
Minimum-Distance Controlled Perturbation Methods
for Large-Scale Tabular Data Protection

Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona (Catalonia, Spain)

jcastro@eio.upc.es

Technical Report DR 2003-14
June 2003

Report available from http://www-eio.upc.es/~jcastro

Minimum-Distance Controlled Perturbation Methods for

Large-Scale Tabular Data Protection

Jordi Castro ∗

Abstract

National Statistical Agencies routinely release large amounts of tabular information. Prior
to dissemination, tabular data needs to be processed to avoid the disclosure of individual
confidential information. One widely used class of methods is based on the modification of
the table cells values. However, previous approaches were not able to preserve the values of
the marginal cells and the additivity relations for a general table of any dimension, size and
structure. Moreover, effective methods could only be designed for low-dimensional tables.
To fill this void, a unified framework for a new class of controlled perturbation methods is
presented. Given a set of tables to be protected, they find alternative ones that, guarantee-
ing confidentiality, minimize the information loss. This goal is accomplished by computing
the minimum-distance values to the original cells that make the released information safe.
That means solving a constrained optimization problem, whose variables and constraints are
respectively related to the tables cells and additivity relations. In practice, real tables may
have millions of cells and thousands of linear relations. Three particular methods from the
generic framework are derived and implemented, using the one, two and infinity distances.
These three variants are evaluated with the unique standard library for tabular data pro-
tection currently available. That library contains both low-dimensional artificially generated
problems, and real-world highly-structured ones. Some of the complex instances were con-
tributed by National Statistical Agencies, and, therefore, are good representatives of theirs
real needs. Unlike alternative methods, the minimum-distance approach was able to solve all
the instances with limited computational resources. Each instance only required few seconds
on a standard personal computer. The quality of the solution obtained is studied in detail for
seven of the most complex instances. The results show that the minimum-distance framework
is an effective and promising approach for the protection of large volumes of tabular data.

Keywords: Statistical Confidentiality, Statistical Disclosure Control, Linear Programming, Quad-
ratic Programming, Interior-Point methods.

1 Introduction

The safe dissemination of data is one of the main concerns of National Statistical Agencies. The
released data can be classified as disaggregated or aggregated. Disaggregated data (a.k.a. micro-

∗Jordi Castro is associate professor, Dept. of Statistics and Operations Research, Universitat Politècnica de
Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain (email: jcastro@eio.upc.es). The work was partially supported
by the European Union IST-2000-25069 CASC project. The author thanks Lawrence H. Cox and Ramesh A.
Dandekar for helpful comments and suggestions.

1

z1 z2

...
51–55 ... 38000$ 40000$...
56–60 ... 39000$ 42000$...

...

(a)

z1 z2

...
51–55 ... 20 1 or 2 ...
56–60 ... 30 35 ...

...

(b)

Figure 1: Example of disclosure in tabular data. (a) Average salary per age and zip code. (b)
Number of individuals per age and zip code. If there is only one individual in zip code z2 and age
interval 51–55, then any external attacker knows the salary of this single person is 40000$. For
two individuals, any of them can deduce the salary of the other, becoming an internal attacker.

data or microfiles) consists of files of records, each record providing the values for a set of variables
of an individual. Aggregated data (a.k.a. tabular data) is obtained from microdata crossing two
or more variables, which results in sets of tables with a likely large number of cells. It must be
guaranteed, for both types of data, that no individual information can be derived from the released
information. The available methods for this purpose belong to the field of statistical disclosure
control. Good introductions to the state-of-the-art in this field can be found in the monographs
Willenboorg and de Waal (2000) and Domingo-Ferrer (2002).

In this paper we focus on tabular data protection. Although each cell of the table shows
aggregated information for several individuals, there is a risk of disclosing individual data. This is
clearly shown in the example of Fig. 1. The table (a) of that Figure gives the average salary for
age interval and zip code, while table (b) shows the number of individuals for the same variables.
If there was only one individual in zip code z2 and age interval 51–55, then any external attacker
would know the salary of this single person is 40000$. For two individuals, any of them could deduce
the salary of the other, becoming an internal attacker. Usually, cells showing information about
few individuals are considered sensitive, although other rules can be used in practice. Methods for
detecting sensitive cells are out of the scope of this work. A recent discussion about sensitivity
rules can be found in Domingo-Ferrer and Torra (2002), and Robertson and Ethier (2002).

Figure 1 showed a two-dimensional example. This can be considered the simplest case. However,
in practice we must deal with more complex situations, including multidimensional, hierarchical
and linked tables. Multidimensional tables are obtained crossing more than two variables, and
they can be individually protected. Hierarchical tables are sets of tables whose variables have a
hierarchical relation (e.g., zip code and city). In that case, the total or marginal cells of some
tables are internal ones for the others. They have to be protected together, to avoid the disclosure
of sensitive data. Finally, linked tables are a generalization of the previous situation, where several
tables are made from the same microdata, thus sharing information or cells, either hierarchical or
not. Again, they have to be protected together. Linked tables can deal with any table dimension,
size and structure, and thus include the other situations. Dealing with linked tables is a desired
feature of any tabular protection method. Eventually, the final goal would be the protection of the
whole set of linked tables that can be produced from some microfiles (e.g., a population census).
Clearly, the number of cells involved in that case might be of several millions, an impractical size
for most current tabular protection techniques. The new family of protection methods introduced

2

in this work deal with linked tables, and, as shown in the computational results, can solve real-
world large instances in few seconds. All the above situations can both refer to frequency tables
(i.e., cell values are integer and are usually associated to the number of individuals in that cell) or
magnitude tables (i.e., cell values are real, and, for instance, they show the mean for some other
variable of all the individuals in that cell). In this work we focus on tables of magnitudes. For
tables of frequencies the procedures here described can also be applied followed by some heuristic
post-process.

Current methods for tabular data protection can be classified as perturbative (they change the
cell values) or nonperturbative (no change is performed). The most widely used nonperturbative
method is cell suppression, where some secondary cells are removed to avoid the disclosure of
some sensitive primary cells (which are removed as well). That results in a difficult combinatorial
optimization problem, which finds the pattern of secondary suppressions that makes the table safe
with a minimum number of cells or information loss. Some heuristics for two and three-dimensional
tables (Kelly, Golden and Assad 1992; Carvalho, Dellaert and Osório 1994; Cox 1995; Dellaert and
Luijten 1999; Castro 2002) and exact methods for linked tables (Fischetti and Salazar 2000) have
been suggested for the cell suppression problem. The main inconvenient of this approach is that,
due to its combinatorial nature, the solution of very large instances (with possible millions of cells)
can result in impractical execution times.

Among the perturbative approaches, one of the techniques that received more attention was
rounding. This method rounds cell values to a multiple of a fixed integer rounding base. Controlled
rounding is a variant where the additivity of the table is preserved (i.e., rounded marginal values
are the sum of the corresponding slice of internal rounded cells). Initially introduced in Bacharach
(1996), efficient methods could only be developed for two-dimensional tables (Cox and Ernst 1982;
Cox 1987), possibly with subtotals (Cox and George 1989). For three-dimensional tables controlled
rounding is a NP-hard problem (Kelly, Assad and Golden 1990). Several heuristics (Kelly, Golden
and Assad 1990) and exact approaches (Kelly, Golden, Assad and Baker 1990) were devised, but
were only applied to small size tables. The NP-hardness of the approach makes it impractical for
large tables, as the real-world ones tested in this work. Moreover, in practice it can be necessary
to maintain some (possibly all) of the original total cells, instead of rounding them.

To avoid the above lacks of rounding, we suggest a new family of controlled perturbation meth-
ods that find the minimum-distance (or closest) tables to those to be protected, preserving marginal
values, if required, as well as any set of additional linear constraints. Finding the minimum-distance
tables means we try to minimize the information loss when delivering the perturbed values. This
approach needs to solve a constrained continuous optimization problem, whose variables and con-
straints are related to the tables cells and additivity relations, respectively. The formulation of the
optimization problem depends on the particular distance used. In this work we examine three of
them: L1, L2 and L∞. We’ll show that real-world large instances can be efficiently solved using
current linear and quadratic programming technology. Independently, Dandekar and Cox (2002)
suggested the controlled tabular adjustment method. It will be seen that controlled tabular adjust-
ment is equivalent to the minimum-distance approach using the L1 distance. Recently, Dandekar
(2003) introduced an alternative perturbation approach, computationally more efficient that the
family of methods here presented. However, such approach can not preserve the value of total
cells, which is a desirable property in practice (rather, total cells suffer the largest perturbations).
The minimum-distance framework combines both features: is efficient and can preserve total cells.

The structure of the document is as follows. Section 2 introduces the minimum-distance con-
trolled perturbation framework. Sections 3, 4 and 5 detail the variants associated to the L1, L2

3

and L∞ distances, respectively. Section 6 compares the optimization problems derived from those
three particular distances. Section 7 analyzes the disclosure risk of the method, showing it is safe.
Finally, Section 8 presents some computational results in the solution of some real-world large
instances. These computational results are used both to verify the effectiveness of the approach,
and to compare the above three distances.

