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LONG-TERM ELECTRIC POWER PLANNING IN A COMPETITIVE MARKET USING THE BLOOM AND
GALLANT PROCEDURE AND A MODELING LANGUAGE.!

Narcis Nabona and Adela Pagés

Abstract: Bloom and Gallant have proposed an elegant model for finding the optimal thermal sched-
ule subject to matching the load-duration curve and general linear constraints. Their method is based
on a linear program with some linear equality constraints and many linear inequality constraints.
There have been applications of this procedure to multi-interval problems using the active set method
and the Dantzig-Wolfe column generation method, and through the direct application of linear opti-
mization packages using an available modeling language. This work describes the long-term electric
power planning model adapted to the Bloom and Gallant procedure. It presents a new quadratic for-
mulation of the maximum profit problem, and solves a number of long-term power planning problems
of various sizes using a modeling language and available linear and quadratic programming solvers.
Several remarks are made regarding its implementation.

Keywords: Linear Programming, Active set optimization methods, Dantzig-Wolfe column genera-
tion, Long-term power generation scheduling, Stochastic processes, Thermal power generation.

1 Introduction and Motivation

Long-term generation planning is a key issue in the operation of an electricity generation company.
Its results are used both for budgeting and planning fuel acquisitions and to provide a framework for
short-term generation planning.

The long-term problem is a well-known stochastic optimisation problem because several of its
parameters are only known as probability distributions (for example: load, availability of thermal
units, hydrogeneration and generations from renewable sources in general).

A long-term planning period (e.g., a natural year) is normally subdivided into shorter intervals
(e.g., a week or a month), for which parameters (e.g., the load-duration curve) are known or predicted,
and optimized variables (e.g., the expected energy productions of each generating unit) must be found.

Predicted load-duration curves (LDC’s) — equivalent to cumulative probability load distributions
— for each interval are used as data for the problem, which is appropriate since load uncertainty can
be suitably described through the LDC. The probability of failure for each thermal unit is assumed
to be known.

Bloom and Gallant [3] proposed a linear model (with an exponential number of inequality con-
straints) and used an active set methodology [10] to find the optimal way of matching the LDC of
a single interval with thermal units only, when there are load-matching and other operational non-
load-matching constraints. These could be, for example, limits on the availability of certain fuels, or
environmental maximum emission limits. The optimal loading order obtained with Bloom and Gal-
lant’s method may include permutations with respect to the merit order and splittings in the loading
of units [3, 8]. In this way the energies generated satisfy the limitations imposed by the non-load-
matching constraints while having the best possible placement, with respect to generation cost, in the
matching of the LDC. (Changes in loading order bring about discrete changes in energy generation,
while splittings cause a continuous variation in the energy generated depending on where the split
starts [3].)

When the long-term planning power problem is to be solved for a generation company operating in
a competitive market, the company has not a load of its own to satisfy, but it bids the energies of its
units to a market operator, who selects the lowest-price among biding companies to match the load.
In this case, the scope of the problem is no longer that of the generation units of a single generation
company but that of all units of all companies biding in the same competitive market, matching the
load of the whole system. This makes planning problems much larger than before and is a reason for
developing more efficient codes to solve them.
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The Bloom and Gallant model has been successfully extended to multi-interval long-term planning
problems using either the active-set method [10], or the Dantzig-Wolfe column-generation method
[14, 11].

In this work, the multi-interval Bloom and Gallant model has been coded using the modeling
language AMPL [6] and has been solved with a linear programming package Cplex 7.5 [4] as carried
out in [12] for a single interval. A quadratic model is put forward here to formulate the long term
profit maximization of generation companies in a competitive electricity market, and the AMPL
model developed has been solved with quadratic optimization packages. This last model is refined by
introducing an external nonbidding energy source.

A companion report by the same authors [13] compares the performance of the active-set and the
Dantzig-Wolfe solution procedures applied to the solution of minimum cost long-term power planning
problems, which are linear. The smaller test problems solved in that report are also dealt with here,
so a comparison of results and efficiency with AMPL plus Cplex 7.5 is possible.

2 The load-duration curve

The LDC is the most sensible way to represent the load of a future interval in an integral way (the
load depends on random factors such as weather in several geographical areas, human decisions, social
events, etc.). The main features of an LDC (corresponding to the 52 interval) can be described through
5 characteristics:

% the duration T*

* the peak load power P
* the base load power P*
* the total energy B

* the shape, which is not a single parameter and is usually described through a table of durations
and powers, or through a function.

The LDC for future intervals must be predicted. For a past interval, for which the hourly load
record is available, the LDC is equivalent to the load over time curve sorted in order of decreasing
power (see Fig. 1).

It should be noted that in a predicted LDC, random events such as weather, shifts in consumption
timing, etc., that cause modifications of different signs in the load tend to cancel out, and that the
LDC keeps all the power variability of the load.

2.1 Power and energy constraints imposed by the load-duration curve

The loading of thermal units in an LDC was first formulated in [1] and practical procedures to compute
the covering can be found in [16].

Analytically, given the probability density function of load p(x), the cumulative load distribution
function Ly(z) is calculated as follows:

To(z) =1 - /0 ") dy

3 Thermal Units

As far as loading an LDC is concerned, the relevant parameters of a thermal unit are:

* power capacity: (C; for the 4™ unit) maximum power output (MW) that the unit can generate
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Figure 1: Load over time, above, and load-duration curve (LDC), below . (Data for a week — Monday
to Sunday — in January).

* outage probability: (q; for the 4% unit) probability of a unit not being available when it is
required to generate

* linear generation cost: (f; for the j® unit) production cost in €/MWh
Other associated concepts are:
* merit order: units are ordered according to their efficiency in generating electric power (€/MWh)

o all units will work at their maximum capacity since no unit should start to generate until
the previous unit in the merit order is generating at its maximum capacity (because the
price of the MWh it produces is lower!)

* loading order: units will have load allocated to them in a given order

o loading order and merit order should coincide, but when there are other constraints to be
satisfied, the most economical loading order may be different from the merit order.
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Figure 2: Probability density function of load p(z) (above), and cumulative load distribution function
Lo(z) (below).

4 Matching the load-duration curve

Due to the outages of thermal units (whose probability is >0), the LDC does not coincide with the
estimated production of thermal units. It is usual for the installed capacity to be higher than the peak
load: E 1 Cj >P, and it is normal to find that E L Cj=1. 4P.

The generatwn duration curve is the expected productlon of the thermal units over the time
interval to which the LDC refers.

The energy generated by each unit is the slice of area under the generation-duration curve which
corresponds to the capacity of the thermal unit.

The probability that there are time lapses within the time interval under consideration, where, due
to outages, there is not enough generation capacity to cover the current load, is not null. Therefore,
external energy (from other interconnected utilities) will have to be imported and paid for at a higher
price than the most expensive unit in ownership.

