
PPRN 1.0 USER’S GUIDE

Jordi Castro
Statistics & Operations Research Dept.

UPC

DATE 9/94
DR 94/06

PPRN 1.0 USER’S GUIDE

Abstract: PPRN is a specialized code for solving multicommodity network
problems considering additional linear side constraints on the flows on the arcs of the
same or different commodities, with either linear or nonlinear objective functions.
The package implements a specialized primal partitioning, which has proved to be
really efficient in most tests performed. This document presents the main features
of the package without paying attention to the underlying mathematical techniques.
The document will describe mainly the way of linking the PPRN code with the
user’s applications, its input and output files and the different parameters that can
be adjusted by the user depending on his particular problem.

Keywords: Multicommodity Network Flows, Network Simplex Methods, Non-
linear Optimization, Side Constraints, Numerical Software, Fortran Programming
Language, C Programming Language.

1. Introduction.

PPRN is a new code for solving multicommodity network flow problems with
linear side constraints. It is mainly written in Fortran-77, with the routines for
the dynamic memory assignment coded in ansi-C. These ansi-C routines are the
interface between the user application and the package. PPRN can be used as a
stand-alone package (reading the data from an input file, and printing the result
on an output file, with no other communication with the user), or as a subroutine,
passing the definition of the problem and receiving the solution through parameters.

The problem dealt with by the code can be cast as:

min
X1,X2,...,XK

f(X1, X2, . . . , XK) (1)

subj. to AXk = Rk k = 1÷K (2)
K∑

k=1

Xk ≤ T (3)

L ≤
K∑

k=1

LkXk ≤ U (4)

0 ≤ Xk ≤ Xk k = 1÷K (5)

where Xk ∈ IRn, (n: number of arcs) is the flow array for each commodity k
(k = 1 ÷ K), K being the number of commodities of the problem, and f being a
IRK×n → IR1 real valued function. A ∈ IRm×n (m: number of nodes) is the arc–node
incidence matrix. Equation (3) represents the mutual capacity constraints, where
T ∈ IRn. Linear side constraints are defined in (4) where Lk ∈ IRp×n, k = 1 ÷ K,
and L,U ∈ IRp (p: number of side constraints). These side constraints can link flows
on arcs of the same or different commodities. Constraints (5) are simple bounds on
the flows, Xk ∈ IRn, k = 1÷K being the upper bounds.

The objective function (1) can be either linear or nonlinear. For the case of linear
functions PPRN uses a specialized simplex code for multicommodity problems based
on a primal partitioning algorithm [1,3,5,6]. When a nonlinear function has to be

1

minimized, it implements a multicommodity specialization of Murtagh and Saunders’
strategy of dividing the set of variables into basic, superbasic and nonbasic [2,4,5,7],
following some of the ideas of the Minos package developed by the same authors [8].

The structure of the network matrix A must be given by the user as a list of
origen-destination nodes (Oa, Da) for each arc a. This network is replicated for each
commodity.

If the number of commodities is K = 1, PPRN will consider merely a single
commodity network flow problem, and it will not take into account constraint (3).

The user may define as many linear side constraints (4) as necessary, even none
(p ≥ 0). For each side constraint, besides its structure, it must be given its lower
and upper bounds. If the i-th side constraint is unbounded at its lower (upper) limit
li = −M (ui = +M) will be set, M being an arbitrary large value defined by the user
to be considered as infinity. For each nonzero element in the structure of the side
constraints the coefficient value, the number of the side constraint, and the associated
arc and commodity must be provided.

The current version of the PPRN code cannot deal with lower bounds other
than zero in the variables (equation (5)). If some variable xi is lower-bounded at a
nonzero value (xi ≤ xi ≤ xi) it suffices to just define a new variable x̂i = xi− xi and
now 0 ≤ x̂i ≤ xi − xi. Another, far less efficient, strategy would be to impose a side
constraint like xi ≤ xi. If some arc has unlimited capacity then xi = M must be set,
M being the large value introduced before.

In the next sections we will present the main features of the package. First, the
installation process of PPRN will be described. Secondly, the way of communicating
with the code will be explained, followed by a description of the different parameters
that can be tuned by the user. The next section will detail the files generated by
PPRN when executing a model. The last two sections are devoted to the description
of the different exit conditions of the package, and its possible extensions.

2. About installing PPRN.

PPRN was developed on a unix operating system, and the installation process
will be described assuming its use. However, given its simplicity, it can be easily
installed on any other system by merely translating the syntax of some commands.

The first thing to do is to copy all the source files to the directory where the
package is to be installed. In alphabetical order, these files are:

c fortran.h in out.f pprn.h rutlexa.f taxacio.f
constants.h linsearch.f pprn c.c rw basis.f trees.f
dirdescens.f nolin.f quasi mi.f sistemes.f updates.f
etes.f pprn.f rtr mi.f strings.f varis.f

The “.f” files are coded in Fortran-77, the “.c” are written in ansi-C, and the “.h”
contain parameters, scalar data, and ansi-C function prototype definitions which are
included by the rest of files.

Besides of these files, there is a Makefile archive which should be used for
installation when working on a unix system. The only thing to do would be to
adjust some macros defined in the Makefile text, if necessary. These macros are:
• CC: ansi-C compiler used.

2

• F77: Fortran-77 compiler used.
• OPTSCLD C: compiling options for the ansi-C compiler.
• OPTSCLD F: compiling options for the Fortran-77 compiler.

Once these macros have been correctly defined, executing the command $ make libpprn.a
will produce an object library called libpprn.a, ready for linking with the user’s ap-
plication.

If an operating system other than unix is being used, it will suffice to compile
all the “.f” and “.c” source files, and, afterwards make the object library through
the correct command(s) of the system.

IMPORTANT: In the unix operating system employed in the development of
the code (Solaris SunOS) the Fortran-77 compiler adds two underscores () to
all the routine and function names (one at the beginning and one at the end),
while the ansi-C compiler only adds one at the beginning. That is why at
files pprn c.c and c fortran.h some name functions end with an “ ” (to permit
compatibility when linking C and Fortran modules). If your system does not have
this discrepancy in the number of underscores, you should remove the last underscore
of the name routines pp previ alloc , pp get dimensions1 , pp get dimensions2 ,
pp get exit , pprn cos , pprn1 and pprn2 of both files.