2 The minimum-distance controlled perturbation framework

Any table or list of tables, of any dimension, size and structure, can be represented as an array of
cells ai, i = 1, . . . , n, that satisfy a set of m linear relations

Ma = b, (1)

a ∈ IRn being the vector of ai’s, b ∈ IRm the right-hand-side term of the linear relations, and
M ∈ IRm×n the cell relations matrix. For instance, for a two-dimensional table of r + 1 rows and
c + 1 columns (last row and column are marginal) we have

c∑

j=1

aij = ai,c+1 i = 1 . . . r

r∑

i=1

aij = ar+1,j j = 1 . . . c.

(2)

In the above example, n = rc, m = r + c, and vector b of (1) would correspond to marginal cell
values, implicitly meaning they are fixed. Moving marginal cells to the left-hand-side in (2), we get
n = (r + 1)(c + 1) and b = 0, marginal cells thus having the same status—not fixed—that internal
cells.

In practice most tables have positive cell values, and constraints

a ≥ 0 (3)

must be added to (1).
Given a set P of indices of sensitive or confidential cells, the minimum-distance controlled

perturbation method finds, according to some metric, the closest values xi to ai, i = 1, . . . , n, that
satisfy the table relations (1) and, if needed, (3), such that xi, i ∈ P—the values of the sensitive
cells—are safe (safety is discussed below). This model can be applied to any kind of table or set
of tables, since it does not constraint the structure of the cell relations Ma = b. Any other set of
linear relations can also be included to this model. For instance, if needed, we can impose that the
values xi of some cells must be close enough to the original values ai, i.e., (1−α)ai ≤ xi ≤ (1+β)ai,
for some small α and β. For cells corresponding to national or regional totals, or for cells with a
zero value, α = β = 0 can be a good choice (i.e., we don’t perturb the original cell value). This is
usual practice in those situations.

This general model can be formulated as

min
x

||x− a||L (4)

subject to Mx = b (5)
lx ≤ x ≤ ux, (6)

4

x ∈ IRn being the vector of perturbed cell values. L in (4) denotes the distance to be used, which
can be affected by any positive semidefinite diagonal metric matrix W = diag(w1, . . . , wn). In the
computational results of Section 8 we used wi = 1/ai. The three more reasonable choices for L are
L1, L2 and L∞. They are discussed in the following sections. (5) guarantees x is a well-formed
table. The bounds (6) are used to deal with the level of knowledge any attacker has about the cell
values, and to guarantee the safety of the perturbed table, as follows:

• We assume any attacker knows a lower and upper bound, respectively ai and ai, for each
cell ai, i = 1, . . . , n. If no previous knowledge is assumed for cell i, we simply set ai = 0
(ai = −∞ if bounds (3) were omitted) and ai = +∞. (6) includes bounds ai ≤ xi ≤ ai.

• The protection of each sensitive cell i ∈ P is achieved through a lower and upper protection
levels, respectively lpli and upli, such that the released value should be greater or equal than
ai + upli or less or equal than ai − lpli. These protection levels are provided by the user
(e.g., the National Statistical Agency), and they are usually a fraction of the cell value ai.
We assume that the user fixes in advance the sense of the protection for each sensitive cell.
Therefore, (6) includes one of the bounds xi ≥ ai + upli or xi ≤ ai + lpli.

If the values of a large number of cells want to be preserved, problem (4–6) can be infeasible.
This can happen, e.g., for small instances if marginal cells are maintained in the perturbed table.
For large tables, infeasibility will rarely occur. However, if needed, it is possible to modify (4–6) to
an alternative formulation as follows. For all cells i that are fixed to the original ai value, remove
bounds ai ≤ xi ≤ ai in (6), and add the penalization P ||xi − ai||L to the objective function (4),
P being a large penalty parameter. Due to the large value of P , xi will be equal to ai whenever
possible. The penalization will intervene in the objective function only if no feasible solution with
xi = ai exists.

If, instead of being a user decision, we want the mathematical programming problem (4–6) to
choose the best sense for sensitive cells, either xi ≥ ai + upli or xi ≤ ai − lpli, we need a binary
variable and two extra constraints for each of them:

xi ≥ −S(1− yi) + (ai + upli)yi i ∈ P,
xi ≤ Syi + (ai − lpli)(1− yi) i ∈ P,
yi ∈ {0, 1} i ∈ P.

(7)

S in (7) is a large value (e.g., S =
∑n

i=1 ai). When yi = 1, constraints (7) imply S ≥ xi ≥ (ai+upli).
When yi = 0 we have −S ≤ xi ≤ (ai − lpli). That results in a difficult combinatorial optimiza-
tion problem, which would constraint the effectiveness of the approach to small and medium sized
problems. Therefore, instead of solving the combinatorial optimization problem, we can heuristi-
cally decide in advance the sense for each sensitive cell (yi = 1 or yi = 0) and then solving the
optimization problem (4–6). Some straightforward heuristics were suggested in Dandekar and Cox
(2002), but, from the reported computational results, none of them produced significantly better
results. The particular choice of yi values do not affect the safety of the released perturbed table,
but only the deviations from the original cell values.

The general problem (4–6) can also be formulated in terms of deviations or perturbations from
the current cell values. Indeed, defining

xi = ai + zi, i = 1 . . . n, (8)

the optimization problem (4–6) can be transformed to

5

min
z

||z||L (9)

subject to Mz = 0 (10)
lz ≤ z ≤ uz, (11)

where z ∈ IRn is the vector of deviations, and

lz = lx − a, uz = ux − a. (12)

Two benefits of the formulation in terms of deviations are:

• The cell values ai of the real table are not needed to solve the optimization problem (9–11).
Only the cell relations and deviations bounds, represented by matrix M and vectors lz and
uz, are required. Therefore, the solution of the above optimization problem can be performed
by an external entity (e.g., if some nonavailable software or hardware was required) without
delivering the original cell values.

• Two tables with the same cell relations and bounds, that only differ in the cell values (e.g.,
corresponding to data of two different years or census), are protected with the same pertur-
bations. Therefore, the optimization problem (9–11) only needs to be solved once.

Next three sections specialize the general model for the L1, L2, and L∞ distances, using the
formulation in terms of deviations.

3 The L1 objective

Using the L1 distance, the problem (9–11) becomes

min
z

n∑

i=1

wi|zi|
subject to (10), (11).

(13)

To transform the above into an equivalent linear programming problem, we replace each zi by the
difference of two nonnegative variables, z+

i and z−i , associated respectively with the positive and
negative deviations:

zi = z+
i − z−i , i = 1, . . . , n. (14)

The resulting linear programming problem is

min
z+,z−

n∑

i=1

wi(z+
i + z−i) (15)

subject to M(z+ − z−) = 0 (16)
lz ≤ z+ − z− ≤ uz (17)
z+ ≥ 0, z− ≥ 0, (18)

6

z+ ∈ IRn and z− ∈ IRn being respectively the vectors of positive and negative deviations. For
cells whose deviations have a zero lower bound, only one of the z+

i or z−i variables, if any, will
have a positive value, since we are minimizing their sum in the objective function. Therefore the
term z+

i + z−i of the objective is equal to |zi|, guaranteeing that problems (13) and (15–18) are
equivalent.

Equations (17–18) can be simplified. For a nonsensitive cell i, lzi and uzi , as defined in (12),
will respectively be negative and positive. Then, for nonsensitive cells, equations (17–18) reduce
to

0 ≤ z+
i ≤ uxi − ai i 6∈ P

0 ≤ z−i ≤ ai − lxi i 6∈ P.
(19)

For a sensitive cell i, the equations to be used depend on the sense of the protection considered,
defined in (7) by the binary variable yi. If the sense is ”upper” (i.e., yi = 1) then we must impose

upli ≤ z+
i ≤ uxi

− ai i ∈ P, yi = 1
z−i = 0 i ∈ P, yi = 1.

(20)

If the sense is ”lower” (i.e., yi = 0) then we need

z+
i = 0 i ∈ P, yi = 0

lpli ≤ z−i ≤ ai − lxi i ∈ P, yi = 0.
(21)

The final linear programming problem to be solved is

min
z+,z−

(15) subject to (16), (19), (20), (21). (22)

Using wi = 1/ai, as in the computational results of Section 8, the objective function to be minimized
is the total relative deviation between the original and the perturbed data. (22) is basically the
same model of Dandekar and Cox (2002). The only difference is that the formulation in Dandekar
and Cox (2002), instead of fixing z−i and z+

i to 0 in equations (20) and (21), respectively, made
them only nonnegative. That can provide wrong results and unsafe tables. For instance, it could
happen that, for a cell i with sense ”upper protection” (i.e., yi = 1), we had z+

i = z−i = upli.
That would not violate the constraints imposed in Dandekar and Cox (2002), but the resulting
perturbation for that cell, according to (14), is zi = upli − upli = 0. Therefore the cell would be
published unperturbed. The above only applies to sensitive cells, which are forced to have one of
the deviations positive. Deviations of nonsensitive cells have zero lower bounds, and a solution
with both z+

i > 0 and z−i > 0 can never correspond to a minimum.

4 The L2 objective

Using the L2 distance, the problem (9–11) becomes

min
z

√√√√
n∑

i=1

wiz2
i

subject to (10), (11).