The area under the LDC and the area under the generation-duration curve must coincide. (See in
Fig. 3 the generation-duration curve corresponding to a glven LDC )

The peak power of the generation-duration curve is Z 1 Cj ~+P and the area above power Z
is the external energy. In order to find the generatlon—duratlon curve from the LDC, the convolutlon
method of Balériaux, Jamoulle & Linard de Guertechin [1] was implemented.

4.1 Convolution method of finding the generation-duration curve

The method calculates the production of each thermal unit, given a loading order. The load is modeled
through its distribution (see Fig. 2):

1, forz <P
Lo(z) =< re€]0,1], forP<z <P
0, forz > P.

(Recall that Lo(z) is the probability of requiring z MW, or more).
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Figure 3: Generation-duration curve and load-duration curve (dotted line) for a weekly interval in a
32 unit problem.

4.2 Convolution of the ;' thermal unit

Let:
C; : maximum power capacity in MW of unit j
gj : outage probability of unit j
1—g; : in-service probability of unit j
Uj : set of unit indices 1,2,...,7

Ly,_,(z) : probability distribution of uncovered load after loading units 1,2,...,5 — 1
Ly,;(x) : probability distribution of uncovered load after loading units 1,2,...,5 — 1, j
z : load in MW



the convolution computes Ly, (z) from Ly,_, (x) as [1, 16]:

Ly;(z) = ¢j Ly;_, () + (1 — ¢;) Ly;_, (2 + Cj) (1)

Recalling that E=P-T, the energy generated by unit j is [1]:
Cj
E;=(1-g¢;) T/ Ly,_,(z)dz . (2)
0

4.3 Unsupplied load after a set of thermal units is loaded

Let Lo(z) be the cumulative probability distribution of the power load corresponding to the LDC,
where z represents load. Once unit 4 (capacity C;, and outage probability ¢;) has been loaded, the
cumulative power distribution of the unsupplied load will be

Ly (z) = gilo(z) + (1 — gi) Lo(z + C5) (3)
If we then load thermal unit j (Cj, g;) we are left with Ly, ()
L{j’i}(m) = qu{i}(ac) + (1 — qj)L{i}(a: + CJ)
which, taking into account (3), can be rewritten as

Liiin(®) = qigiLo(x) + (1 — gi)gjLo(z + Ci) + (1 — gj)qiLo(z + Cj) (4)
+(1 = q)(1 = gj) Lo(z + C; + Cy)

Note in (4) that, should we have loaded units i and j in the reverse order, Ly; ;1(z) (having loaded
unit 7 first and then unit j) would have been the same as Ly;;1j(z) (having loaded unit j first and
unit ¢ second).

It is not difficult to derive that, given a set of units whose indices 1,2, etc. are the elements of the
set of indices €, the unsupplied load after loading all the units in Q will have a cumulative probability
distribution Lq(z)

Lo(2) = Lo(@) [] gm+

mes
Z (Lo(z + ZCi)(l - qi) H(l - qi) H ai)
Uca ieU ieU ieU

We can thus say that the cumulative probability distribution Lo (z) of the unsupplied load is the
same no matter the order in which the units in 2 have been loaded.

4.4 Computation of the unsupplied energy
The unsupplied energy W () is computed as:

P
WQ) = T /0 Lo(z) dz (5)

Lq(x) being the probability distribution of the unsupplied load after loading (in any order) all units

from the set Q.
The integration in (5) is to be carried out numerically.



4.5 Loading order and energy generation bounds of a given unit

Let Q be a set of unit indices. It has been shown above that the distribution Lq(z) is independent of

the order in which the units have been loaded. However, the contribution of each unit to matching

the load will vary according to its position in the loading order, and the lower the order number the

bigger the generation will be for the given unit. This is so because of (2), since Ly, ., (z)<Ly,(z) Vz.
A given unit of index k€€ will have its generation bounded by:

C

Cg o
0<(1—q) T/O Lo(@)de = By < By < By = (1 - qp) T/O Lo(z) dz (6)

where Lq\(z) corresponds to the probability distribution of uncovered load after loading all units in
Q except that of index k.
E,. and Ej correspond to loading unit £ the last and the first respectively.

5 Bloom & Gallant’s model for matching the load-duration curve
when there are non-load-matching constraints

Let the Bloom & Gallant formulation (for a single interval) [3] be given by:

Ny, +1 _
mlnélfnze JE_:l i E; (7)
subject to NEj<E-W(U) YUCQ={1,...,N,} (8)
jeu
A>Ej > R (9)
Ny+1 R
Y Ej=E (10)
j=1
E; >0 j=1,...,Ny, Ny, +1 (11)

Ny+1 is the index representing the external energy
N> is the total number of non-load-matching inequality constraints
As €RN>*Nu g the matrix of coefficients of non-load-matching inequality constraints
R>  rhs of non-load-matching inequality constraints
U subset of
W(U) unsupplied energy after loading all units j € U C Q

The objective function (7) can be simplified using (10), which leads to:

Ny,
S 5B+ fvnE  where fj=Fi— fxn
j=1

Given that fNuHE is a constant, problem (7-11) can be recast as:

Ny,
minimize Z i Ej
E; ]
subject to SN E;<E-W{U) YUCQ={l,...,N,} (12)
jinU
AZ Ej Z RZ

E; >0 j=1,...,N,.



5.1 The case where no constraint (9) is active

Constraints (9) are the non-load-matching constraints. The Appendix of [8] contains a proof that the
merit-order loading energies correspond to a minimum of the formulation (7-11) when there are no

active constraints (9).
Assuming that units are ordered in order of merit, the active constraints at the minimizer of the

set of inequalities (8) would be:

Ei= E-w(Q)
Ei+B= E-W(2)
Ei+Ey,+E3= E—-W(1,2,3) (13)
E1+E2+E3+"'+ENu: E_W(1527' 7Nu)

Subtracting the first from the second equality we get:
E,=W(1)-W(1,2) >0
Subtracting the second from the third we get:
Es=W(1,2) - W(1,2,3) > 0.
Finally, subtracting the penultimate from the last we would have:

En, =W(1,2,...,N, = 1) = W(1,2,...,N,) >0

w

It must be stressed that all E; are E;>0 because W (1,2,...,i—1)>W(1,2,...,1), and that however
small W(1,2,...,i—1)—W(1,2,...,i) may be, it will never be zero, i.e., no nonnegativity bound (11)
will be active. Moreover, the energies of all units will be within its bounds (6).