3. How to use PPRN.

Once the object library has been created, PPRN is ready to solve any
multicommodity problem matching the formulation in (1–5). For the purpose of
explaining the use of the code, the following easy example problem will be described:

EXAMPLE PROBLEM: Let us consider a 4-node, 5-arc and 2-commodity network
as shown in Fig. 1. 18 units of commodity 1 and 20 units of commodity 2 must be
transported from node N1 to node N4, through the arcs xi,k, i = 1, . . . , 5; k = 1, 2.
We will assume that the capacity of all the multicommodity arcs is 10 units
(xi,k ≤ 10 i = 1, . . . , 5; k = 1, 2). The mutual capacity for all the arcs will be
15 units (thus the vector T of equation (3) will be T t = (15, 15, 15, 15, 15)). And a
side constraint will be considered: x1,1 + x2,2 = 17 (the flow of the first arc for the
first commodity plus the flow of the second arc for the second commodity must be
equal to 17 units).

Two different objective functions, the first linear and the second nonlinear,will
be employed. The linear one is simply defined as

fl(X1, X2) = C1X1 + C2X2 (6)

where X1 and X2 are the vector flows for each commodity, and the vector linear costs
are C1 = (1, 1, 1, 1, 1)t and C2 = (2, 2, 2, 2, 2)t. The nonlinear objective function is
the quadratic function:

fn(X1, X2) =
2∑

k=1

5∑

i=1

x2
i,k (7)

Before starting to code the user application there are some important things
that must be taken into account:

3

N1 N2

N3 N4

x

x

x

x

20

18

20

18

1,(1,2)

4,(1,2)

5,(1,2)

3,(1,2)
x2,(1,2)

Fig.1. Network example problem.

• Whenever possible routine names beginning with “pp” should be avoided since this
is the starting prefix of all the routines of the PPRN package (the same applies for
the Fortran-77 “common” data structures). Otherwise, some conflicts could happen
when creating the executable file.
• PPRN manages some files from the Fortran routines. Since the Fortran logical

units required to work with files are global variables (not local to the routine), the
user should not use those already employed by PPRN in order to avoid problems.
These logical units are: 11,12,13,14,15 and 16.
• All the integer variables used by PPRN are assumed to be 4-byte long, whereas

the real ones are 8-byte. All the integer and real parameters passed by the user to
PPRN must conform to these sizes (declaring “integer*4” and “real*8” in Fortran
files, or “int” and “double” in C archives1).

The following subsections will describe the parameter list of the objective
function to be coded by the user (if the problem is nonlinear), and the two possible
ways of using the package.

3.1. The objective function.
If the problem to be solved is nonlinear, the user must provide a codification of

the objective function. Any name can be used for the routine, and the parameter list
is as follows:

objective function(n,K, x, f, g, nstate)
The meaning of the parameters is:
Input Parameters:
• n: (integer) number of arcs of the single-commodity network.

1 In some systems and compilers “int” and “double” can have different sizes.

4

• K: (integer) number of commodities.
• x(0:n,K): (real) current point to evaluate the objective function. In this

vector we have the flows ordered by commodities (first all the flows of the first
commodity, then of the second commodity. and so on). Also for each commodity
an extra flow value x(0, k) is considered. This is the flow on an artificial arc (root
arc) which is added automatically by PPRN. This flow is not to be used (it is
best to forget that it exists, even though it must be declared).

• nstate: (integer) this variable can take the values 0, 1 or 2. It is used to know
what kind of call it is. The first time that PPRN calls to the routine nstate
will be 0. The remaining calls during the execution of the problem will have
nstate=1. The last call, made when the optimum point has been reached, will
have nstate=2.

Output Parameters:
• f : (real) the value of the objective function at the current iterate.
• g(0:n,K): (real) the gradient of the objective function at the current iterate,

that is, g(i, k) = ∂f/∂x(i, k). As with vector x, the positions g(0, k) must not
be used, and must be never modified.

When coding the objective function in Fortran, the correct heading of the routine
would be:

subroutine any_name(n,k,x,f,g,nstate)
integer*4 n,k,nstate
real*8 x(0:n,k),f,g(0:n,k)

When coding it in C we would write:

void any_name(n,k,x,f,g,nstate)
int *n,*k,*nstate;
double *x,*f,*g;

The next program shows how a possible Fortran codification of the objective function
(7) of the example put forward could be.

subroutine funobj (n,k,x,f,g,nstate)
integer*4 n,k,nstate
real*8 x(0:n,k),f,g(0:n,k)
integer*4 i,j
real*8 raux

f= 0.0d0
do i=1,k
do j= 1,n
raux= x(j,i)
f= f+raux*raux
g(j,i)= 2.0d0*raux

end do
end do

5

end

The C code for this objective function would be similar.

3.2. Passing the model through a file.
PPRN accepts two different ways of receiving the problem to be solved: through

an input file, or via parameters. The first method will be described here, and the
second one will be postponed for the next subsection. The communication between
the user application and the PPRN package is made through two interface routines,
called pprn1 and pprn2, depending of the way the problem is sent.

Passing the problem definition through an input file is the easiest option, though
not the most useful. The user merely has to communicate the name of the input file
to PPRN, by making a call in its source code to routine pprn1 of the package, and
it will obtain the desired solution in an output file. PPRN will perform all the work
related to the memory assignment of the data structures required for solving the
problem, simplifying the user task. However, once the optimal solution has been
found and the control is returned to the user application from routine pprn1, the
only way to know the optimum achieved will be to look at the output file, and no
information will be available during the run of the user application. This makes this
working mode very close to a stand-alone version of the package.

The routine pprn1 is written in ansi-C, and its heading is:

void pprn1(int *ln, char *name, int *exit,
void (f)(int*,int*,double*,double*,double*,int*))

All the parameters have been declared as a pointer to permit calling this routine
either from C or Fortran coded user applications. The meaning of the parameters is
the following:
Input parameters:
• ln: (integer escalar) denotes if the problem to be solved is linear (in this case
ln=0) or nonlinear (ln 6=0).

• name: (string or character vector) this is the name of the input file that contains
the problem specification.

• f: (function) this is the nonlinear objective function to be minimized. When the
problem is merely linear this parameter can be removed if the user application
is coded in Fortran, or set to a NULL pointer when coded in C.