7

We can remove the square root of the objective, since it does not change the solution point, and
makes the optimization problem simpler. The rest of constraints and bounds need not to be
modified. In particular, and unlike the L1 formulation of previous section, negative deviations
are not a source of trouble, since they always appear squared in the objective function. The final
quadratic optimization problem to be solved is

min
z

n∑

i=1

wiz
2
i

subject to (10), (11).
(23)

Using wi = 1/ai, as in the computational results of Section 8, the objective function corresponds to
the χ2 distance between the original and the perturbed data (L.H. Cox, personal communication,
March 26, 2003).

5 The L∞ objective

In this case, the problem (9–11) is

min
z

max
i=1...n

{wi|zi|}
subject to (10), (11).

To remove absolute values, we proceed as in Section 3, replacing each variable by the difference
of two positive variables. Moreover, it seems reasonable to consider separately the deviations for
the sensitive and nonsensitive cells, since the former are forced to be greater than zero whereas the
latter should be as close as possible to zero. The problem to be solved is thus

min
z+,z−

(
max
i∈P

{wi(z+
i + z−i)}+

max
i6∈P

{wi(z+
i + z−i)}

)

subject to (16), (19), (20), (21).

To transform the above into a linear programming problem we add two extra variables, z∈P and
z6∈P , which will store the maximum deviation for, respectively, the sensitive and nonsensitive cells.
The equivalent linear programming problem can be written as

min
z+,z−,z∈P ,z 6∈P

z∈P + z6∈P

subject to (16), (19), (20), (21)
z∈P ≥ wi(z+

i + z−i) i ∈ P
z 6∈P ≥ wi(z+

i + z−i) i 6∈ P.

(24)

Since (24) is a minimization problem, last two sets of equations force z∈P and z∈P to be exactly
the maximum (weighted) deviations for each group of cells.

8

Table 1: Properties of the three optimization problems

L1, problem (22) L2, problem (23) L∞, problem (24)
Number of variables 2n n 2n+2
Number of constraints m m m+n
Type of problem linear quadratic linear
Solution algorithms simplex and interior-point simplex and

interior-point interior-point

6 Comparison of the three optimization problems

The distances of Sections 3–5 gave rise to three different optimization problems, whose main
features are shown in Table 1. Only the most efficient solution algorithms for the type of problem
are reported. The L2 objective provides the smallest problem, but it can only be efficiently solved
by an interior-point algorithm (Wright 1997). For the other two problems we can either use an
interior-point algorithm or the simplex method (Dantzig 1963). The efficiency of those methods
depends on the particular structure of the problem (Bixby 2002), and, as it will shown in Section
8, it is difficult to know in advance which will be the fastest option for a particular instance.
A theoretical advantage of interior-point algorithms is that they have a polynomial complexity,
both for linear and quadratic optimization problems. On the other hand, although the simplex
method is nonpolynomial, in practice it is known to be very efficient. It is worth to note that the
computational cost for the quadratic problem (23), solved through an interior-point algorithm, is
the same as if it was linear, because it has a separable objective function (i.e., there are no products
of two different variables) (Wright 1997). Moreover, in the tabular data protection context, interior-
point algorithms can be specialized to efficiently solve large instances (Castro 2003).

7 Analysis of the disclosure risk of the method

To retrieve the original cell values ai from the released ones xi, an attacker needs the applied
deviations zi. Those deviations are the solution of the optimization problem (9–11). Detailing the
expression for the bounds (11), the attacker should then solve

min
z

||z||L (25)

subject to Mz = 0 (26)
zi ≥ ai − ai, i = 1, . . . , n (27)
zi ≤ ai − ai, i = 1, . . . , n (28)
zi ≤ −lpli or zi ≥ upli, i ∈ P. (29)

The information required for the solution of (25–29) is:

• The particular distance L used in (25) to compute the deviations. Without this information
the attacker should try to solve the problems for L1, L2 and L∞, considering that one of the

9

three solutions gives the required deviations.

• The weights wi, i = 1, . . . , n used in (25). If wi = 1/ai, the weights are clearly unknown to
the attacker.

• The constraints matrix M of (26). The attacker knows it from the cell relations of the
released table.

• The lower and upper bounds ai−ai and ai−ai, i = 1, . . . , n, of (27) and (28), respectively. ai

and ai are the cell value bounds that were assumed known by the attacker when protecting
the original table. It can be a strong assumption to consider the attacker knows those exact
values. Moreover, the original cell values ai are clearly unknown to the attacker. However, to
correctly solve (25–29) the attacker only needs the same values for the active bounds. Active
bounds are those satisfied as equalities in the solution. For nonactive bounds it is enough to
use values that provide a feasible region larger or equal than for the original problem. For
instance, if the attacker guesses that all the bounds resulted inactive when protecting the
table, constraints (27) and (28) can be removed. That would be the case if large bounds ai

and ai are used by default when protecting tables (e.g., ai = 0 and ai = +∞).

• The set P of sensitive cells of (29). Unlike other protection methods—as cell suppression—,
the released table gives no information about which cells are sensitive, or candidates to
be sensitive. Therefore, the attacker is forced to deduce sensitive cells from his/her own
knowledge.

• The lower and upper protection levels lpli and upli, i ∈ P, and the sense (”upper” or
”lower”) used in (29) for each sensitive cell when protecting the original table. In practice,
that information will not be distributed with the released table. Protection levels are usually
a percentage of the cell values ai, which are unknown to the attacker. The number of
variations for the protection senses is 2|P|. If the senses were, for instance, randomly chosen,
the attacker would be unable to reproduce them.

Except for the constraints matrix M, the rest of required terms are unknown or uncertain to
the attacker. Therefore, problem (25–29) can not be solved, and the released table will be safe.
However, we will analyze two unfavorable situations, where the attacker has respectively partial
and complete information about the problem. Although fairly improbable in practice, they are
considered to stress the low disclosure risk of the method.

7.1 Attacker with partial information

First, consider the attacker knows L, wi, that bounds (27) and (28) are inactive—thus can be
removed—, the set P of sensitive cells, and the sense (”upper” or ”lower”) of each sensitive cell.
Without loss of generality, and to simplify the exposition, assume all the senses are ”upper”. With
that information, the safety of the deviations relies on the protection levels upli of the sensitive
cells. If the attacker can obtain approximate values upl′i = upli + ei, ei ∈ IR, i ∈ P, the problem
to be solved to disclose the deviations is

min
z′

||z′||L
subject to Mz′ = 0

z′i ≥ upli + ei, i ∈ P.

(30)

10

If ei = 0 for all i ∈ P, the solution of (30) can provide the deviations used to protect the table.
The safety of the table thus depends on how sensitive the solution z′∗ is to possible small ei values.
The relation between both terms is given by the next proposition, which makes use of the Lagrange
multipliers, or dual variables, of the inequality constraints of (30):

Proposition 1 If z′∗(e) ∈ IRn is the solution of (30) for a particular vector of e = (e1, . . . , e|P|)
values, and µ ∈ IR|P| is the Lagrange multipliers vector of the inequality constraints of (30) for
e = 0 (i.e., the multipliers obtained when protecting the table), then

∇e||z′∗(e)||L
∣∣
e=0

= µ. (31)

Proof. This is an immediate result of the sensitivity theorem of optimization, which states that,
given a problem minx f(x) subject to g(x) ≥ d, and a point (x∗(d), µ∗), µ∗ ≥ 0 being the Lagrange
multipliers at the solution x∗(0), then ∇df(x∗(d))|d=0 = µ. See, e.g., Luenberger (1989, pp. 312–
318).

Although not made explicit, the above proposition applies to (30) once formulated as one of
the optimization problems (22), (23) or (24). In (22) and (24) the variables were z+ and z−.
In that case, since we are assuming an upper sense for all the sensitive cells, only the Lagrange
multipliers of the bounds z+

i ≥ upli should be considered. Moreover, for, respectively, the L1 and
L∞ distances, problems (22) and (24) were linear, and the relation (31) can be recast as

||z′∗(e)||L − ||z∗||L =
∑

i∈P
µiei, (32)

z∗ being the deviations used to protect the table. Equation (32) holds for small enough vectors
e = (e1, . . . , e|P|), which are problem dependent. For instance, if (30) is solved through the simplex
algorithm, (32) is guaranteed for those vectors e = (e1, . . . , e|P|) such that z′∗(e) and z∗ have the
same partition of basic and nonbasic variables (see, e.g., Luenberger (1989, pp. 95–96) for a
comprehensive explanation).

If the attacker does not know the set P of sensitive cells, and uses and approximate one P ′, the
multipliers of cells i ∈ P ′ \ P will also intervene in (31), decreasing even more the disclosure risk.
Proposition 1 gives an indicator of the quality of the protection: tables with non-small Lagrange
multipliers for the bounds of deviations are unlikely to be disclosed, even if the attacker has a good
knowledge about the original data.