The energy generation F; will coincide with that calculated in (2):

Bj = W(lrj—1) = Wi~ 1,j) =T [F Lu, , (2) do ~ T [ Ly, () da
= Tfop (LUj_lA(iﬂ) — Ly, (z)) dz = TfOP (Ly,_, (x) — ¢jLy;_, (z) — (1 — ¢j) Ly,_, (z + Cj)) dz

= T(l _qJ') fOP(LUj—l(‘T) _LUj—1(x+Cj)) dz :T(l _Qj) f()Cj LUj—l(x) dz ( 4)
1

5.2 The case where a constraint (9) or nonnegativity bound (11) is active

In this case, at least one of the constraints in (9) or nonnegativity bound (11) will be active, which
means that at least one of the active constraints in (13) will not be satisfied as an equality.

Let us assume that j, k, and [ are three consecutive units in loading order (which may be different
from the merit order), and that the k' equation of system (13) is not active, while the first equations
up to the j™ are, as are the equations from the I*! onwards. The values of the energies up to Ej can
be obtained by subtracting the preceding equgation from the next, as done in 5.1.

By subtracting the active 5! equation from the I*!' we get:

Ex + Ey :W(laaj) _W(17a37k7l) (15)

The actual value of Ey and E; will be obtained as part of the solution of (7-11) and will satisfy
(15) and the rest of the active constraints, including those of (9) and the nonnegativity bounds (11).

As noted in [3], as regards energies Fj, and Ej, the solution can be viewed as a splitting of one unit
by another.



5.3 The multi-interval Bloom and Gallant model

As power planning for a long time period cannot take into account changes over time of some parame-
ters, the time period is subdivided into shorter intervals in which all parameters can be assumed to be
constant. We will use superscript * to indicate that variables and parameters refer to the 2 interval.

Therefore some constraints refer only to variables of a single interval, while others may refer
to variables in several intervals. E.g., constraints on the minimum consumption of gas may affect
several or all the intervals, while emission limit constraints, or the constraint associated with the units
composing a combined-cycle unit refer to each single interval.

The overhauling of thermal units must be taken into account. Therefore, there will be intervals
where some units must remain idle. The set of available units in each interval may be different. Let
Q' be the set of available units in the i*® interval, and let N} be N:=|Q| (the cardinality of this set).

The Bloom and Gallant linear optimization model extended to N; intervals, with inequality and
equality non-load-matching constraints, can thus be expressed as:

N2 Ny
minimize Z Zf]E; (16)
Byt =1 j=1
subject to: Z E; <E-W(U) YUCQ i=1,...,N, (17)
jinU
AL E' > RY i=1,...,N; (18)
D AZE > RS (19)
%
AL E' = RL i=1,...,N; (20)
Y AYE =RY (21)
%
E;>0 j=1,...,Ny, i=1,...,N, (22)

where:

AgelRNlZ *Nu'is the matrix of coefficients of inequalities that refer only to energies of 2 interval,
A% eRM>*Ne s the matrix of coefficients of inequalities that refer to energies of more than one
- interval related to energies of it interval,
Rée]RNlZ is the right-hand sides of inequalities that refer only to energies of it interval,
R(;E]RNg is the right-hand sides of inequalities that refer to energies of more than one
interval,
AL RN LxNu  ig the matrix of coefficients of equalities that refer only to energies of it
interval,
A% RN 2XNu g the matrix of coefficients of equalities that refer to energies of more than one
interval related to energies of ' interval,
RLcRM L s the right-hand sides of equalities that refer only to energies of 2 interval,
R2 cRY 2 s the right-hand sides of equalities that refer to energies of more than one interval.
The number of variables is now va * N! and there are ZZN i(2Nu —1) load-matching constraints plus
N_= 2+Zi N non-load-matching equalities, and N> :Ng—i-zi Ni non-load-matching inequalities.
Note that supraindices 0 indicate constraints which affect variables of more than one interval.
Should constraint sets (19) and (21), which are the multi-interval constraints, be empty, the prob-
lem would be separable into N; subproblems, one for each interval. Otherwise a joint solution must
be found.



5.4 Approximate model of long-term hydrogeneration

The long term model described is appropriate for thermal generation units but not for hydrogeneration,
which requires additional variables to represent the variability of water storage in reservoirs and
discharges necessary for the calculation of the hydroenergy generated.

A coarse model of hydrogeneration, which does not consider any of the reservoir dynamics, can
be employed. All or a part of the reservoir systems of one or several basins are considered as a
single pseudo-thermal unit H with cost fH:(), outage probability ¢z=0 and capacity Cy (normally
lower than the maximum installed hydropower capacity), with a constraint binding the intervals’
hydrogenerations over the successive intervals so that they add up to a total expected hydrogeneration
RY, for the whole period:

N; )
Y Ey =Ry, (23)
g

which is a constraint of the type (21).

6 Full model of long-term hydrogeneration

6.1 Hydrogeneration of a reservoir

The hydroelectric power production of reservoir m in the it interval depends on the amount of water
d:, discharged over the interval and the water head, which is the difference between the water level in
the reservoir and the water level in the reservoir outlet channel (see Fig. 4). A polynomial relates the
volume of water stored v, in reservoir m, and the water head s,,:

_ 2 3
Sm = Sbm T SImUm + SqmUm”~ + Sc¢jUm

uivalent
« head

Figure 4: Cross-section of a reservoir showing water head and discharge.

where Sy, Sim, Sqm, and s¢; are the basic, linear, quadratic and cubic coefficients respectively, which
are data to the problem.

The water head changes during the whole period considered, and also over the ! interval. Let
Uin represent the stored volume in reservoir m at the end of interval 4, and vi,j ! the stored volume at



the end of the former interval, Which is equivalent to the stored volume at the beginning of the 7t

interval. The equivalent head 5!, (the average of the interval 7) will satisfy:
' ‘ i—1 U 2 3
ng X (’U:n - ’U:r: ) = /il (Sbm + SimUm + SgmUm” + ScjUm )d'Um
Um

Integrating, taking limits and simplifying we get:

S . . S . . S . .9 .9 - .
i = Sbm + g (0 0l) + 5 (0 = vl ) sqmoi o+ = 0 ol )l o) (29)
The difference in potential energy is d’,gs?,, the discharged water weight times the head. Given
that water density is 1, the discharged water weight is di,g, g being the acceleration of gravity. Let
pm<1 be the efficiency of the turbine- alternator system and 7" the interval duration. Therefore, the
average generated hydropower h!, over the ith b interval in reservoir m will be:
Bi — Pm8 di 5

m i “mom

Letting k,,=pn,g and using (24) we have:
Bi = Km gi {S St (gL g g ) S i1y e iy
m — T om bm 2 m m 3 m m qm m

o, . (25)
sem (o112 4 v, )(v:n1+v:n>}

the term between braces being the equivalent head.

6.2 Temporary evolution of water in the reservoirs of a basin

The variables of the N, reservoirs of one (or several) river basin(s) are related because the water
outlet of a reservoir feeds the inflow of the downstream reservoir. A hydronetwork, such as that of
Fig. 5, depicts the water flows in a river basin during an interval. The water balance in the node
corresponding to reservoir m over the ¢! interval would be:

vt who+ > (dh 4 ph) =k, + di, + pl, (26)
JE€EGm

where w’, is the natural water inflow durmg the I interval, G,, is the set of indices of reservoirs
up-stream of reservoir m (if any). Inflows w, are a forecast for an immediate short interval (e.g., the
current or next week), or a probability density function for a long, or future interval. p¢, is the spillage
or discharge not usable for generation.