Output parameter:
• exit: (integer escalar) the exit condition variable communicates to the user

application the state of the package and the status of the solution found (if any)
once PPRN has returned the control. A comprehensive list of the exit values
will be presented below.
Some comments have to be made about these parameters. By default, for the

“name” parameter, if the user only provides a name without extension, it will be
assumed that the extension is “.dat”. If the user provides a name with a “.”, the
substring at the right of this dot will be considered as an extension (if there are
two or more “.” the first one found starting from the left is taken into account).
The name of the file without extension is then employed to work with three more

6

files: the output, the basis, and the specification file. The output file is associated
to the input file by using the same name with the extension “.lst” (“.lst” comes
from “listing file”). A detailed description of the structure of the output file will
be presented in the following sections. The basis file will store at the end of the
execution (even though it is saved periodically during the runtime) the status of the
optimization process. PPRN makes it possible to restart the execution taking as the
initial point that stored in the basis file. The basis file takes the name of the input
file, adding the extension “.bas”. The specification file can be employed by the user
to modify some default values or features of the package. This specification file is
directly searched for by the PPRN package. If it is found, the default values will
be modified. If it is not, the default values will be used and a warning message will
appear in the output file (the “.lst” file) advising that the specification file was
not found. The specification file looked for has the same name as the input file but
with the “.spe” extension. A more comprehensive description of the specification
file will be made below. To underline the main points, if the user gives, for instance,
name= "example", the code will consider the input file “example.dat”, it will write
the output file “example.lst” and the basis file “example.bas”, and it will search
for the specification file “example.spe”. On the other hand, if the user gives name=
"example.a.b", the code will read the input file “example.a.b”, it will write the
files “example.lst” and “example.bas”, and it will look for the specification file
“example.spe”.

It must be pointed out that because routine pprn1 is written in C, the string
variable name is supposed to finish with the null character “\0”. When the user
application is written in C, this is directly performed by the compiler. However, when
using Fortran, this cannot be ensured, and sometimes it will be task of the user to add
char(0) to the end of the string (e.g, the Fortran variable of the user application
“character*32 name” could be initialized as “name= ’example’//char(0)”). If
trouble is encountered, the best thing to do is to read in the reference manuals of
your own system how to pass character variables from Fortran to C routines.

Once the routine pprn1 has been introduced, the user application code for solving
the example problem put forward in previous sections could be as follows (considering
that it is written in Fortran by the user):

implicit none
external funobj
character*80 strdat
integer*4 nolin,iexit

strdat= ’example’
nolin= 1
call pprn1(nolin,strdat,iexit,funobj)
write(*,*) iexit
end

In this case it is assumed that the problem is nonlinear (the variable nolin
is initiliazed to a nonzero value), and the objective function is coded in an
external routine called funobj. If the problem is merely linear, we will replace

7

m n K p s
— line not read —

arc costs for commodity 1: c1,1 . . . cn,1

...
arc costs for commodity K: c1,K . . . cn,K

— line not read —

arc capacities for commodity 1: x1,1 . . . xn,1

...
arc capacities for commodity K: x1,K . . . xn,K

— line not read —

node supplies for commodity 1: r1,1 . . . rm,1

...
node supplies for commodity K: r1,K . . . rm,K

— line not read —

arc mutual capacities: t1 . . . tm

— line not read —

origin and destination nodes of arc 1: O1 D1
...

origin and destination nodes of arc n: On Dn

— line not read —

side constraints lower bounds: l1 . . . lp
...

side constraints upper bounds: u1 . . . up

— line not read —

nonzero side constraint element 1: a1 k1 sc1 coef1
...

nonzero side constraint element t (t≤s): at kt sct coeft

Fig.2. Structure of the input file.

“nolin= 1” by “nolin= 0”, and the call to pprn1 could be written as “call
pprn1(nolin,strdat,iexit)”. Once the control is returned to the user application,
the value of the variable “iexit” is written. As already mentioned, this variable
shows the status of the package and the solution found at the end of the execution.
This exit status is also presented in the “.lst” file (output file) generated by PPRN.
The different exit conditions will be described in more detail below.

8

The structure of the input file is still to be defined. In this file the user
must provide first the dimensions of the problem and the different vectors and
matrices required (arc costs, arc capacities, node supplies —or demands—, arc mutual
capacities, network topology, and side constraints structure). The structure of this
file is shown in Fig.2.

Looking at Fig.2, it can be seen that the first line of the file has the dimensions
of the problem (m is the number of nodes, n the number of arcs, K the number of
commodities, p the number of side constraints and s an upper bound to the number
of nonzero elements in the side constraints). Like others in the rest of the file, the
next line is not read by the program. These lines separate different sections of the
input file, and the user can write any comment (without exceeding one line length).

Once the dimensions of the problem are known, PPRN will read the arc costs
for the different commodities. For each commodity the user must provide a list
of n costs separated by blanks (they can be in one or more lines). Costs for the
next commodity have to start in a new line. This rule (for each commodity datum
separated by blanks in one or more lines, and starting in a new line datum for the
next commodity) will be followed in the rest of the file (for capacities, supplies etc.).
The costs read will determine the objective function to be minimized if the problem
to be solved is merely linear. If the problem is nonlinear the costs must be provided
too, and will be used to find a “good” initial feasible point. This means that when
the model allows it, the user can give some costs which are a linear approximation
to the nonlinear function. Thus PPRN can exploit this information when finding the
initial feasible point. More details can be found in [3,4].

The next section of the file has the arc capacities (in the same way as detailed
above: first for the first commodity separated by blanks, and then for the next
commodities, each one starting in a new line). These values correspond to the
bounds in equation (5) of the formulation of the problem presented at the beginning
of this document. The node supplies (or demands if the value is negative) for each
commodity will be read in the following section (that is, the right hand side of
equations (2) of the formulation of the problem). The vector T of equation (3) with
the arc mutual capacities is the next vector found in the input file. The topology of
the network matrix (of equation (2)) is given as n couples of origin-destination nodes.
Finally, the information related to the side constraints (if p > 0) is given. First the
lower and upper limits of the side constraints (vectors L and U of equation (4)) are
read. Then, the structure of the side constraints must be fed. For each nonzero
element (let us suppose there are t nonzero elements, where t ≤ s) in matrices Lk of
(4), a line of information will appear in the input file, indicating:
• ai and ki: arc and commodity associated with the i-th nonzero element (equivalent
to giving the column in the matrix constraints).
• sci: side constraint associated with the i-th nonzero element (equivalent to giving
the row in the matrix constraints).
• coefi: coefficient associated with this nonzero element.