To illustrate the above discussion, consider the example of Figure 2. Table (a) shows the
original data to be protected. Sensitive cells appear in boldface, and their upper protection levels
upli are given in brackets. Using the L1 distance, weights wi = 1, and bounds ai = 0 and ai = ∞
for all the internal cells, the optimal deviations computed are shown in Table (b). The objective
function value is ||z||L1 =

∑n
i=1 |zi| = 36. The Lagrange multipliers of the constraints zi ≥ upli

for the sensitive cells are µ11 = 0, µ23 = 2, µ33 = 4 and µ34 = 4. Since bounds (27) and (28) are
inactive in the solution, the attacker can use (30) to disclose the deviations of Table (b). If, for
instance, the attacker can adjust all the original upli protection levels, but for cell a11, (in this
case, if e11 ≤ 4, e23 = e33 = e34 = 0), from (32) and since µ11 = 0, a solution with the same
objective function (and possibly with the same deviations) that for Table (b) (i.e., 36) will be
obtained. However, if all the protection levels are adjusted with errors, a different solution will be
computed. For instance, if problem (30) is solved with e11 = 1, e23 = 2, e33 = 3, e34 = 4, the

11

a
10(3) 15 11 9 45

8 10 12(4) 15 45
10 12 11(2) 13(5) 46
28 37 34 37 136

(a)

z
7 0 -6 -1 0
0 0 4 -4 0
-7 0 2 5 0
0 0 0 0 0

(b)

z′

10 4 -11 -3 0
0 0 6 -6 0

-10 -4 5 9 0
0 0 0 0 0

(c)

Figure 2: Example of sensitivity of the method to changes in the protection levels. (a) Original
data a to be protected. Sensitive cells are in boldface, and upper protection levels are given in
brackets. (b) Optimal deviations z computed with the L1 distance, weights wi = 1, and inactive
bounds ai = 0 and ai = ∞ for all the internal cells. Marginal cells were fixed. The Lagrange
multipliers of the bounds zi ≥ upli for the sensitive cells are µ11 = 0, µ23 = 2, µ33 = 4 and
µ34 = 4. The objective function—the sum of deviations in absolute value—is 36. (c) Deviations
z′ computed by the attacker using approximate protection levels with errors e11 = 1, e23 = 2,
e33 = 3, e34 = 4. The objective function is 68, which satisfies (32).

deviations z′ obtained are those of Table (c). The objective function (i.e., sum of deviations) is
68, which satisfies (32): 68− 36 = µ11e11 + µ23e23 + µ33e33 + µ34e34.

7.2 Attacker with complete information

The attacker may not be able to reproduce the right perturbations through (25–29) even with
complete information:

Proposition 2 Assume the attacker knows all the terms of problem (25–29). If the L2 distance
is used, the solution of that problem will provide the deviations used to protect the table. However,
for L1 or L2, the attacker can obtain alternative deviations.

Proof. The objective function of (23), for the L2 distance, is strictly convex, and thus has a
unique minimizer on the feasible region. Therefore, independently of the solution algorithm or
implementation used, the attacker will obtain the deviations used to protect the table. For L1

and L∞, the objective functions of (22) and (24) are linear, and thus convex, instead of strictly
convex. Linear objective functions may have a possible infinite number of minimizers, and different
algorithms or implementations can provide alternative solutions.

For instance, Tables (a) and (b) of Figure 3 show two alternative solutions with the L1 distance
for the data of Table (a) of Figure 2. They were obtained with two different implementations of
the simplex algorithm, using weights wi = 1, and bounds ai = 0 and ai = ∞ for all the internal
cells. Marginal cells were fixed. The sum of deviations is 36 in both solutions. Table (c) of Figure
3 shows, for the same data, the unique solution for the L2 distance. Since L2 involves a quadratic
function, the solution attempts to distribute the deviations among all the cells, obtaining a non-
integer solution (valid for magnitude tables). The behaviour of the three distances is studied in
detail in the next section.

12

z1
L1

7 0 -6 -1 0
0 0 4 -4 0
-7 0 2 5 0
0 0 0 0 0

(a)

z2
L1

6 0 -6 0 0
1 0 4 -5 0
-7 0 2 5 0
0 0 0 0 0

(b)

zL2

3.416̂ 3.416̂ -6 −8.3̂ 0
0.083̂ 0.083̂ 4.0 −4.16̂ 0
-3.5 -3.5 2 5 0
0 0 0 0 0

(c)

Figure 3: Example of alternative solutions with complete information by the attacker. The original
data a to be protected is that of Table (a) of Figure 2. Sensitive cells are in boldface, and upper
protection levels are given in brackets. (a) and (b) Alternative solutions z1

L1
and z2

L1
, computed

with two different linear programming solvers, using the L1 distance, weights wi = 1, and bounds
ai = 0 and ai = ∞ for all the internal cells. Marginal cells were fixed. The objective function—the
sum of deviations in absolute value—of both solutions is 36. (c) Unique solution zL2 for the L2

distance, again with weights wi = 1, and bounds ai = 0 and ai = ∞ for all the internal cells. The
two-norm of the deviations vector is 12.12.

8 Computational evaluation

We implemented the three models described in Sections 3–5 using the AMPL modelling language
(Fourer, Gay and Kernighan 1993) and CPLEX 8.0 (ILOG CPLEX 2002). We applied them to
the CSPLIB test suite, the unique currently available set of instances for tabular data protection
(Fischetti and Salazar 2000). CSPLIB can be freely obtained from http://webpages.ull.es/-
users/casc/#CSPlib:. Although these instances were originally produced for the cell suppression
problem, the information provided is the same that for the minimum-distance approach. CSPLIB
contains both low-dimensional artificially generated problems, and real-world highly-structured
ones. Some of the complex instances were contributed by National Statistical Agencies—as,
e.g., Centraal Bureau voor de Statistiek (Netherlands), Energy Information Administration of
the Department of Energy (U.S.), Office for National Statistics (United Kingdom) and Statistis-
ches Bumdesant (Germany)—, and therefore are good representatives of theirs real needs. In all
the executions a value of at least ai +upli for all i ∈ P was imposed (i.e., sense ”upper protection”
was considered for the sensitive cells), and cell values were weighted by wi = 1/ai in the objective
function. All runs were carried on a notebook with a Pentium Mobile 4 at 1.8 GHz and 512 Mb
of RAM.

We did two groups of computational experiments, which are shown in next two Subsections.
In the first group we performed a detailed comparison of the three distances using a small subset
of instances. In the second group we solved the remaining CSPLIB instances, again with the three
distances.

8.1 Comparing the three distances

For the computational comparison we used the seven most complex instances of CSPLIB, which
were also the choice in Dandekar (2003). Those instances are challenging for other approaches, as
cell suppression, whereas, as shown below, they can be solved in few seconds with the minimum-
distance approach. Table 2 provides their main features: identifier (column ”Name”), number of

13

Table 2: Properties of the seven most complex CSPLIB test instances

Name Dimensions Size n |P| m
hier13 3D, hierarchical 13,13,13 2020 112 3313
hier16 3D, hierarchical 16,16,16 3564 224 5484
bts4 4D, hierarchical 54,54,4,4 36570 2260 36310
nine5d 9D, linked 4,29,3,4,5,6,5,4,5 10733 1661 17295
ninenew 9D, linked 10,6,6,6,6,6,6,6,6 6546 858 7340
two5in6 6D, linked 6,4,16,4,4,4 5681 720 9629
nine12 9D, linked 10,6,6,6,6,6,6,6,6 10399 1178 11362

dimensions and structure—linked or hierarchical— (column ”Dimensions”), size for each dimension
(column ”Size”), number of total cells and sensitive cells (columns ”n” and ”|P|”, respectively),
and number of constraints (column ”m”). The structure and size information was obtained from
Dandekar (2003).

Tables 3–9 show the results obtained for each instance with the three objective functions.
For the L2 objective function we used the primal-dual interior-point algorithm, which can be
considered the most efficient choice. The L1 and L∞ objective functions were solved with the
two best linear programming algorithms: the simplex method and the primal-dual interior-point
method. Although the optimal objective function provided by both algorithms is the same, the
solution point returned can be different. For L1, both the simplex and interior-point solutions were
very similar, since all the cells intervene in the objective function. For L∞, which only considers
the sensitive and nonsensitive cells with the maximum deviation, the values obtained for the other
cells with the simplex method were much better. In Tables 3–9 we report the results obtained with
the simplex solutions for L1 and L∞.

For each of the three objective functions, Tables 3–9 show the following information. Row
”CPU” gives the CPU time in seconds for each algorithm, simplex or interior-point. Rows ”Abs.
dev.” provide the mean (columns ”mean”), standard deviation (columns ”std”) and maximum
(columns ”max.”) of the absolute deviations (i.e., |zi|) of the cell values, for all the cells (row
”all”), for the sensitive cells (row ”∈ P”), and for the nonsensitive cells (row ” 6∈ P”). A similar
information is provided for the percentage absolute deviations (i.e., 100|zi|/ai) in rows ”Perc.
dev.”. Rows ”Distr. abs. dev.” and ”Distr. perc. dev.” show, respectively, the distribution of the
absolute and percentage deviations, i.e., the number of sensitive and nonsensitive cells (columns
”∈ P” and ” 6∈ P”) within each of the intervals considered. For the absolute deviations, the same
scale is used for the three distances. Finally, rows ”2-norm” report the two-norm of the deviations
(i.e., ||z||2), again for sensitive, nonsensitive, and all the cells.