The temporary evolution of water in reservoirs, over N; successive intervals, can be modeled
through a replicated hydronetwork [15] such as that in Fig. 6, where the initial volume in reservoir
m during the i interval is the ﬁnal volume of this reservoir in interval —1. Initial and final water
volumes in reservoirs, v), and v2Yi are to be considered data for the problem. (Initial volumes are
usually the current ones, and final volumes are the target values.)

All hydrovariables (stored volumes, discharges, and spillages) are flows in the replicated hydronet-
work, and its node balances are expressed in equations such as (26). Note the existence in Fig. 6 of
a sink node S (where the water outlet of one or more river basins flow), whose balance equation is

redundant. o
(T3 v+ S0,

i=1 m=1



Figure 5: a) Reservoir system in a river basin. b) Hydro-connections of reservoirs. c) Reservoir system
network in a time interval (showing water inflows).

Figure 6: Replicated hydronetwork over N; intervals. (The dashed arcs are spillages.)

6.3 Expected hydrogeneration and stochastic programming

Energies, including hydroenergies, that satisfy the load-matching constraints (17) are expected ener-
gies. Hydroenergies (hi,T%) must also satisfy the hydropower equation (25), thus water volumes and
discharges should also be expected values.

Stochastic programming [2] uses scenarios associated to probabilities, from which expected values
can be calculated. In the case of hydrogeneration, water inflow scenarios ought to be employed [5],
and, being a multi-stage problem (of N; intervals), their number should be high enough in order to
take into account the inflow variability. However, there are two principles of stochastic programming
that do not appear to fit in well with long-term hydrogeneration optimization: the optimization for
a particular scenario of long-term inflows may have no sense at all, because it could be infeasible for
many other scenarios.



6.4 The multicommodity network flow model of long-term hydrogeneration as a
two-stage stochastic programming problem

An alternative way to obtain long-term expected hydrogenerations is through a multicommodity net-
work flow model, where, in a replicated hydronetwork such as that of Fig. 6, N, commodities, cor-
responding to water inflows of different probability of occurrence, flow [7]; N, is normally 2<N,<6.
This leads to considering inflow probability density functions approximated by a block probability

density function, as in Fig 7.
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Figure 7: Sections of reservoirs with multicommodity inflows, volumes, and discharges, and block

probability density functions of inflows for N,=4.
This approach has some common points with scenario stochastic programming;:

e The multicommodity procedure models hydrogeneration as a two-stage stochastic problem. The
first stage is the first interval, which is assumed to have deterministic water inflows (forecasts
for the current or next weekly interval). The second stage is the rest of the intervals, where only

as many scenarios as commodities are assumed for inflows.
e Expected values of hydrogeneration are obtained from the discharges, volumes and probabilities

associated to the multicommodity scenarios.



e The solution to the problem in both procedures has a form of a tree (with only as many branches
as the number of commodities employed in the case of the multicommodity model).

The main differences of the multicommodity model from the scenario procedure are that:

* Multicommodity scenarios are accumulative along all intervals, meaning that, in all intervals,
a multicommodity scenario has higher inflows than the former multicommodity scenario. In
stochastic programming, one scenario may have higher inflow in a particular interval than another
scenario, but it may be the other way around in a different interval.

* All multicommodity scenarios are optimized together in a single multicommodity network flow
problem sharing the capacity constraints, whereas in stochastic programming each scenario is
optimized separately.

The N, commodities flowing in the network nodes are in fact wf, o, (wh, ;—wl,q), ..., (Wi Ny _1—
v N,_2)s Vm, Vi, with wh o=wh =...=w} No—1» Vm in the first interval (current or next week).

The multicommodity expected solutions are feasible and are compatible with the long-term hydro-
generation planning practice of anticipating possible future large inflows by leaving room in reservoirs
in order to avoid possible future spillages. (This is opposite to short-term planning, where all inflows

are deterministic data and there is no need to anticipate possible future events.)

w,

6.5 Multicommodity expected hydrogeneration and its linearization

Let N, be the number of commodities considered and let 7, mo, ..., mn,—1 be the probabilities
associated with the block probability density function of a water inflow. An extra subindex k
(k=0,1,...,N,—1) will be employed to distinguish to which commodity the inflows, volumes, dis-
charges, and generations correspond. Hydrogeneration will now be:

e = s O ) S~ it
2
sem (yl 0% ot ) (W) -I—ank)} kE=0,1,...,N, -1
The expected hydropower generation Ein of reservoir m and total hydroenergy over the i interval
is:

Ng—2

~. ™ T, + 7 ; TN,—1,; i i =i

hinzilh?mo‘F E %h;nk+ N; ! inNa—lamzla---aNm E;I:TZ§ h:n (28)
k=1 m

The (multicommodity) water balance equations (26) now become:

v Whp Y (o) = v A D APy k=01, Ny — 1, (29)
§€Gm

and there will be the following bounds on the hydrovariables:
0 <y T, 0Sdpg<dp, 0<phy <Py, Ym,Vi,Vk, (30)

where the maximum volume v, is independent of the interval, but the maximum discharge E:n or
maximum spillage p?, are proportional to interval length T%.

Note that if (27-30) are employed in lieu of an equality of type (23), we are using a full hydrogen-
eration model instead of an approximate one.

Equations (27) are fourth-order polynomials of hydrovariables, and may make the problem hard
to solve, especially because there is also an exponential number of inequalities (17) to satisfy. A
simplification of the problem could be to linearize equations (27) in the following way: the term in



braces of (27), which is the mt reservoir head over the it interval, will be considered to be a constant
I~

st,, as if the volumes 7? 7, 1t had been calculated with were known,
) Sim i1 ’ Sqm 1~ Sem ;~i—1 2 ) -1
Sm —Sbm+7m( mk + Vg ) + 3 ('Umk U ) 4‘Sqﬂﬂ’mkvmk+ 4 ("’Azmk + Upy i )(ka + Uy k)

and the succession of volumes employed o¢ ., i=1,...,N; could be a former solution, or a uniform

mk?
variation from the initial v0 , to the final volume vrjxik. In this way, equations (27) become:

mk:ka Vm,Vz,Vk, (31)
The linearized equations (31), together with (28-30), would be the linearized multicommodity
hydrogeneration model to be appended to the optimization (16-22) instead of the constraint of set

(21) which corresponds to (23).