For instance, the input file associated with the example problem that is being
considered in this document would be as follows:

9

4 5 2 1 2
ARC COSTS BY COMMODITIES
1.0 1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0 2.0
ARC CAPACITIES BY COMMODITIES
10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0
NODE INJECTIONS BY COMMODITIES
18.0 0.0 0.0 -18.0
20.0 0.0 0.0 -20.0
ARC MUTUAL CAPACITIES
15.0 15.0 15.0 15.0 15.0
NETWORK TOPOLOGY
1 2
1 3
1 4
2 4
3 4
LOWER AND UPPER BOUNDS FOR SIDE CONSTRAINTS
17.0
17.0
SIDE CONSTRAINTS STRUCTURE
1 1 1 1.0
2 2 1 1.0

As can be seen in this example file, the only side constraint of the problem is an
equality one (the lower and upper limit are the same, 17.0). When one of these side
constraints has no limit (lower or upper limit) then the user must use a big value
that could be considered as infinity. By default this infinity value is 1032. However,
this value can be changed by the user in the specification file. Another important
remark is that side constraints whose structure is li ≤ ctx ≤ +∞ are automatically
transformed by PPRN to the equivalent one −∞ ≤ −ctx ≤ −li, and they will be
presented in the output file in this new form. This change is simply a question of
implementation details.

3.3. Passing the model through parameters.
In the last section the way of using PPRN as a stand-alone package was

presented. This was done by passing the problem definition and receiving the result
through files. For this purpose the routine pprn1 of the package was described. There
is one more way of using the code, which requires a little extra work by the user but
permits much more flexibility. The main difference between this way of working and
the previous one is the transmission of the model to PPRN. In this case the model is
sent through parameters, calling the second interface routine pprn2 of the package,
instead of through a file. This implies that the user must declare a list of vectors with
enough dimension to store the model. PPRN will use these vectors (and others that
it will assign dynamically) as workspace, and once the execution has been performed,
it will store the optimal point in the solution flow vector, returning the control to

10

the user application. In this case the user can know the optimal solution without
needing to look at the output file (the output file is also created in this case).

As pprn1, routine pprn2 is coded in C. The heading of this routine is as follows:

void pprn2(int *ln, char *name, int *exit,
int *n, int *k, int *m, int *p, int *s,
int *oa, int *da, double *cap,
double *gra, double *mcap, double *supp,
double *lowcb, double *upcb, int *acb,
int *kcb, int *ncb, double *coefcb, double *flow,
void (f)(int*,int*,double*,double*,double*,int*))

In this case all the parameters have been declared as a pointer too (as in the
routine pprn1), to make it possible calling the routine from Fortran or C user
applications. In fact, this long list of parameters is equivalent to the input file
presented in the previous section. Let us describe the meaning of each parameter:
Input parameters:
• ln: (integer escalar) denotes whether the problem to be solved is linear (in this

case ln=0) or nonlinear (ln 6=0).
• name: (string or character vector) this is the name of the input file that contains

the problem formulation.
• n: (integer escalar) number of arcs of the problem.
• k: (integer escalar) number of commodities of the problem.
• m: (integer escalar) number of nodes of the problem.
• p: (integer escalar) number of side constraints of the problem.
• s: (integer escalar) number of nonzero elements in the side contraints structure.
• oa(n): (integer vector) vector with the origin nodes for all the arcs. The

dimension of this vector must be at least of n positions.
• da(n): (integer vector) vector with the destination nodes for all the arcs. The

dimension of this vector must be at least of n positions.
• cap(0:n,k): (real vector) vector with the capacities of all the arcs. The

dimension of this vector must be at least of (n + 1) · k positions. PPRN expects
to receive first the capacities for the first commodity, and so on. Also, the user
must reserve for each commodity extra space for an artificial (or root) arc (if
this vector is viewed as a matrix cap(0:n,k), these artificial arcs will occupy
the positions cap(0,i)). This same order will be assumed in the rest of vectors
passed as parameters.

• gra(0:n,k): (real vector) vector with the costs of the arcs (first for those of
the first commodity, reserving an initial extra space for one artificial arc, and so
on). The dimension of this vector must be at least of (n + 1) · k positions. If the
problem is linear these costs determine the objective function and this vector
will not be modified. If the problem is nonlinear these costs are used to find a
“good” initial feasible point, and afterwards this vector will store the gradient
evaluations of the objective function (thus modifying the initial values of the
vector).

11

• mcap(n): (real vector) mutual capacities for all the arcs. The dimension of this
vector must be at least of n positions. Here the artificial arc is not required.

• supp(m+1,k): (real vector) supplies (demands) for all the nodes and
commodities. The dimension of this vector must be at least of (m + 1) · k
positions. First there will be the supplies for the first commodity, and finally for
the last commodity. For each commodity the supply of node 1 until node m will
be given in this order, and an extra position will be left after node m, as if there
were an artificial (or root) node m + 1.

• lowcb(p): (real vector) lower bounds of the side constraints. If there are no
side constraints, this vector will not be used. However, it must be sent as a
parameter anyway. The dimension of this vector must be at least of p positions.

• upcb(p): (real vector) upper bounds of the side constraints. If there are no side
constraints, this vector will not be used. However, it must be sent as a parameter
anyway. The dimension of this vector must be at least of p positions.

• acb(s): (integer vector) for each nonzero element (from 1 to s) in the side
constraints structure, this provides the arc associated with it. The dimension of
this vector must be at least of s positions.

• kcb(s): (integer vector) for each nonzero element (from 1 to s) in the side
constraints structure, this provides the commodity associated with it. The
dimension of this vector must be at least of s positions.

• ncb(s): (integer vector) for each nonzero element (from 1 to s) in the side
constraints structure, this gives the number of side constraint associated with it.
The dimension of this vector must be at least of s positions.

• coefcb(s): (real vector) this vector gives the value of each nonzero element
(from 1 to s) in the side constraints structure. The dimension of this vector
must be at least of s positions. The vectors associated with the side constraints
structure (lowcb, upcb, acb, kcb, ncb and coefcb) can be modified by PPRN.
However, the new side constraints structure stored in them will be equivalent to
the original one.

• f: (function) this is the nonlinear objective function to be minimized. When the
problem is merely linear this parameter can be removed if the user application
is coded in Fortran, or set to a NULL pointer if it is coded in C.

Output parameters:
• exit: (integer escalar) the exit condition variable communicates to the user

application the state of the package and the status of the solution found (if any)
once PPRN has returned the control. A comprehensive list of the exit values
will be presented below.