Looking at Tables 3–9 we can draw some conclusions about the behaviour of each of the three
objectives. As for performance, we see that most of the optimization problems could be solved
until optimality in few seconds on a standard personal computer. For L1 and L∞ the best solution
algorithm depends on the particular instance, and it is difficult to know in advance which will be
the best choice. It is also clear that L∞ provides the slowest executions, due to the number of
extra constraints considered in (24). The L2 objective, solved through a quadratic interior-point
solver, was always the most efficient choice (except for the smallest instance hier13, where it was

14

Table 3: Results for the hier13 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 3.25 6.86 3.83 5.85 35.23

mean std max. mean std max. mean std max.

Abs. all 37.8 44.1 344.0 all 33.9 33.7 313.4 all 52.0 58.2 463.7

dev. ∈P 55.6 28.0 97.0 ∈P 55.2 27.8 97.0 ∈P 59.0 27.8 97.0

6∈P 36.8 44.6 344.0 6∈P 32.7 33.6 313.4 6∈P 51.5 59.4 463.7

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 5 673 5 0 5 277 5 0 5 597 5

5 9 61 2 5 9 179 2 5 9 43 2

9 23 192 11 9 23 486 11 9 23 160 11

23 46 370 27 23 46 501 27 23 46 232 17

Distr. 46 70 257 20 46 70 267 22 46 70 249 20

abs. 70 93 142 42 70 93 82 40 70 93 271 52

dev. 93 139 149 5 93 139 85 5 93 139 186 5

139 185 44 0 139 185 18 0 139 185 116 0

185 232 9 0 185 232 10 0 185 232 22 0

232 325 10 0 232 325 3 0 232 325 23 0

325 464 1 0 325 464 0 0 325 464 9 0

mean std max. mean std max. mean std max.

Perc. all 0.81 1.72 9.97 all 0.87 1.95 45.84 all 1.04 1.91 9.97

dev. ∈P 6.20 2.17 9.97 ∈P 6.18 2.19 9.97 ∈P 6.65 2.37 9.97

6∈P 0.49 1.02 8.28 6∈P 0.56 1.42 45.84 6∈P 0.71 1.25 8.28

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 847 0 0.0 0.1 537 0 0.0 0.1 720 0

0.1 0.5 596 0 0.1 0.5 845 0 0.1 0.5 499 0

0.5 1.0 224 0 0.5 1.0 256 0 0.5 1.0 286 0

1.0 1.5 81 0 1.0 1.5 111 0 1.0 1.5 163 0

Distr. 1.5 2.0 55 0 1.5 2.0 67 0 1.5 2.0 79 0

perc. 2.0 5.0 79 61 2.0 5.0 68 61 2.0 5.0 122 51

dev. 5.0 10.0 26 51 5.0 10.0 23 51 5.0 10.0 39 61

10.0 15.0 0 0 10.0 15.0 0 0 10.0 15.0 0 0

15.0 30.0 0 0 15.0 30.0 0 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 1 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 2609.6 all 2149.3 all 3504.9

2-norm ∈P 658.5 ∈P 654.1 ∈P 689.3

6∈P 2525.1 6∈P 2047.4 6∈P 3436.4

15

Table 4: Results for the hier16 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 19.85 28.36 17.19 66.52 136.86

mean std max. mean std max. mean std max.

Abs. all 35.8 40.0 280.5 all 33.4 30.6 258.3 all 36.8 36.6 300.9

dev. ∈P 48.3 27.4 131.0 ∈P 48.3 27.4 131.0 ∈P 48.7 27.4 131.0

6∈P 34.9 40.6 280.5 6∈P 32.4 30.6 258.3 6∈P 36.0 37.0 300.9

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 3 992 7 0 3 289 7 0 3 644 7

3 6 87 8 3 6 270 8 3 6 172 8

6 15 333 18 6 15 620 18 6 15 440 18

15 30 454 31 15 30 739 31 15 30 563 30

Distr. 30 45 406 34 30 45 612 34 30 45 437 35

abs. 45 60 373 53 45 60 318 53 45 60 367 51

dev. 60 90 372 58 60 90 300 58 60 90 424 60

90 120 184 14 90 120 129 14 90 120 185 14

120 150 71 1 120 150 40 1 120 150 66 1

150 211 53 0 150 211 19 0 150 211 32 0

211 301 15 0 211 301 4 0 211 301 10 0

mean std max. mean std max. mean std max.

Perc. all 0.83 1.84 10.00 all 0.90 1.81 10.00 all 1.13 2.05 10.00

dev. ∈P 6.89 2.38 10.00 ∈P 6.89 2.38 10.00 ∈P 7.04 2.41 10.00

6∈P 0.43 0.78 7.59 6∈P 0.50 0.75 7.59 6∈P 0.73 1.26 7.59

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 1401 0 0.0 0.1 772 0 0.0 0.1 1059 0

0.1 0.5 1088 0 0.1 0.5 1590 0 0.1 0.5 1063 0

0.5 1.0 480 0 0.5 1.0 555 0 0.5 1.0 507 0

1.0 1.5 179 0 1.0 1.5 213 0 1.0 1.5 269 0

Distr. 1.5 2.0 63 0 1.5 2.0 98 0 1.5 2.0 153 0

perc. 2.0 5.0 112 101 2.0 5.0 95 101 2.0 5.0 208 95

dev. 5.0 10.0 17 117 5.0 10.0 17 117 5.0 10.0 81 120

10.0 15.0 0 6 10.0 15.0 0 6 10.0 15.0 0 9

15.0 30.0 0 0 15.0 30.0 0 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 3203.5 all 2706.3 all 3098.4

2-norm ∈P 830.2 ∈P 830.2 ∈P 836.8

6∈P 3094.1 6∈P 2575.9 6∈P 2983.2

16

Table 5: Results for the bts4 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 16.46 39.7 11.45 1594.69 207.02

mean std max. mean std max. mean std max.

Abs. all 33.9 89.2 4483.0 all 24.9 33.0 795.9 all 30.1 49.0 947.8

dev. ∈P 56.0 32.2 155.0 ∈P 56.0 32.2 155.0 ∈P 57.0 32.6 168.5

6∈P 32.4 91.5 4483.0 6∈P 22.9 32.0 795.9 6∈P 28.4 49.4 947.8

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 45 26774 909 0 45 28849 910 0 45 26325 890

45 90 3593 907 45 90 4062 907 45 90 4543 911

90 224 3109 444 90 224 1338 443 90 224 3185 459

224 448 637 0 224 448 58 0 224 448 229 0

Distr. 448 672 124 0 448 672 1 0 448 672 20 0

abs. 672 897 22 0 672 897 2 0 672 897 7 0

dev. 897 1345 26 0 897 1345 0 0 897 1345 1 0

1345 1793 21 0 1345 1793 0 0 1345 1793 0 0

1793 2242 0 0 1793 2242 0 0 1793 2242 0 0

2242 3138 1 0 2242 3138 0 0 2242 3138 0 0

3138 4483 2 0 3138 4483 0 0 3138 4483 0 0

mean std max. mean std max. mean std max.

Perc. all 0.74 1.97 11.11 all 0.84 1.95 20.23 all 1.10 2.36 11.11

dev. ∈P 7.27 2.60 11.11 ∈P 7.27 2.59 11.11 ∈P 7.46 2.61 11.11

6∈P 0.31 0.83 11.03 6∈P 0.42 0.84 20.23 6∈P 0.68 1.63 11.03

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 23282 0 0.0 0.1 14581 0 0.0 0.1 19900 0

0.1 0.5 5640 0 0.1 0.5 11977 0 0.1 0.5 5210 0

0.5 1.0 2410 2 0.5 1.0 4163 2 0.5 1.0 3119 0

1.0 1.5 1085 3 1.0 1.5 1626 3 1.0 1.5 1697 3

Distr. 1.5 2.0 652 2 1.5 2.0 738 2 1.5 2.0 1131 4

perc. 2.0 5.0 962 51 2.0 5.0 933 52 2.0 5.0 2138 46

dev. 5.0 10.0 275 1478 5.0 10.0 282 1481 5.0 10.0 774 1447

10.0 15.0 4 724 10.0 15.0 9 720 10.0 15.0 341 760

15.0 30.0 0 0 15.0 30.0 1 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 18243.0 all 7912.0 all 10997.2

2-norm ∈P 3072.3 ∈P 3070.3 ∈P 3120.5

6∈P 17982.4 6∈P 7292.0 6∈P 10545.2

17

Table 6: Results for the nine5d instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 126.67 43.03 20.36 784.52 137.33

mean std max. mean std max. mean std max.

Abs. all 41.4 68.8 1010.0 all 37.2 37.5 499.4 all 34.4 38.4 306.5

dev. ∈P 50.6 29.3 156.0 ∈P 50.6 29.3 156.0 ∈P 50.8 29.3 156.0

6∈P 39.7 73.6 1010.0 6∈P 34.7 38.3 499.4 6∈P 31.4 39.1 306.5

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 10 4884 177 0 10 2082 177 0 10 3901 174

10 20 395 187 10 20 1841 187 10 20 943 185

20 51 1268 464 20 51 3285 464 20 51 2027 469

51 101 1518 822 51 101 1337 822 51 101 1595 814

Distr. 101 152 498 10 101 152 351 10 101 152 478 18

abs. 152 202 236 1 152 202 122 1 152 202 107 1

dev. 202 303 156 0 202 303 38 0 202 303 20 0

303 404 61 0 303 404 12 0 303 404 1 0

404 505 13 0 404 505 4 0 404 505 0 0

505 707 32 0 505 707 0 0 505 707 0 0

707 1010 10 0 707 1010 0 0 707 1010 0 0

mean std max. mean std max. mean std max.