7 Representation of the wind-power generation (and of other re-
newable energy sources) in long-term planning

Wind-Power generation, and other renewable energy sources such as photovoltaic generation, produce
electric power when there is sufficient wind, or sunshine, in an appropriate direction. Their values
can be approximately predicted in the short term given a weather forecast. In the long term, we can
predict a generation duration curve, for wind power, or photovoltaic generation, for a given interval
from historical records of wind-power or photovoltaic generations for the time interval considered.
Fig. 8 shows the October 2002 metered wind-power generation in the Spanish power pool, sorted in
descending power.

Assuming that October were one of the intervals in the long-term planning problem to solve,
wind-power generation for this interval could be taken into account through the following procedure:

1. An expected wind-power generation duration curve should be predicted from available records of
wind-power generation in the October months of various years. A low degree polynomial of 3 or
4t order could be fitted, making sure it decreases monotonically within the interval duration. A
maximum power capacity COCt (normally well below the installed wind-power capacity) should
be established. Note that the maximum metered wind-power generation in Fig. 8 is about 1740
MW, whereas the metered installed wind-power capacity is 2850 MW.

2. The expected wind-power generation duration curve should be split into a number of slices of
wind power (as indicated in Fig. 9) and a wind power capacity should be associated to each

slice. Three slices have been considered in Fig. 9, and COCt(1+CVOVC;( + CSVC;( =C3%.

ct(1

3. Three pseudo units (as is the number of slices made) will be considered with capacities Cv(?/ P

CVOVC;,(Q and C'VOVC;(?’, and with zero outage probability (qI?Vc;(k—O) and zero cost ( fv?fli =0).

Oct Oct Oct(3
4. Let us assume that aWc P( , aWc P( nd aWc P( , are the energies (areas in the wind-power generation

duration curve) corresponding to each slice. The generations of each pseudo unit should be
constrained to be exactly:

Oct(l _ Oct(1 Oct(2 _ Oct(2 Oct(3 _ Oct(3
Eyp =ayp Eyp” =ayp Eyp” =ayp

which are of type (20). The shape of the resulting generation duration curve for October will not
coincide with that of the expected generation duration curve, but the areas of the sliced parts
will coincide and they will be an acceptable approximation, and the more slices, the better the
approximation.

This should be done for all intervals.
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Figure 8: Metered wind-power generation, sorted in descending power, in the Spanish power pool in
October 2002.
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Figure 9: Splitting of wind-power generation during October in three pseudo-unit slices with capacities
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8 Long-term maximization of profit in a “competitive” market

In the classical electricity markets, utility companies have both generation and distribution of power.
These companies have their own load to supply, corresponding to their clients plus other contracts, and



try to minimize their generation cost. In “competitive” electricity markets, generation companies have
no distribution, and therefore no load of their own. Generation companies must bid their generation
to the market operator and a market price is determined for each hour by matching the demand with
the generation of the lowest bids. Generation companies are no longer interested in generating at the
lowest cost but in obtaining the maximum profit, which is the difference between market price and
generation cost for all accepted generation bids. In long-term operation all accepted bids in a time
interval (a week, or a month) must match the LDC of this interval.

There is no specific load to be matched by a specific generation company (SGC). The only known
loads are the predicted LDC’s for the whole market in each interval. As all generation companies pursue
their maximum profit, it is natural to attempt to maximize the profit of all generation companies
combined.

The SGC must thus solve the problem of the maximization of profit of all generation companies,
taking into account the total market load. The SGC should introduce its own operation constraints
(fuel and emission limits, contracts, etc.) and may also introduce a market-share constraint for its
units in one or several intervals. (The Lagrange multiplier value of this constraint will tell whether
the market share imposed, though feasible, is reasonable or not.) The long-term results will indicate
how the SGC should program its units so that its profit be maximized while meeting all its operation
constraints.

8.1 Long-term market price function of a given interval

From the records of past market-price and load series (see Fig. 10) it is possible to compute a market-
price function for a given interval. This function is to be used with expected generations that match
the LDC of the interval, so market prices should correspond in duration with the duration of loads,
from peak to base load in the interval.
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Figure 10: Hourly loads (continuous curve) and market prices (dashed) in a weekly interval.

Both the load and the market price series should be reordered in decreasing load order obtaining a
LDC and a price-duration curve that corresponds to the loads in the LDC. The price-duration-curve



obtained will be nonsmooth and may even be nondecreasing (see Fig. 11). However, fitting a straight
line or a low order polynomial to it, a decreasing line or function will generally be obtained. Given
the variability of the price-duration curve, it seems reasonable to fit a straight line to it. Let b° and I’
be the basic and linear coefficient of such line for the it interval. (Predictions of b* and I’ could be
obtained taking into account both the series corresponding to the same interval in several successive
years and that of successive intervals.)

8.2 Maximum profit objective function

In order to determine the maximum-profit objective function, a simplifying assumption is convenient
regarding the shape of the unit contributions in the generation-duration curve (see Fig. 3). Instead of
having some units (particulary those with the lowest loading order) with an irregular shape in its right
side, it will be assumed that the contribution of all units will have a rectangular shape with height C
(for unit j) and base length E';-/Cj as in Fig. 12.
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Figure 11: Market prices ordered by decreasing load power (thin continuous curve) in weekly interval,
market-price linear function (thick line), and LDC (dashed).

The profit (price minus cost) of unit j in interval 7 will be:

%

+/Cj o - T o,
[ ety - Rt = (6 - BB+ 5 B
0 J

and adding for all intervals and units, and taking into account the external energy, we get the profit
function to be maximized:

N; |:Nu lz

3 Z{(bZ ~ ) E: + EEJZ 2} - fNu+1E§vu+1]
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Figure 12: Long-term price function for a time interval and contribution of 52 unit.

which is quadratic in the generated energies. Using (10) we are led to the equivalent expression:

N; Ny i ] _ N
> [Z{ (0" — 1) B} + %EJ 2} - fNuHEZ} (32)
i by J

with fi=fi=fN+1
Given that fy,+1E" is a constant, the problem to be solved is:
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ALE' > R, i=1,...,N;

> AYE >R (33)
7

AL E' = RL i=1,...,N;

ZA‘liEi:R(l

7

Ei>0 j=1,...,N, i=1,...,N;

It should be noted that, should all b and I¢ be zero, the solution of the maximum profit problem
(33) would be the same as that of the minimum cost problem (16-22). Otherwise, the cost of the
maximum profit solution is higher than that of the minimum cost solution.

Given that 1'<0, the quadratic of the objective function of (33) is positive definite, thus problem
(33) has a unique global minimizer . Moreover, the quadratic of the objective function is diagonal.

8.3 External nonbidding energy source

The decreasing market-price line induces more expensive units to generate only while market price is
not lower than cost, while in the minimum-cost solution units generate as long as their price is not
higher than the external energy (which is always the case).