• flow(0:n,k): (real vector) variable where the code PPRN will load the optimal
solution found. Its dimension must be of at least (n+1) ·k positions. PPRN will
return the optimal point starting with the flows of the first commodity (with an
initial arc that must not be considered), then for the second one, and so on. For
each commodity PPRN will return n + 1 values, the first one associated with
an artificial arc that must not be taken into account (this arc will have a small
absolute value).

12

In this case the variable name is only used for searching the specification file and
writing the output and basis files (in routine pprn1 this variable also gave the name
of the input file from which the problem should be read).

The user application code for solving the example problem that we are
considering using the routine pprn2 could be as follows (considering that it is coded
in Fortran):

implicit none
external funobj

integer*4 m,k,n,p,s
parameter (m=4,k=2,n=5,p=1,s=2)

character*80 strdat
integer*4 i,nolin,iexit
integer*4 oa(n),da(n),acb(s),kcb(s),ncb(s)
real*8 cap(0:n,k),gra(0:n,k),mcap(n),supp(m+1,k)
real*8 lowcb(p),upcb(p),coefcb(s),flow(0:n,k)

c loading the problem in the vectors
data oa /1,1,1,2,3/, da /2,3,4,4,4/
data acb /1,2/, kcb /1,2/, ncb /1,1/, coefcb /1.0,1.0/
do i= 1,n

gra(i,1)= 1.0
gra(i,2)= 2.0
cap(i,1)= 10.0
cap(i,2)= 10.0
mcap(i)= 15.0

end do
supp(1,1)= 18.0
supp(4,1)= -18.0
supp(1,2)= 20.0
supp(4,2)= -20.0
lowcb(1)= 17.0
upcb(1)= 17.0

strdat= ’example’
nolin= 1
call pprn2(nolin,strdat,iexit,n,k,m,p,s,oa,da,cap,gra,
+ mcap,supp,lowcb,upcb,acb,kcb,ncb,coefcb,flow,funobj)
write(*,*) iexit
end

4. The specification file.

The way to use PPRN has been shown in the previous sections . In most cases the
information presented so far suffices to obtain a desirable result. However, for some

13

problems it will be necessary to modify some default values or features of the package
in order to improve its efficiency (or even to permit the running of some models).
Such changes can be easily introduced by the user through a specification file which
PPRN always tries to read at the beginning of the execution. If the specification
file is not found, PPRN simply gives a warning and continues the execution. If it is
found, PPRN will read all the keywords and their values, modifying the default ones.

...
BEGIN

keyword1 value1

...
! Anything at the right of
! an ‘‘!’’ is not considered

...
keywordn valuen

END
...

Fig.3. Structure of the specification file.

The structure of the specification file is very simple, and can be seen in Fig.3.
PPRN will search for a “BEGIN” keyword (or “begin”: upper and lower case letters
can be used indistinctly) . Everything above the “BEGIN” is not considered. Then
it will start to read lines with the same pattern: “KEYWORD VALUE”. Comments
can be introduced using the character “!”. Everything at the right of an “!” will
automatically not be considered. PPRN will stop reading keywords when an “END”
is found (everything below the “END’ keyword is discarded).

The rest of this section will be devoted to the description of all the keywords
and the values that can be assigned to them. Excluding the “BEGIN” and “END”
keywords, there are 30 different ones. These are presented in alphabetical order. The
default value for each one is also given. It must be noted that some explanations will
require a little knowledge of some internal details of the package [1,3,4].

1. ALPHA TOLRG α: (default: α= 0.5) When optimizing a nonlinear function,
PPRN tries to reduce the projected gradient of the current subspace before changing
the active set constraints. The parameter α (0 ≤ α ≤ 1) controls how much the
current projected gradient must be reduced. A value α ≈ 0 will imply a great
reduction (which is expensive in number of iterations and not appropiate for highly
nonlinear functions), whereas a value close to 1 will imply fast changes in the active
constraint set.

2. BLACK LIST s: (default: s= “NO”) During the phase 0 iterations PPRN can
control the degenerate steps, and avoid them by maintaining a “black list” of arcs that
produce such degeneracy. If s= “NO” (default value) this control will be inactive,
whereas degeneracy will be avoided when s= “YES”. In general the default value has
shown to be more efficient.

14

3. CONNECTIVITY s: (default: s= “NO”) To solve a problem, PPRN requires that
all the nodes of the network must be connected (i.e., no disjoint graphs are permitted).
By default PPRN does not check the connectivity of the network, assuming that the
problem verifies it. The user can active the check by just making s= “YES”.

4. DESCENT DIR i: (default: i= 3) This keyword determines the descent direction
that will be used by PPRN during the phase 2 when optimizing a nonlinear function.
There are three different possibilities. The value i = 1 means using a simple reduced
gradient descent direction; if i = 2 the descent direction will be computed using a
truncated-Newton algorithm; finally, when i = 3 (the default), PPRN will use a quasi-
Newton update. In general the last alternative seems to be the most efficient, if the
number of superbasic variables is not really high. The truncated-Newton algorithm
requires extra objective function evaluations, and in general this can considerably
increase the execution time. However, for problems with very many superbasic
variables, it can be the best choice. The reduced gradient direction (i= 1) has a
very slow convergence, and its use can become prohibitive in most cases.

5. INFINITY r: (default: r= 1032) This is the infinity value considered by PPRN.
This value should be used in the input file as infinity (e.g, when defining uncapacited
arcs, or unbounded side constraints).

6. INVERTBASIS i: (default: i= 50) The primal partitioning method implemented
by PPRN implies the use of a working basis (or working matrix) instead of the whole
basis. This working basis is updated at each iteration. However this updating process
can introduce some round-off errors, so it is advisable to recompute and reinvert it
once every specified number of iterations. The keyword INVERTBASIS controls the
number of iterations between two consecutive reinversions of the working matrix.
A smaller value of i means reducing the possible round-off error but increasing the
execution time. On the other hand, increasing i does not always mean reducing the
execution time (for a really high i value the update process can become very slow)
and poorer solutions will be found when solving systems of linear equations with the
working matrix.

7. LINSEARCH TOL r: (default: r=0.1) Precision required at the point obtained
by the line search routine. The value r must be between 0 and 1. The closer to 0 r
is, the more accurate the line search performed (increasing the number of objective
function evaluations) will be.

8. LISTVAR s: (default: s=“NO”) By default PPRN does not list the value of the
variables and constraints at the optimal solution (for big sized problems that would
mean having to write a lot of information). If the user wants this list, the value of
the keyword must be activated (s=“YES”).