Perc. all 1.67 2.69 10.00 all 1.90 2.53 10.00 all 2.23 3.02 10.00

dev. ∈P 6.83 2.42 10.00 ∈P 6.83 2.42 10.00 ∈P 6.87 2.42 10.00

6∈P 0.73 1.31 9.78 6∈P 1.00 1.11 9.31 6∈P 1.38 2.25 8.79

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 4820 0 0.0 0.1 831 0 0.0 0.1 3400 0

0.1 0.5 1208 0 0.1 0.5 2572 0 0.1 0.5 1503 0

0.5 1.0 855 1 0.5 1.0 2668 0 0.5 1.0 1050 0

1.0 1.5 675 2 1.0 1.5 1386 3 1.0 1.5 775 2

Distr. 1.5 2.0 373 1 1.5 2.0 569 1 1.5 2.0 399 1

perc. 2.0 5.0 978 923 2.0 5.0 918 923 2.0 5.0 1192 889

dev. 5.0 10.0 163 664 5.0 10.0 128 664 5.0 10.0 753 682

10.0 15.0 0 70 10.0 15.0 0 70 10.0 15.0 0 87

15.0 30.0 0 0 15.0 30.0 0 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 8316.4 all 5468.3 all 5343.4

2-norm ∈P 2383.6 ∈P 2383.2 ∈P 2389.6

6∈P 7967.5 6∈P 4921.7 6∈P 4779.4

18

Table 7: Results for the ninenew instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 27.08 24.02 11.15 199.39 120.52

mean std max. mean std max. mean std max.

Abs. all 41.6 53.0 602.7 all 38.6 39.0 522.8 all 39.0 43.2 439.1

dev. ∈P 52.4 28.6 192.0 ∈P 52.4 28.3 192.0 ∈P 53.0 28.3 192.0

6∈P 39.9 55.5 602.7 6∈P 36.6 40.0 522.8 6∈P 36.8 44.7 439.1

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 6 2287 23 0 6 896 23 0 6 1858 19

6 12 266 66 6 12 710 64 6 12 417 65

12 30 698 120 12 30 1641 119 12 30 967 116

30 60 932 287 30 60 1434 291 30 60 1135 289

Distr. 60 90 682 269 60 90 540 271 60 90 630 277

abs. 90 121 367 88 90 121 211 87 90 121 375 89

dev. 121 181 296 4 121 181 190 2 121 181 234 2

181 241 96 1 181 241 48 1 181 241 55 1

241 301 37 0 241 301 9 0 241 301 8 0

301 422 20 0 301 422 6 0 301 422 8 0

422 603 7 0 422 603 3 0 422 603 1 0

mean std max. mean std max. mean std max.

Perc. all 1.56 2.47 16.16 all 1.76 2.44 22.86 all 2.19 2.93 10.00

dev. ∈P 6.66 2.38 10.00 ∈P 6.66 2.36 10.00 ∈P 6.79 2.39 10.00

6∈P 0.79 1.29 16.16 6∈P 1.02 1.35 22.86 6∈P 1.50 2.32 9.93

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 2368 0 0.0 0.1 493 0 0.0 0.1 1763 0

0.1 0.5 975 0 0.1 0.5 1829 0 0.1 0.5 1013 0

0.5 1.0 888 2 0.5 1.0 1606 0 0.5 1.0 820 0

1.0 1.5 501 0 1.0 1.5 733 0 1.0 1.5 503 0

Distr. 1.5 2.0 318 0 1.5 2.0 386 0 1.5 2.0 309 0

perc. 2.0 5.0 531 509 2.0 5.0 510 507 2.0 5.0 793 479

dev. 5.0 10.0 104 315 5.0 10.0 119 319 5.0 10.0 487 329

10.0 15.0 2 32 10.0 15.0 10 32 10.0 15.0 0 50

15.0 30.0 1 0 15.0 30.0 2 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 5447.5 all 4444.3 all 4708.1

2-norm ∈P 1749.6 ∈P 1744.5 ∈P 1759.5

6∈P 5158.9 6∈P 4087.6 6∈P 4366.9

19

Table 8: Results for the two5in6 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 13.58 16.88 9 83.48 86.47

mean std max. mean std max. mean std max.

Abs. all 38.3 52.8 530.0 all 35.4 34.9 340.1 all 38.3 39.3 281.8

dev. ∈P 49.1 32.0 169.0 ∈P 49.1 32.0 169.0 ∈P 49.7 31.8 169.0

6∈P 36.7 55.0 530.0 6∈P 33.5 34.9 340.1 6∈P 36.7 40.0 281.8

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 5 2364 46 0 5 621 46 0 5 1487 46

5 11 221 55 5 11 723 55 5 11 334 42

11 27 470 140 11 27 1453 140 11 27 698 143

27 53 516 155 27 53 1190 155 27 53 1099 163

Distr. 53 80 510 161 53 80 528 161 53 80 604 161

abs. 80 106 409 159 80 106 210 159 80 106 411 161

dev. 106 159 267 0 106 159 176 0 106 159 266 0

159 212 111 4 159 212 45 4 159 212 53 4

212 265 66 0 212 265 11 0 212 265 5 0

265 371 23 0 265 371 4 0 265 371 4 0

371 530 3 0 371 530 0 0 371 530 0 0

mean std max. mean std max. mean std max.

Perc. all 1.46 2.49 10.00 all 1.65 2.40 17.88 all 2.08 2.81 10.00

dev. ∈P 6.80 2.42 10.00 ∈P 6.80 2.42 10.00 ∈P 6.99 2.42 10.00

6∈P 0.69 1.23 9.69 6∈P 0.90 1.17 17.88 6∈P 1.37 2.04 8.44

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 2495 0 0.0 0.1 394 0 0.0 0.1 1563 0

0.1 0.5 765 0 0.1 0.5 1780 0 0.1 0.5 923 0

0.5 1.0 567 0 0.5 1.0 1525 0 0.5 1.0 606 0

1.0 1.5 360 3 1.0 1.5 533 3 1.0 1.5 482 3

Distr. 1.5 2.0 260 0 1.5 2.0 259 0 1.5 2.0 310 0

perc. 2.0 5.0 424 374 2.0 5.0 384 374 2.0 5.0 713 339

dev. 5.0 10.0 90 322 5.0 10.0 83 322 5.0 10.0 364 338

10.0 15.0 0 21 10.0 15.0 0 21 10.0 15.0 0 40

15.0 30.0 0 0 15.0 30.0 3 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 4917.2 all 3749.3 all 4137.1

2-norm ∈P 1573.0 ∈P 1572.0 ∈P 1582.4

6∈P 4658.8 6∈P 3403.8 6∈P 3822.5

20

Table 9: Results for the nine12 instance
L1 L2 L∞

Simplex Int. Point Int. Point Simplex Int. Point

CPU 382.13 47.38 18.29 727.28 338.8

mean std max. mean std max. mean std max.

Abs. all 36.3 44.3 490.9 all 34.6 33.0 377.4 all 32.6 36.5 268.0

dev. ∈P 51.7 28.3 154.0 ∈P 51.6 28.2 154.0 ∈P 52.1 28.2 154.0

6∈P 34.4 45.6 490.9 6∈P 32.4 33.0 377.4 6∈P 30.1 36.7 268.0

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0 5 3662 17 0 5 1280 17 0 5 3184 12

5 10 450 82 5 10 1101 82 5 10 668 83

10 25 1050 155 10 25 2589 155 10 25 1546 149

25 49 1561 313 25 49 2282 313 25 49 1644 321

Distr. 49 74 979 310 49 74 1042 314 49 74 1033 307

abs. 74 98 659 273 74 98 473 269 74 98 567 276

dev. 98 147 566 26 98 147 336 26 98 147 451 28

147 196 203 2 147 196 96 2 147 196 110 2

196 245 64 0 196 245 15 0 196 245 16 0

245 344 25 0 245 344 5 0 245 344 2 0

344 491 2 0 344 491 2 0 344 491 0 0

mean std max. mean std max. mean std max.