There are two types of external energy: emergency external energy, which is the genuine (power-
capacity unlimited) response of the external connected system to simultaneous failures in the units,
and the external (nonbidding) units tied to the market system through contracts at a fixed price. This
acts as an ordinary unit v (with price f,, capacity C,, and outage probability ¢, ) except that it does
not participate in the bidding operation and therefore is not driven by profit but only by minimum
cost. The complete objective function to consider is thus:

o
E:,,EZ E: fi=b E}? 4
mlrg;?lze [ WE, + { v)E; — 2c; }] (34)

J#v

9 Coding the load-matching constraints

The main difficulty of the direct solution of the Bloom and Gallant model is the exponential number
of load-matching inequality constraints (17). These constraints are avoided in the application of the
Dantzig-Wolfe column generation method [14, 11, 13], or are generated as they are required in the
active set method [10]. In a direct solution by linear or quadratic programming all N?x (2N«—1)
constraints must be explicitly created.

Leaving aside the storage and processing time for these many load-matching inequality constraints,
their creation has two parts: the linear coefficients, which is fast, and the rhs’s, which is very time
consuming as it requires lots of calculation.

9.1 Creation of the linear coefficients

The linear coefficients of constraints (17) for each interval are ones for the units in all possible subsets w
of set Q¢ (where units with programmed overhauling in the §* b interval have been excluded). Assuming
that N:=|Q, there will be 2V« —1 constraints in the it} interval.



A systematic way to create the ones of all these constraints is through the following procedure:
the m!® constraint in the series from the 1%t to the (2N —1)®2 will have a 1 or a 0 for each unit j
according to the result of

(mdiv2/™!) mod 2 (35)

where div stands for the truncated quotient of the division of the left by the right operand (and mod
is the remainder operator of the division of the left by the right operand)?. This amounts to expressing
in base 2 all the numbers from 1 to 2Vu—1.

9.2 Calculation of the right-hand sides of the load-matching inequality constraints

For each interval i and for the units of each subset U of the set ¢, which can be determined using
(35), we must first calculate L}, (z) starting from Lj(z) by successive convolution for all units j in U
using (1), and then compute

P’L
E' - W) :Ei—TZ/ Ly (x)dz
0

using numerical integration.

This means a lot of arithmetic operations, and it has been found that a specific Fortran program
that makes these calculations is far more efficient than letting these operations be performed in a
script code in AMPL, where the solution to the optimization problem is executed after all rhs’s have
been calculated.

10 Computational results

10.1 Test cases

Due to the limitations imposed by the number of load-matching constraints, the size of test problems
must be small. However, an effort has been made to solve real problems. The loads of the Spanish
electric power pool have been considered but generation units have had to be concentrated into a
reduced number of psudo-units in order not to exceed 18, which is a practical limit, given that the
calculation of its rhs’s requires over 19 hours of CPU time on a SPEC{p2000 310 processor of a Hewlet
Packard Netserver L.C2000 U3, which is the computer employed.

The optimization considers one small specific generation company (SGC) in detail while the rest
of the generation units are amalgamated in big pseudo-units so as to limit N,. Hydrogeneration of
the SGC considered has also been modeled in detail, while the rest of hydrogeneration is considered
through the approximate model.

Problems of N;=11 intervals have been considered, the first being a week in March, the second is
the rest of March, the third is the month of April, from the forth to the seventh are the rest of the
year in two-month intervals, and finally, intervals from the eighth to the eleventh are the next year
in three-monthly intervals. This subdivisions allow us to impose the yearly domestic-coal incentive
constraints to the coal-fired units, which is applicable in Spain.

Four cases with 13, 15, 17 and 18 units have been prepared. They are the same problem with
disaggregation of some aggregated units. There are four subcases of each case, all of which have
two hydro pseudo-units: one is the hydrogeneration of the SGC considered, and the other is the
hydrogeneration of the rest of the Spanish power pool. Cases whose name starts with “ltp” have both
hydrogenerations modeled with the approximate model, while cases starting with “lhtp” have the SGC
hydrogeneration modeled by the linearized multicommodity full model, and the rest of hydrogeneration
by the approximate model.

2The authors wish to gratefully acknowledge the suggestion of this well known procedure made to them by their
colleague Mr. Jordi Laseras.



Table 1: Test cases for AMPL models of long-term electric power planning

Ni | Ny | Y;NE | Nyo | Npae | 3, NL | N2 | S5, NS | N || 52,(2Ne—1) | CPU (h)
case B B calc. rhs
ltp0la | 11 | 13 140 - - 0] 2 0| 2 79861 0.44
lhtpOla || 11 | 13 140 | 384 | 275 0| 2 0| 2 79861 0.44
ltp01b | 11 | 13 140 - - 0| 2 1] 4 79861 0.44
lhtpOlb || 11 | 13 140 | 384 | 275 0| 2 1| 4 79861 0.44
Itp02a | 11 | 15 162 - - 0] 2 33| 3 319477 2.28
lhtp02a || 11 | 15 162 | 384 | 275 0| 2 3| 3 319477 2.28
1tp02b | 11 | 15 162 - - 0| 2 34| 5 319477 2.28
lhtp02b || 11 | 15 162 | 384 | 275 0| 2 34| 5 319477 2.28
Itp03a | 11 | 17 183 - - 0] 2 54 5 1245173 9.52
lhtp03a || 11 | 17 183 | 384 | 275 0| 2 54| 5 1245173 9.52
1tp03b || 11 | 17 183 - - 0| 2 55 | 7 1245173 9.52
lhtp03b || 11 | 17 183 | 384 | 275 0| 2 55 | 7 1245173 9.52
ltp04a | 11 | 18 193 - - 0] 2 64| 6 2457589 19.27
lhtpOda || 11 | 18 193 | 384 | 275 0| 2 64| 6 2457589 19.27
ltp04b | 11 | 18 193 - - 0| 2 65| 8 2457589 19.27
lhtp04b || 11 | 18 193 | 384 | 275 0| 2 65 | 8 2457589 19.27

Market-share constraints can be imposed. Cases whose name ends with “a” do not have any
market-share constraint imposed. Cases ending with “b” have market-share constraints associated to
the units of the SGC imposed and active.

As mentioned earlier, the purpose of these problems and computational tests is twofold:

e to test the models developed, described in this report, and to observe the influence of several
parameters associated with the models, and

e to have reliable results (obtained with a reliable code for linear and quadratic programming:
Cplex 7.5) for the problems posed with which to check alternative specialised algorithms to
solve the same problems, specifically the Dantzig-Wolfe column generation algorithm, the active
set algorithm, and other algorithms to be developed.

The characteristics of the test cases employed are summarized in Table 1. Column Y, N{ is the
number of variables and column )", (2« —1) holds the number of load-matching inequality constraints,
and the last column gives the CPU seconds required to compute their rhs’s.