9. LOGFILE s: (default: s=“NO”) PPRN has the capability of writing a log file. By
default (s=“NO”) this option is disabled. When it is actived by the user (s=“YES”),
PPRN will produce a “.log’’ file, which, by lines, presents the next information
at each iteration: number of iteration, number of seconds (real time, not CPU
time) spent since the beginning of the execution, objective function value, number of
objective function evaluations and number of superbasic variables. The first lines will
provide information for the phase 1 iterations (obtaining a feasible point), whereas

15

the remaining lines are related to phase 2. Since the number of seconds is computed
through calls to the routine “secnds()” (which does not provide CPU time) “strange”
execution times can be obtained when the execution is running together with other
processes in the same CPU.

10. MAX QUASI i: (default: i=500) PPRN, by default, uses a quasi-Newton update
to compute the descent direction. When the number of superbasic variables is not
really high this is the best option. However, when the number of superbasics increases
considerably the number of operations required to maintain the quasi-Newton update
become prohibitive, and thus the truncated-Newton algorithm can be a better choice.
This threshold number of superbasic variables (where the switching from the quasi-
Newton to the truncated-Newton method is made) is determined by the parameter
MAX QUASI (by default this number is i=500). This parameter is meaningless if
the descent direction is not being computed with the quasi-Newton update method
(DESCENT DIR= 1 or 2). In general, very high values of i should be avoided so as
not to increase the execution time excessively.

11. MAX T5 i: (default: i = −1) PPRN has four different logical conditions that
are tested at each iteration, and depending on its values it decides whether or not
the optimum of the current subspace has been achieved. (See [4] for a comprehensive
description of these test conditions). For non-smooth functions the user can activate
a fifth condition, which will consider that we are at the optimum of the current
subspace when the value of the first three logical conditions has been the same during
i consecutive iterations. By default i = −1, which means that the test is inactive. It
suffices to give a positive integer value to i to activate this fifth test.

12. MAXITER i: (default: i=2147483647=231-1) Maximum number of iterations
allowed (phase 1 and phase 2 iterations). The default value is the maximum signed
integer number that can be stored in four bytes, almost equivalent to imposing no
limit on the number of iterations.

13. MAXITER NEWT TR i: (default: i=20) Maximum number of iterations
allowed to the truncated-Newton algorithm when computing the descent direction
using this option. Increasing this value excessively can mean a prohibitive increase
in the number of function evaluations (degrading the performance of the algorithm).

14. NBLOCSNB i : (default: i=10) This keyword identifies the number of blocks
in which the nonbasic variables are supposed to be divided. During the pricing
operation, instead of all the nonbasic variables being priced, they are priced by blocks.
If a candidate has been found within the current block, the rest are not priced until
the next iteration. By changing the default value of i the behaviour of the execution
can be modified. This keyword is directly related to the NOBASPRICE one (see
below).

15. NEWBASIS file : (default: no file) PPRN can save the current status
periodically (according to the value of the keyword SAVEBASIS) and at the end
of the execution. This can be done by simply writing the name of the basis file in
the NEWBASIS keyword. By default no basis information will be saved.

16. NOBASPRICE i : (default: i=max(20,k*(n-m+1)/NBLOCSNB)) This keyword
gives the exact number of nonbasic variables that will be priced consecutively when

16

a candidate is sought. PPRN will price the first i nonbasic variables. If there is a
candidate it will stop. If not, it will continue with the next i nonbasic variables. At
the next iteration it will continue pricing where it stopped in the previous pricing
operation. The default value of the keyword NOBASPRICE is computed using the
NBLOCSNB number that was already introduced.

17. OLDBASIS file: (default: no file) PPRN can restart executions from a point
loaded from a basis file created in a previous run. This can be done by simply writing
the name of the basis file after the OLDBASIS keyword. By default no basis file is
loaded and the initial point will be chosen by the code.

18. ONLY FEASIBLE s: (default: s=“NO”) When this parameter is set to the other
available value (s=“YES”), PPRN will only try to find a feasible point (phases 0
and 1) and will then stop the execution. With the default value (s=“NO”) PPRN
will continue the optimization process until it reaches the optimal point.

19. OUTPUT FREQ i: (default: i=0, if problem sent through parameters, or i=100,
if problem read from file) This parameter controls the frequency of lines of information
to appear in the output file. A value of 0 means that no output file will be generated.
By default, a line of information will be writen each 100 iterations if the problem is
read from a file. If the problem is sent through parameters, no output file will be
created by default.

20. PCT ACTIVES r: (default: r=0.25) PPRN uses as workspace some vectors
which are allocated dynamically in run-time. Its dimension is approximated through
a coefficient that should be understood as the “percentage of sparsity” of the vector
(since it would be impossible to allocate the complete dimension of the vector due
to the amount of memory required). This keyword and the next five below (all
of them starting with the prefix “PCT ”) present the “percentages of sparsity”
to be considered in the different vectors that are dynamically assigned. All these
“percentages” must take a value between 0 and 1 (per unit values). In some problems
the default value will not be sufficient to solve the problem. Thus PPRN will stop
the execution and the exit condition will notify that some “percentage” parameter
must be increased. It is the task of the user to modify such a parameter in the
specification file (taking care not to increase it too much in order to maintain the
memory requirements within reasonable limits). The keyword PCT ACTIVES gives
the percentage of mutual capacity and side constraints that can be considered as
active (equivalent to giving the maximum dimension of the working matrix). By
default the code assumes that at most 50% of the mutual and side constraints can
become active.

21. PCT ETA r: (default: r=0.2) This parameter is used to dimension the eta
matrices that will be used when updating at each iteration the working matrix (via
eta matrices). See the explanation of keyword PCT ACTIVES for more details.

22. PCT PATHS r: (default: r=0.1) PPRN stores for each complementary arc its
path into the basic tree associated with its commodity. In the worst case, the total
amount of space required would be: maximum number of complementary arcs ×
nodes of the network. However, this number is extremely large, and in fact only a
percentage of this value will be allocated. This percentage is fixed by the parameter

17

PCT PATHS (and by default, 10% of the previous computed number is reserved).
See the explanation of keyword PCT ACTIVES for more details.

23. PCT Q r: (default: r=0.02) The dimension of the working matrix (also called
matrix Q) is computed through the keyword PCT ACTIVES. If we denote this
dimension by |Q| it follows that if we store the matrix Q in dense form we will
need |Q| × |Q| real positions. However, this working matrix is stored in sparse form,
and the number of positions reserved is computed as: PCT Q × |Q| × |Q|, where
the parameter PCT Q can be suitably modified by the user. See the explanation of
keyword PCT ACTIVES for more details.