Perc. all 1.35 2.34 12.55 all 1.53 2.32 25.43 all 1.74 2.64 10.00

dev. ∈P 6.71 2.38 10.00 ∈P 6.70 2.39 11.97 ∈P 6.82 2.40 10.00

6∈P 0.67 1.15 12.55 6∈P 0.87 1.23 25.43 6∈P 1.09 1.85 8.95

from to 6∈P ∈P from to 6∈P ∈P from to 6∈P ∈P
0.0 0.1 3892 0 0.0 0.1 1036 0 0.0 0.1 3285 0

0.1 0.5 1967 0 0.1 0.5 3489 0 0.1 0.5 1876 0

0.5 1.0 1376 0 0.5 1.0 2341 0 0.5 1.0 1371 0

1.0 1.5 770 0 1.0 1.5 1044 0 1.0 1.5 763 0

Distr. 1.5 2.0 401 3 1.5 2.0 453 3 1.5 2.0 472 3

perc. 2.0 5.0 695 676 2.0 5.0 709 678 2.0 5.0 971 636

dev. 5.0 10.0 116 452 5.0 10.0 131 449 5.0 10.0 483 475

10.0 15.0 4 47 10.0 15.0 15 48 10.0 15.0 0 64

15.0 30.0 0 0 15.0 30.0 3 0 15.0 30.0 0 0

30.0 50.0 0 0 30.0 50.0 0 0 30.0 50.0 0 0

50.0 100.0 0 0 50.0 100.0 0 0 50.0 100.0 0 0

all 5840.1 all 4878.1 all 4988.1

2-norm ∈P 2022.2 ∈P 2017.2 ∈P 2034.2

6∈P 5478.8 6∈P 4441.5 6∈P 4554.5

21

only 0.6 seconds slower than the L1 and simplex combination). In most instances the solution time
of the L2 objective was about half the time of the second fastest option. This is because, first,
the complexity of solving a quadratic separable optimization problem (i.e., with a diagonal weight
matrix W) is the same that for a linear one, if we use an interior-point algorithm; and second,
problem (22) involves the double of variables that (23). It is also worth to note that the solution
times obtained with the interior-point algorithm, for the three objectives, can even be improved
using specialized solvers that exploit the tables structure. Some work has already been done along
these lines for very large three-dimensional tables (Castro 2003) using specialized interior-point
algorithms (Castro 2000).

The L2 objective provides also the lowest means and, mainly, the lowest standard deviations
for the absolute deviations. Such lowest standard deviations are not surprising, since the L2

objective, due to its quadratic nature, attempts to evenly distribute the required deviations among
all the cells. As for the other two objectives, L∞ provided better absolute deviations than L1,
but for instances hier13 and hier16. That was, a priori, an unexpected result, since only two cells
appear in the objective function of (24), whereas all the perturbations are considered in (22). The
distribution of the absolute deviations shows that L1 provides the greater number of cells in the
lowest interval. However, L2 reports less cells with medium-large deviations than the other two
distances. This is because such large deviations are highly (i.e., quadratically) penalized in the L2

objective function.
As for the percentage deviations, L1 must clearly provide the best mean values, since its

objective function is exactly the sum of percentage absolute deviations (as said before, we used
weights wi = 1/ai). However, the L2 objective provides similar mean percentage deviations,
and, for most instances, with slightly better standard deviations. L∞ provided worser means
and standard deviations, but, as a consequence of its objective function, the lowest maximum
values. The best mean values of the L1 objective are observed in the distribution of the percentage
deviations: most values happen to be in the lowest intervals. Although that is also true for the
other two objectives, they show a different distribution pattern. L2 tends to distribute the values
for all the intervals (thus reducing the number of points in the first one [0.0%, 0.1%]), whereas L∞
permits a significant number of values with medium percentage deviations (since it only focuses in
the largest one). On the other hand, if we look at the largest intervals, L2 provides in most cases
the lowest number of points greater than, e.g., 2.0%.

Finally, the lowest two-norms of the deviations vector are provided in all the instances by the
L2 objective. This is a consequence of L2 being the only quadratic objective of the three tested.
Except for instance hier13, L∞ always provides deviations with better two-norms than L1.

From the above comments, we can conclude that the L1 objective provides the best results
when a first-order comparison measure, as the mean percentage deviation, is considered. However,
when a second-order measure is used, as the two-norm of the deviations or the standard deviation
of the percentage deviations, L2 seems to be the best choice. The above is an immediate result of
the objective functions (linear or quadratic) of the respective optimization problems. As for the
distribution of absolute and percentage deviations, L1 provides more cells in the lowest interval,
but also with more medium-large deviations than L2; the latter distributes more uniformly the
deviations among all the cells. Computationally, the fastest option is the L2 objective. L∞ provides
acceptable results for both the first-order and second-order comparison measures. However, it is
computationally expensive, which makes it a less convenient choice for large volumes of data. The
distances can be combined into a single objective function to meet the end-user requirements (e.g.,
L1 for internal and L2—possibly with a penalty parameter—for marginal cells).

22

8.2 Solving the CSPLIB instances

For this group of experiments we omitted the seven complex instances of last Subsection, and those
involving a small number of cells. Table 10 shows the features of the instances considered. Columns
”Name”, ”n”, ”|P|” and ”m” have the same meaning that in Table 2. Column ”N.coef” gives the
number of coefficients of the constraints matrix M. Table 11 shows the results obtained with L1,
L2 and L∞. For each distance, the execution time (columns ”CPU”), average percentage deviation
for all the cells (columns ”%Dev.”), and two-norm of the deviations vector (columns ”2-norm”)
are provided. The results reported for L∞ were computed by the simplex method: as stated in
Subsection 8.1, the interior-point solutions, although with the same objective function, provided
worst average percentage deviations and distances for all the instances. The results for L1 with
the simplex and interior-point method were similar, although the simplex was the most efficient
choice in most cases. Those are the results reported in the Table, but for the four instances which
are clearly marked. In three of these four cases, the simplex method provided a wrong solution.
Tuning CPLEX 8.0 we were able to solve them. The interior-point method could solve all the
instances with the default settings.

Most of the conclusions drawn in Subsection 8.1 also apply here: L1 and L2 provide the best
results for, respectively, first and second order measures, and L∞ the slowest executions. The
end-user can choose the most appropriate distance for its particular data. Suitable choices are L1

if a number of cells with small percentage deviations is required, or L2 if the goal is to reduce the
two-norm between the original and perturbed values. Figure 4 shows the effect of both distances
on a very small one-dimensional table. The table considered is a1 + a2 = a3, with a1 = 12 and
a2 = 8. We imposed z1 + z2 = z3 and z3 ≥ 4, i.e., an upper protection level of 4 is forced for the
marginal sensitive cell. Using wi = 1/ai the optimal solution obtained with L1 is z1 = 4, z2 = 0
and z3 = 4. With the same weights, the optimal solution provided by L2 is z1 = 2.4, z2 = 1.6
and z3 = 4. If integer values were required, the z1 and z2 values could be rounded through some
heuristic postprocess (in that case the most reasonable choice would be z1 = 2 and z2 = 2). Both
distances can be combined in the single objective ω(

∑n
i=1 wi|zi|) + (1− ω)(

∑n
i=1 wiz

2
i), ω ∈ [0, 1]

being a weight for the linear and quadratic terms. For ω = 1 and ω = 0 the combined objective
corresponds to the L1 and L2 distances, respectively. Figure 4 shows the perturbed internal cell
values obtained for ω = 0, 0.1, . . . , 0.9, 1, and the original ones (a1, a2). Clearly, the L2 point is
closer to (12, 8), but the L1 solution preserves the value of cell a2. This is consistent with the
results observed for the CSPLIB instances.

9 Conclusions

The minimum-distance controlled perturbation framework introduced in that work proved to be a
promising tool for tabular data protection. We examined three particular methods, using the L1,
L2 and L∞ distances. The L1 variant was independently suggested, using an alternative derivation,
by Dandekar and Cox (2002). The minimum-distance approach has shown to be efficient: can solve
real-world large problems in few seconds; versatile: deals with any table or set of tables, and with
any additional linear constraint (e.g., preserving the value of marginal cells); and safe: even with
partial information, an attacker is not able to reproduce the original data. Alternative approaches
for tabular data protection have flaws in some of the above features.

The three methods tested, for L1, L2 and L∞, provided different patterns of deviations, each of