Npo=Npx N, is the total number of hydrovariables in the full hydromodel. N, is Ny=96, which
comes from a basin with N,,=3 reservoirs, each having one discharge and one spillage. The number
of water commodities considered is N,=4. The number of hydrobalance (29) and linearized hydro-
generation equality constraints (28,31) for all water commodities is Ng,—=275.

All test cases have been solved with two different objective functions: the linear minimum cost
(16) and the quadratic of maximum profit (34). The linear cost problems have been solved using the
linear programming code in Cplex 7.5 package [4], while for the quadratic profit problem the barrier
separable QP solver [17] in Cplex 7.5 package is employed, both through an AMPL [6] model and
data files. Prior to the solution, the rhs’s of the load-matching inequality constraints (17) have been
calculated using an separate program, whose required CPU time is reported in the last column of
Table 1. The calculated rhs’s are a part of the AMPL data files used.




10.2 Solutions of long-term minimum cost planning and comparison with alter-
native solution procedures

The authors have developed alternative specialised algorithms, using the Dantzig-Wolfe column gen-
eration method [12, 13] and the active set method [9, 10], to solve the linear minimum cost problems
not including the full model hydro variables. The solutions obtained with the Dantzig-Wolfe column
generation, which is the most efficient of the two [13], are compared with those obtained through
AMPL plus Cplex 7.5 linear programming.

Table 2: Comparison of AMPL plus Cplex lp, and the Dantzig-Wolfe column generation method

AMPL plus Cplex 7.5 Dantzig-Wolfe column gen.

input p| Ip |, fE || DW. > ot B
case (s) | iters. (s) (€) || iters. | (s) ©)
ltp0la 1.3 781 1.3 4837512292 42 | 3.7 4837512061
1tp01b 2354 | 2.35 4854704625 41| 3.6 4854767471
ltp02a 5.69 | 3285 | 11.0 3587429530 240 | 14.2 3587428413
1tp02b 7646 | 16.9 3622023526 385 | 23.0 3622186266
1tp03a || 24.47 | 12622 | 56.8 3580260681 324 | 18.8 3580266252
1tp03b 23213 | 86.2 3624657306 873 | 28.7 3624656194
ltpO4a || 46.88 | 17447 | 115.1 3579624419 315 | 20.0 3579623303
1tp04b 42785 | 212.0 3624160513 910 | 29.8 3624160686

The second column of Table 2 has the input times required by the AMPL data files. These times
are important because the data files, due to the rhs’s of the load-matching constraints, are very large,
e.g., the data file for case 1tp04a is over 100Mbyte.

It can be observed that the Dantzig-Wolfe column generation method is much more efficient than
the solution of the entire problem by AMPL plus Cplex 7.5 without considering the enormous time
required to calculate the rhs terms of the load-matching constraints, whose number is exponential.

10.3 Solutions of long-term maximum profit planning and comparison with the
minimum cost solution

Nutl N; N, U N .
cost : Z Z [iE; profit : Z [Z{ (v* — fj)E;- + EE; 2} _ fNu"‘lE}Vu‘i‘l]
% j 7 J

It is clear from the results that the maximization of profit with respect to the minimum cost
solution brings about a greater increase in generation cost than an increase in profits.

10.4 Effect of market-share constraints

Three market-share constraints have been introduced in cases whose name ends with “b”: one for the
first interval, one for the intervals corresponding to the rest of the first year (intervals 2 to 7), and
a third for the intervals of the second year (8 to 11). These three sets of successive intervals will be
referred to with the supraindices /, /7 and /7 associated to the variables. The market-share constraints
refer to the units of the SGC, and force their generation to add up to over a given percentage of the

load in the corresponding intervals.

SN Ei>u*Y B Ik I 00, 101, (36)

1€lk jeSGC i€lk

which are of type (19), except set I (a single interval) which is of type (18).



Table 3: Minimum cost and maximum profit solutions with an approximate and linearized full hydro-

model
Minimum expected cost solution Maximum expected profit solution

Ip Ip | expec. cost | expec. profit || b gp | bar qp | expec. profit | expec. cost
case iters. (s) € (€) || iters. (s) € €
ItpOla 781 1.3 | 4837512292 | 9120093218 34 | 97.56 | 9552335013 | 5414756605
Ihtp0la 5017 | 8.39 | 5851068559 | 8295313850 49 | 40.82 | 9395092981 | 5868003086
Itp01b 2354 | 2.35 | 4854704625 | 9097863493 46 | 55.09 | 9536489728 | 5427534028
IhtpO1b || 4342 | 8.11 | 5859268225 | 8382878646 51 | 39.64 | 9379988300 | 5877356849
Itp02a 3285 | 11.00 | 3587429530 | 10364887782 59 | 183.5 | 10986157177 | 3971181574
Ihtp02a 9572 | 36.25 | 3567370363 | 10377588860 64 | 207.3 | 11005062681 | 3955156385
1tp02b 7646 | 16.92 | 3622023525 | 10291956272 56 | 176.9 | 10961049191 | 4018697239
Ihtp02b || 11514 | 44.31 | 3598955942 | 10334067931 60 | 186.3 | 10987917823 | 3992253653
Itp03a 12622 | 56.85 | 3580260681 | 10292023819 78 | 1020.3 | 11004938184 | 3978570531
Ihtp03a || 21659 | 154.2 | 3560201514 | 10399011268 78 | 1038.6 | 11023659735 | 3959557570
Itp03b 23213 | 86.16 | 3624657306 | 10287465543 75 | 977.7 | 10977720297 | 4025913005
Ihtp03b || 25669 | 187.0 | 3601589723 | 10324348019 77 | 1439.5 | 11004809653 | 3999334833
Itp04a 17220 | 113.7 | 3579624419 | 10306638029 87 | 4393.2 | 11006374461 | 3975489971
Ihtp04a || 34047 | 309.4 | 3559565252 | 10327962474 88 | 2282.7 | 11025091650 | 3959478586
Itp04b || 42785 | 212.0 | 3624160513 | 10296858318 116 | 5787.0 | 10979064726 | 4025907694
Ihtp04b || 41866 | 426.2 | 3600704161 | 10318778719 98 | 2479.9 | 11006729490 | 3998309774

The criterion employed to fix a market-share p!* for the units in the set SGC is based on the
Lagrange multiplier values of the market-share constraints A\’¥ _ and the expected profit rate in the
power pool r!¥: total profit over total load. The Lagrange multipliers )\{,’f_ s express the rate of change
in pool profit due to a market-share increase by the SGC. The reaction of competitor generating
companies to a market-share increase by the SGC would be proportional to the resulting \*__/rTk,
Therefore, attainable market-shares are those that produce a small enough value Alf__/rfk. In the
cases reported in Table 4 the market-shares u’* of the SGC have been pushed up until the ratio