24. PCT SUPER r: (default: r=0.3) This parameter gives the percentage of the total
amount of variables that can become superbasic. See the explanation of keyword
PCT ACTIVES for more details.

25. PIVOT LU ε: (default: ε= 10−11) Minimum value allowed as a pivot element
when performing a LU decomposition of a matrix.

26. SAVEBASIS i: (default: i= 500) PPRN can save the current status of the
execution process periodically . The keyword SAVEBASIS allows us to change the
frequency of this saving operation by modifying the value i (which is the number of
iterations between two consecutive savings).

27. PHASE 0 s: (default: s= “FEASIBLE”). The phase 0 of the algorithm
implemented by PPRN tries to solve merely K linear network problems, one for
each of the K commodities of the original problem. The user can decide, when
solving this linear network problems, if PPRN has to obtain just a feasible point (s=
“FEASIBLE”, which is the default value) or the optimal solution (s= “OPTIMAL”).
If PPRN is being used to solve a single commodity linear problem, the best option
will of course be s=“OPTIMAL”. This option can also be the best one when, in
the optimal solution of the multicommodity linear problem, there is a small number
of active mutual capacity constraints; thus, solving K single commodity problems,
and joining their solutions can be a good approximation of the optimal point of the
multicommodity problem. For the remaining cases the default option (just finding a
feasible point) suffices in general.

28. PRICE PH1 i: (default: i= 1) This parameter denotes the type of ordering
of the variables considered during the pricing operation in phase 1. There are 4
different orderings (thus i can take only the values 1, 2, 3 and 4). If one of the first
two (types 1 and 2) is chosen, PPRN will initially always price the nonbasic slack
variables. If no candidate is found, then it will start pricing nonbasic arcs by blocks of
NOBASPRICE elements (see keyword NOBASPRICE explained above). However,
in types 3 and 4, nonbasic slacks are priced together with the nonbasic arcs (and
not in first place). The difference between types 1 and 2 is that in the first PPRN
considers (type 1) K circular lists, one for each commodity (and K arc-pointers, one
per list, to the next arc to be priced at next iteration, and one more commodity-
pointer to the next commodity to be priced), whereas in the second it only maintains
one big circular list with all the arcs joined (and a single pointer to the next arc to be
priced). Thus, when the pricing operation is applied with the ordering type number
1, it will start with the commodity stored in the commodity-pointer, and the arc of

18

the associated arc-pointer. And the pricing will continue with this commodity by
blocks of dimension NOBASPRICE until the initial arc (the one stored in the arc-
pointer) is reached again. Then the next commodity list will be started, and so on. In
the second ordering type, however, if we start at a given arc of a certain commodity,
we will change to the next commodity when the last arc of the current commodity
has been visited, without restarting with the first arc. The same difference exists
between types 3 and 4. In most tests performed, types 1 and 2 seemed to be more
efficient than 3 and 4. On the other hand, no significant difference was found in the
performance of the code between types 1 and 2 (and the same with 3 and 4).

29. PRICE PH2 i: (default: i= 1) This parameter has the same meaning as keyword
PRICE PH1 explained above, but applied to the pricing operation during phase 2.
See keyword PRICE PH1 for more details.

30. TOL NT r: (default: r= 0.5) This tolerance r (0 ≤ r ≤ 1) is used to control
the accuracy of the solution found when computing the descent direction through
the truncated-Newton algorithm. The closer r is to 0, the more precision will be
required in the solution found by the truncated-Newton algorithm, and the number
of objective function evaluations will increase considerably (and the execution time
spent by PPRN).

31. QUASI ACTIVES s: (default: s= “NO”) When the descent direction for the
superbasic variables is computed, in some cases a degenerate step can be obtained.
This can happen if, for instance, a superbasic varible is near its lower or upper bound
(it will be said that this is a quasi-active superbasic variable), and its component in
the descent direction vector drives it to violate the active bound. In such cases a
special treatment can be applied to these variables in order to avoid this situation
whenever possible. By default (s= “NO”) this check is inactive. The user can
activate it during the whole execution by setting s= “YES”. (It must be noted that
this check is sometimes activated automatically by PPRN, even if s= “NO”, to avoid
some cycling problems associated with degenerate steps due to quasi-active superbasic
variables).

32. TOLOPTIM εopt: (default: εopt= 10−6) Optimality tolerance required at a point
to be considered as the solution of the problem. This situation is detected when, at
the pricing operation, all the multipliers λ satisfy λ < εopt · ε(‖π‖1), (ε(‖π‖1) being a
function of the 1-norm of the π vector computed during the phase 2 algorithm). See
[4] for more details.

5. The files generated by PPRN.

PPRN will always write two files when executing a model: the output file (with
extension “.lst”) and the basis file (“.bas”). A third file, the log file, is created
depending on the value of parameter LOGFILE in the specification file (see previous
section for a brief description of the structure of the log file). By default, this log file
is not created.

As was said in previous sections, the basis file stores the status of the
optimization process at the end of the execution. In this file all the data structures
required to restart the execution process from a given point are saved. No explanation

19

is given about the contents of the basis file, since this would require knowing the
internal data structures of the code, which is outside the scope of this guide.

We will focus mainly on the description of the output file generated by PPRN.
Depending on whether the objective function to be minimized is linear or nonlinear,
the structure of the output file is slightly different. In fact, phases 0 and 1 have the
same kind of output for both types of function, whereas the information disclosed in
phase 2 is directly related to whether a linear or nonlinear objective. The following
pages present the output obtained with the example problem, first with the linear
function, and then with the nonlinear one:

Output file for the example problem (LINEAR objective function)

******************* PARAMETERS *******************
OBJECTIVE FUNCTION TYPE : linear
MAXIMUM NUMBER OF ITERATIONS : 2147483647
SAVE BASIS FREQUENCY : 500
REINVERSION BASIS FREQUENCY : 50
NUMBER NON BASICS FOR PRICING : 20
PRICING TYPE AT PHASE 1 : 1
PRICING TYPE AT PHASE 2 : 1
INFINITY VALUE CONSIDERED : 1.0000000000000D+32
OUTPUT FREQUENCY : 1
SOLUTION OBTAINED AT PHASE 0 : feasible
BLACK LIST AT PHASE 0 : inactive
CONNECTIVITY CHECK : inactive
L-U PIVOT TOLERANCE : 1.0000000000000D-11
PERCENTAGE ACTIVES : 0.50000000000000
SPARSITY ETA-MATRICES : 0.20000000000000
SPARSITY Q (WORKING MATRIX) : 2.0000000000000D-02
SPARSITY PATHS : 0.90000000000000
**

STARTING PHASE 0.