23

Table 10: Dimensions of the largest CSPLIB instances

Name n |P| m N.coef

cbs 11163 2467 244 22326

dale 16514 4923 405 33028

hier13x13x13a 2197 108 3549 11661

hier13x13x13b 2197 108 3549 11661

hier13x13x13c 2197 108 3549 11661

hier13x13x13d 2197 108 3549 11661

hier13x13x13e 2197 112 3549 11661

hier13x13x7d 1183 75 1443 5369

hier13x7x7d 637 50 525 2401

hier16x16x16a 4096 224 5376 21504

hier16x16x16b 4096 224 5376 21504

hier16x16x16c 4096 224 5376 21504

hier16x16x16d 4096 224 5376 21504

hier16x16x16e 4096 224 5376 21504

jjtabeltest3 3025 1054 1650 7590

osorio 10201 7 202 20402

table1 1584 146 510 4752

table3 4992 517 2464 19968

table4 4992 517 2464 19968

table5 4992 517 2464 19968

table6 1584 146 510 4752

table7 624 17 230 1872

table8 1271 3 72 2542

targus 162 13 63 360

toy3dsarah 2890 376 1649 9690

24

Table 11: Results for the largest CSPLIB instances

L1 L2 L∞
name CPU %Dev. 2-norm CPU %Dev. 2-norm CPU %Dev. 2-norm

cbs 0.0 40.6 75986 0.1 42.9 55732 0.1 40.6 75986

dale 0.7 18.7 4991 0.3 20.3 1859 1.5 21.1 3086

hier13x13x13a 1.9 0.8 3094 2.4 0.9 2162 5.9 1.0 3201

hier13x13x13b 2.0 0.8 3094 2.3 0.9 2162 5.7 1.0 3201

hier13x13x13c 1.9 0.8 3094 2.5 0.9 2162 5.7 1.0 3201

hier13x13x13d 2.5 1.6 6187 2.4 1.7 4323 2.5 2.1 7182

hier13x13x13e 2.5 1.6 6187 2.4 1.7 4323 2.6 2.1 6493

hier13x13x7d 0.2 0.8 2431 0.3 0.9 1463 0.5 1.1 2588

hier13x7x7d 0.0 0.9 1850 0.1 1.0 1075 0.1 1.1 2143

hier16x16x16a 4.6 0.8 4868 12.0 0.9 2796 33.1 1.0 6053

hier16x16x16b 4.7 0.8 4868 12.1 0.9 2796 32.9 1.0 6053

hier16x16x16c 4.7 0.8 4868 12.0 0.9 2796 33.1 1.0 6053

hier16x16x16d 5.3 1.6 9737 12.0 1.8 5593 46.7 2.2 9337

hier16x16x16e 5.3 1.6 9737 12.0 1.8 5593 46.9 2.2 9337

jjtabeltest3 0.2 22.1 3.4e+7 0.1 27.8 2.0e+7 0.2 30.0 2.7e+7

osorio 0.1 0.0 0 0.2 0.0 0 15.8 0.0 0

table1 10.2 0.9 5.2e+6 0.0 1.1 2.5e+6 0.1 1.1 5.3e+6

table3 0.9 3.0 162763 0.7 3.5 72291 12.7 3.8 111104

table4 0.9 3.0 162763 0.7 3.5 72291 12.6 3.8 111104

table5 1.0 3.0 162763 0.7 3.5 72291 12.6 3.8 111104

table6 10.3 0.9 4.1e+6 0.0 1.1 2.5e+7 0.1 1.1 5.3e+6

table7 0.0 5.9 50738 0.0 7.2 32984 0.0 7.5 50122

table8 0.0 0.0 26 0.0 0.1 15 0.1 0.1 19

targus 20.0 4.1 6958 0.0 4.1 4964 0.0 4.1 6961

toy3dsarah 10.1 2.7 2.4e+10 0.1 3.0 2.3e+10 0.0 2.8 2.4e+10
1 Simplex provided a wrong solution; interior-point one used
2 Best results obtained with the interior-point algorithm

25

x2

a2a()1 ,

x1

)ω = 1 (L1

)ω = 0 (L2

7

7.5

8

8.5

9

9.5

10

11 12 13 14 15 16 17

Figure 4: Solutions of the L1 and L2 distances for the one dimensional table a1+a2 = a3, imposing
a perturbation z3 ≥ 4 for the marginal cell. Point (a1, a2) = (12, 8) corresponds to the original
internal cell values. The other eleven points are the solutions obtained with the objective function
ω(

∑n
i=1 wi|zi|) + (1− ω)(

∑n
i=1 wiz

2
i), for ω = 0, 0.1, 0.2, . . . , 0.9, 1, which combines the L1 and L2

distances through the weight factor ω. The L2 solution (computed with ω = 0) is closer to (a1, a2),
but the L1 point (ω = 1) preserves the value of a2.

them with a clear behaviour. National Statistical Agencies would choose the best suited method
for their data. It is also possible to combine them, mainly L1 and L2, to fit particular needs.

Some related fields of research can be explored. One of them is to deal with frequency tables.
Except for particular situations, as, e.g., two-dimensional tables and the L1 distance, the deviations
computed can have fractional values, and thus not being valid for an integer table. There are two
ways to obtain integer deviations. The most efficient one is to produce them from the fractional
solution computed by the methods presented in this work. A heuristic post-process should be used
for this purpose. The second possibility is to solve an integer programming problem (e.g., forcing
integer deviations in the optimization problems of this work). In general, for large tables, that can
result in impractical execution times.

A second field of research deals with the optimization solvers. In a static environment, the final
goal might be the protection, in a single run, of all the tables derived from the same microdata.
The resulting problem is huge. In a dynamic environment, the goal would be the online protec-
tion of particular tables (e.g., obtained from end-user queries from a data-warehouse). Speed is
instrumental in that case. In both situations, we may need highly-efficient implementations of
the optimization methods used in this work, which exploit the problem structure. Some work has
already been done in this direction for large (i.e., one million cells) three-dimensional tables and
L2 (Castro 2000, 2003), where a specialized implementation was two orders of magnitude faster
than the CPLEX 8.0 solver.

26

References

Bacharach, M. (1966), ”Matrix Rounding Problems,” Management Science, 9, 732–742.

Bixby R. E. (2002), ”Solving Real-World Linear Programs: a Decade and More of Progress,”
Operations Research, 50, 3–15.

Carvalho, F.D., Dellaert, N.P., and Osório, M.D. (1994), ”Statistical Disclosure in Two-Dimensional
Tables: General Tables,” Journal of the American Statistical Association, 89, 1547–1557.

Castro, J. (2000), ”A Specialized Interior-Point Algorithm for Multicommodity Network Flows,”
SIAM Journal on Optimization, 10(3), 852–877.

Castro, J. (2002), ”Network Flows Heuristics for Complementary Cell Suppression: an Empirical
Evaluation and Extensions,” in Lecture Notes in Computer Science. Inference Control in Statistical
Databases (Vol. 2316), ed. J. Domingo-Ferrer, Berlin: Springer, 59–73.

Castro, J. (2003), ”Quadratic Interior-Point Methods in Statistical Disclosure Control,” Research
Report 2003-10, Universitat Politècnica de Catalunya, Dept. of Statistics and Operations Research.
Available from http://www-eio.upc.es/~jcastro.

Cox, L. H. (1987), ”A Constructive Procedure for Unbiased Controlled Rounding,” Journal of the
American Statistical Association, 82, 520–524.

Cox, L.H. (1995), ”Network Models for Complementary Cell Suppression,” Journal of the American
Statistical Association, 90, 1453–1462.

Cox, L.H., and Ernst, L.R. (1982), ”Controlled Rounding,” INFOR, 20, 423–432.

Cox, L. H., and George, J. A. (1989), ”Controlled Rounding for Tables with Subtotals,” Annals of
Operations Research, 20, 141–157.

Dandekar, R.A. (2003), ”Cost Effective implementation of Synthetic Tabulation (a.k.a. Controlled
Tabular Adjustments) in Legacy and New Statistical Data Publication Systems,” presented at
the Joint ECE/Eurostat Work Session on Statistical Data Confidentiality, Luxembourg. Available
online from http://www.unece.org/stats/documents/2003.04.confidentiality.htm.

Dandekar, R.A., and Cox, L.H. (2002), ”Synthetic Tabular Data: an Alternative to Complementary
Cell Suppression,” unpublished manuscript, Energy Information Administration, U.S. Department
of Energy. Available from the first author on request (Ramesh.Dandekar@eia.doe.gov).

Dantzig, G.B. (1963), Linear Programming and Extensions, Princeton: Princeton University Press.

Dellaert, N.P., and Luijten, W.A. (1999), ”Statistical Disclosure in General Three-Dimensional
Tables,” Statistica Neerlandica, 53, 197–221.

Domingo-Ferrer, J. (ed.) (2002), Lecture Notes in Computer Science. Inference Control in Statis-
tical Databases (Vol. 2316), Berlin: Springer.

Domingo-Ferrer, J., and Torra V. (2002), ”A Critique of the Sensitivity Rules Usually Employed
for Statistical Table Protection,” International Journal of Uncertainty Fuzziness and Knowledge-
Based Systems, 10(5), 545–556.

Fischetti, M., and Salazar, J.J. (2000), ”Models and Algorithms for Optimizing Cell Suppression
in Tabular Data with Linear Constraints,” Journal of the American Statistical Association, 95,
916–928.

27

Fourer, R, Gay, D.M., and Kernighan, B.W. (1993), AMPL: A Modeling Language for Mathematical
Programming, Danvers, MA: Boyd & Fraser.

ILOG CPLEX (2002), ILOG CPLEX 8.0 Reference Manual Library, Gentilly, France: ILOG.

Kelly, J. P., Assad, A. A., and Golden, B. L. (1990), ”The Controlled Rounding Problem: Relax-
ations and Complexity Issues,” OR Spektrum, 12, 129–138.

Kelly, J. P., Golden, B. L., and Assad, A. A. (1990), ”Using Simulated Annealing to Solve Con-
trolled Rounding Problems,” Annals of Operations Research, 2(2), 174–190.

Kelly, J.P., Golden, B.L, and Assad, A.A. (1992), ”Cell Suppression: Disclosure Protection for
Sensitive Tabular Data,” Networks, 22, 28–55.

Kelly, J. P., Golden, B. L., Assad, A. A. and Baker, E. K. (1990), ”Controlled Rounding of Tabular
Data,” Operations Research, 38(5), 760–772.

Luenberger, D.G. (1989), Linear and Nonlinear Programming (2nd ed.), Reading, MA: Addison
Wesley.

Robertson, D.A., and Ethier, R. , ”Cell Suppression: Experience and Theory,” in Lecture Notes in
Computer Science. Inference Control in Statistical Databases (Vol. 2316), ed. J. Domingo-Ferrer,
Berlin: Springer, 8–20.

Willenborg, L., and de Waal, T. (eds.) (2000) Lecture Notes in Statistics. Elements of Statistical
Disclosure Control (Vol. 155), New York: Springer.

Wright, S.J. (1997), Primal-Dual Interior-Point Methods, Philadelphia: SIAM.

28