Mk /rTF was close to but did not exceed %

Table 4: Effect of market share constraints on the profit of the SGC

DY 7 Y L L e DV L total profit | SGC profit
case % % % (3 €)
lhtpOla || 3.79 0.0 3.11 0.0 3.03 0.0 9395092981 | 276449929
IhtpO1lb | 5.0 7.66 25.7 | 4.3 727 271 | 4.2 6.34 24.6 | 9379988300 | 296324589
Ihtp02a || 2.48 0.0 223 0.0 275 0.0 11005062681 | 215212171
lhtpO2b || 3.6 7.11 294 | 3.3 835 31.2| 3.5 8.65 29.2 | 10987917823 | 252856724
Ihtp03a || 2.70 0.0 2.54 0.0 238 0.0 11023659736 | 251555580
lhtpO3b || 4.0 827 294 | 3.7 894 31.2| 3.9 887 29.2 | 11004809653 | 291410819
lhtp04a || 2.70 0.0 255 0.0 277 0.0 11025091650 | 256426270
IhtpO4b | 5.2 732 293 | 3.7 869 31.2]| 3.9 8.75 29.3 | 11006729490 | 297019059

There are also cases whose name ends with “a” in Table 4. These cases are the same as those
ending in “b” but without the market-share constraints. They are thus equivalent to having imposed



a nonactive market share, lower than the share the SGC gets in the solution. It should be noted that
the market-share constraints imposed slightly decrease the overall profit, but they noticeably increase
the SGC profit.

11 Conclusions

e The long-term hydrothermal planning of the electricity generation problem has been presented
and an extension of the Bloom and Gallant model has been put forward in order to solve it.

e An alternative procedure to account for the stochasticity of long-term hydrogeneration, based
on a multicommodity network flow model, has been described and a comparative analysis with
classical scenario based stochastic programming has been presented.

e A procedure to model long-term wind-power generation (which is also applicable to other types
of renewable energy sources) in long-term planning has been described.

e A new way of formulating the long-term profit maximization of generating companies in a com-
petitive market has been described.

e Implementation details of the solution with AMPL of the minimum cost and the maximum profit
long-term planning problems have been given.

e The computational experience with the AMPL plus Cplex 7.5 linear programming and barrier
quadratic programming has been reported. This includes:

— The calculation of the rhs’s of the load-matching constraints for the data files required by
AMPL, which is extremely time-consuming, and which is fairly time-consuming to be read
in the solution process. This lengthy calculation, requiring extremely long files to store the
results, makes this procedure impractical to use for real cases (where the number of units
to consider may be well above one hundred).

— The solution of the minimum cost and the maximum profit long-term problems.

— The alternative use of an approximated model and a linearized full model of long term
hydrogeneration.

— The comparison of the linear AMPL plus Cplex 7.5 minimum cost solution, using the
approximate hydrogeneration representation, with that obtained using a code implementing
the Dantzig-Wolfe column-generation algorithm, which turns out to be much faster than
Cplex 7.5 linear programming for the entire problem.

— The analysis of the effect of market-share constraints for a SGC in the maximum profit
solution.

e Further work by the authors on this subject is underway. Its main objectives are:

— To prepare realistic test cases of larger sizes with the data available of the Spanish electric
power pool.

— To develop a quadratic version of the Dantzig-Wolfe column generation algorithm to solve
long-term maximum profit problems.

— To adapt both the linear and quadratic programming Dantzig-Wolfe codes to include the
full hydrogeneration model.
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13 Glossary of symbols

0 (supraindex) refers to constraints on energies with nonzero terms corresponding to more
than one single interval
AL matrix of coefficients of inequalities that refer only to energies of it interval
AT matrix of coefficients of inequalities that refer to energies of more than one
- interval related to energies of it interval
AL matrix of coefficients of equalities that refer only to energies of it! interval
AY matrix of coefficients of equalities that refer to energies of more than one

interval related to energies of #* interval
awp  area (energy) of k™! slice of wind power generatlon in 7*® interval
b* basic term of energy-market prlce line of 2 interval
Cj power capacity in MW of 5! generating unit
water discharge from the mt reservorr over the it interval
E total energy in MWh of LDC of i*® interval
E energy generated in MWh by unit j over the ith interval

E total energy in MWh requested over the it interval

E; upper bound of energy production for unit j
E; loxivver Eound of energy production for unit j.
f~j =f i I Ny+1

fi generation cost (linear) in €/MWh of j% unit
fn,+1  generation cost (linear) in €/MWh of external emergency (power-unlimited) energy
G, set of indices of reservoirs up-stream of reservoir m

ht, (average) hydrogeneration power (MW) at the mt reservoir over the it interval
ﬁﬁn expected hydrogeneration power (MW) at the m™ reservoir in *! interval

i (supraindex) indication of itl interval

Ik kth set of successive intervals

j (subindex) indication of 5% generating unit

I linear term of energy-market price line of i*® interval

Lf) (z)  cumulative probability of electric load to be supplied over the 7 1nterval
L%Ii () cumulative probability of electrlc load still to be supplied over the i*! interval after loading
(in any order) units 1,2, ..., j
LDC  load duration curve
m (subindex) indication of m'™ reservoir
N, number of water inflow commodities considered (with different probability of occurrence)
N_,N> total numbers of equality and inequality constraints
Np,N; numbers of hydrovariables and of intervals
N,,,N, numbers of reservoirss and of generating units
number of available thermal units in it interval
P Peak power load of it interval (MW)
D water spillage (of no use for generation) in reservoir m over the 5t interval
p(z)  probability density function of z
qj outage probability of unit j

ik expected profit rate (profit over load) in intervals in set Tk
RY right-hand sides of equalities that refer to energies of more than one interval
RY right-hand sides of inequalities that refer to energies of more than one interval
RL right-hand sides of equalities that refer only to energies of it interval

i> right-hand sides of inequalities that refer only to energies of 7! interval
Sv surpluses of inequalities that refer to energies of more than one interval
X surpluses of inequalities that refer only to energies of i interval

water head (m) in reservoir m
equivalent head in 72 interval (head of center of gravity of water layer delimited



by volumes v:, ! and v!,)

SbmsSim»SgmsSem  basic, linear, quadratic, and cubic coefficients of polynomial that approximates
water head in terms of stored volume in reservoir m

SGC specific generation company in a competitive market

t time in interval (h)

T total duration of it interval (h)

U subset of the set of indices of generating units (2

Uj subset of set {2 containing the indices 1,2,...,7

stored water volume in the m!® reservoir at the end of the " interval

W(Q) unsupplied load after loading (in any order) units j € Q

w, natural water inflow in the m!® reservoir over the i*® interval

wpP (subindex) indication of wind power generation

z electric power load to be supplied (MW)

Lagrange multiplier of market-sharey constraint of intervals in set Ik

7 per unit market share of SGC over intervals in set Ik

g probability associated with the &t block probability density function of a

multicommodity water inflow, k=1, ..., N,—1
Prn generation efficiency and unit conversion coefficient of mt reservoir
Q set of indices of generating units.
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