-
gram gprof (profiling), it is possible to analyze where the CPU time is spent during execution. It was
found that most of the execution time of the active set implementation (over 90%) went to calculating
the rhs’s of the new active constraints tried and, on average, about 20 new constraints are tried per
iteration. With the FFcg implementation almost as much computation (about 80%) is due to calcu-
lating new vertices, which involve the same routines of convolution and integration as the calculation
of the rhs’s. However in the FFcg the number of vertices generated per iteration is less than one, as in
many iterations a slack variable is made active, and the number of iterations required has been always
below that of the active set procedure.

It is not surprising that case 1tp06, though bigger than cases 1tp02 and 1tp03, and requiring more
iterations than former cases, takes less time to convergence. This is because the convolutions are
much shorter in 1tp06 than in the other cases because the load to be matched (of a single company in
Germany) is much lower than that of the Spanish power pool, and a uniform 1 MW step is taken for
storing the probability distributions of load still to be supplied, and for integration.

7.3 Performance when vertices with very small or zero energy elements were not
obtained

Only in one of the test cases reported was a vertex with a forced zero generation created. It wass in
case ltp0la. Should the conditionals in the loop of the algorithm of section 6.4 be commented out, the
result obtained had the same objective function value and the same number of basic vertices, but it
was achieved after a much bigger number of iterations (144) and having generated many more vertices
(314).



Using the type of algorithm presenyted is a necessary precaution.

Conclusions

e The problem of long-term hydrothermal planning of electricity generation has been presented
and an extension of the Bloom and Gallant model has been put forward to solve it.

e The FFcg procedure applied to the Bloom and Gallant multi-interval long-term power planning
has been presented, including:

the general procedure

a new algorithm for the creation, whenever necessary, of vertices with some zero generating
units

the procedure to find an initial feasible point.

e The computational experience with:

The comparison of performance between the FFcg, the active set procedure and the solution
with Cplex 7.5 (when available), which shows that the FFcg procedure is the most efficient

The analysis of the compared efficiency of the active set and the FFcg procedures when
applied to the Bloom and Gallant formulation of the multi-interval long-term, power plan-
ning

The comparison of precision, which shows that the FFcg reaches a precision similar to that
achieved with the active set method.

An analysis of the influence of the creation of vertices with zero energy components.

e The FFcg procedure appears to be capable of solving real size problems (with N,~150 and
N;~30) in reasonable time.
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10 Glossary of symbols

I
A7

AL
AL

matrix of coefficients of inequalities that refer only to energies of it interval
matrix of coefficients of inequalities that refer to energies of more than one
interval related to energies of it interval

matrix of coefficients of equalities that refer only to energies of it interval
matrix of coefficients of equalities that refer to energies of more than one
interval related to energies of it interval

(subindex) indication of basic variable

power capacity in MW of j& generating unit

energy generated in MWh by unit j over the it! interval

total energy in MWh requested over the 72 interval

upper bound of energy production for unit j

lower bound of energy production for unit j

=fi—fn.+1

generation cost (linear) in €/MWh of j*® unit

generation cost (linear) in €/MWh of external emergency (power-unlimited) energy



Fioo ofi—Al mE - AL T — A% IO — A% T
i (supraindex) indication of it interval
J (subindex) indication of 5 thermal unit
Lé electric load to be supplied over the 2 interval
Li(z) electric load still to be supplied over the 7*! interval after loading (in loading order) units
up to the jib
N (subindex) indication of nonbasic variable
N_,N> total numbers of equality and inequality constraints
N;,N,, numbers of intervals and number of thermal units

N}, number of available thermal units in it interval

N‘i, number of vertices of the polyhedron defined by the load-matching constraints of the ith
interval

P Peak power load of i*® interval (MW)

RY right-hand sides of equalities that refer to energies of more than one interval

RY right-hand sides of inequalities that refer to energies of more than one interval

RL right-hand sides of equalities that refer only to energies of % interval

RY right-hand sides of inequalities that refer only to energies of ! interval

Sv surpluses of inequalities that refer to energies of more than one interval

St surpluses of inequalities that refer only to energies of i interval

T total duration of interval (h)
T generated power (MW)

A convex coefficients of vertices of i interval

1l Lagrange multipliers of non-load-matching equalities refering to several intervals
md Lagrange multipliers of non-load-matching inequalities refering to several intervals
I Lagrange multipliers of non-load-matching equalities refering only to it interval
I Lagrange multipliers of non-load-matching inequalities refering only to it! interval
T Lagrange multipliers of convexity condition for il interval (3°, At=1)

ag . Lagrange multiplier of nonbasic surplus of multi-interval inequality l.(s9\,l=0)

7%, Lagrange multiplier of nonbasic surplus of ¢ interval inequality ! (s%;,=0)

ot  Lagrange multiplier of nonbasic convex coefficient of vertex k of it interval (A%, ,=0)
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