INITIAL FEASIBLE TREE FOUND FOR COMMODITY 1 ITERATIONS: 2
INITIAL FEASIBLE TREE FOUND FOR COMMODITY 2 ITERATIONS: 2

STARTING PHASE 1. INFEASIBILITIES= 20.000000000000

Ph.....It........Nb->Bs........Bs->Nb.......Fobj/Sinf...Ncmp............Rg.......Alph
1 1 5 1 1 0 0.17000000D+02 1 -0.10000D+01 0.300D+01
1 2 3 1 3 0 0.12000000D+02 2 0.10000D+01 -0.500D+01
1 3 5 2 1 1 0.20000000D+01 2 -0.20000D+01 0.500D+01
1 4 1 0 4 0 0.20000000D+01 2 -0.20000D+01 0.000D+00
1 5 4 0 -1 0 0.00000000D+00 2 -0.10000D+01 0.200D+01

STARTING PHASE 2. OBJECTIVE FUNCTION= 91.000000000000

oooooooooooooooooooooooooo
o o
o E X I T o
o o
oooooooooooooooooooooooooo
STATUS: OPTIMAL SOLUTION FOUND

20

ITERATION: 5
PHASE: 2
PHASE 0 ITERATIONS: 4
PHASE 1 ITERATIONS: 5
PHASE 2 ITERATIONS: 0
DIMENSION OF WORKING MATRIX: 2
OBJECTIVE FUNCTION VALUE: 91.000000000000

1. VARIABLES.

....arc..commodity...status arc................flow............capacity
1 1 UPPER 10.000000 10.000000
1 2 TREE 3.000000 10.000000
2 1 TREE 3.000000 10.000000
2 2 TREE 7.000000 10.000000
3 1 TREE 5.000000 10.000000
3 2 UPPER 10.000000 10.000000
4 1 TREE 10.000000 10.000000
4 2 TREE 3.000000 10.000000
5 1 CMPLT 3.000000 10.000000
5 2 CMPLT 7.000000 10.000000

2. MUTUAL CAPACITY CONSTRAINTS.

....arc...status slack................flow...............slack.....mutual capacity
1 BASIC 13.000000 2.000000 15.000000
2 BASIC 10.000000 5.000000 15.000000
3 LOWER 15.000000 0.000000 15.000000
4 BASIC 13.000000 2.000000 15.000000
5 BASIC 10.000000 5.000000 15.000000

3. SIDE CONSTRAINTS.

....nsc...status slack.........lower bound...............value.........upper bound

1 UPPER 17.000000 17.000000 17.000000

Output file for the example problem (NONLINEAR objective function)

******************* PARAMETERS *******************
OBJECTIVE FUNCTION TYPE : non linear
MAXIMUM NUMBER OF ITERATIONS : 2147483647
SAVE BASIS FREQUENCY : 500
REINVERSION BASIS FREQUENCY : 50
NUMBER NON BASICS FOR PRICING : 20
PRICING TYPE AT PHASE 1 : 1
PRICING TYPE AT PHASE 2 : 1
INFINITY VALUE CONSIDERED : 1.0000000000000D+32
OUTPUT FREQUENCY : 1
SOLUTION OBTAINED AT PHASE 0 : feasible
BLACK LIST AT PHASE 0 : inactive
CONNECTIVITY CHECK : inactive
L-U PIVOT TOLERANCE : 1.0000000000000D-11

21

PERCENTAGE ACTIVES : 0.50000000000000
SPARSITY ETA-MATRICES : 0.20000000000000
SPARSITY Q (WORKING MATRIX) : 2.0000000000000D-02
SPARSITY PATHS : 0.90000000000000
DESCENT DIRECTION : quasi Newton
MAXIMUM DIMENSION OF R’R : 4
QUASI ACTIVES DIRECTION : inactive
REDUCTION SUBSPACE GRADIENT : 0.50000000000000
OPTIMALITY TOLERANCE : 1.0000000000000D-06
LINESEARCH TOLERANCE : 1.0000000000000D-01
T5 CONTROL : inactive
**

STARTING PHASE 0.

INITIAL FEASIBLE TREE FOUND FOR COMMODITY 1 ITERATIONS: 2
INITIAL FEASIBLE TREE FOUND FOR COMMODITY 2 ITERATIONS: 2

STARTING PHASE 1. INFEASIBILITIES= 20.000000000000

Ph.....It........Nb->Bs........Bs->Nb.......Fobj/Sinf...Ncmp............Rg.......Alph
1 1 5 1 1 0 0.17000000D+02 1 -0.10000D+01 0.300D+01
1 2 3 1 3 0 0.12000000D+02 2 0.10000D+01 -0.500D+01
1 3 5 2 1 1 0.20000000D+01 2 -0.20000D+01 0.500D+01
1 4 1 0 4 0 0.20000000D+01 2 -0.20000D+01 0.000D+00
1 5 4 0 -1 0 0.00000000D+00 2 -0.10000D+01 0.200D+01

STARTING PHASE 2. OBJECTIVE FUNCTION= 459.00000000000

Ph.It.Nb->Sup........Rg..Bs->Nb.Sup->Nb/Bs.......Fobj..Ncmp..Nsup.....Alph......Nrg...Cv.
2 6 1 1 0.12D+02 0.4545D+03 2 1 0.75D+00 0.00D+00 TFTT
2 7 3 2 0.16D+02 0.4438D+03 2 2 0.13D+01 0.10D+02 TTTT
2 8 0.4385D+03 2 2 0.12D+01 0.35D-14 TFFF
2 9 3 0 -0.30D+01 0.4377D+03 2 3 0.50D+00 0.30D+01 TFTT
2 10 0.4370D+03 2 3 0.70D+00 0.17D-13 TTFF

oooooooooooooooooooooooooo
o o
o E X I T o
o o
oooooooooooooooooooooooooo
STATUS: OPTIMAL SOLUTION FOUND

ITERATION: 10
PHASE: 2
PHASE 0 ITERATIONS: 4
PHASE 1 ITERATIONS: 5
PHASE 2 ITERATIONS: 5
DIMENSION OF WORKING MATRIX: 2
NUMBER OF SUPERBASICS: 3
OBJECTIVE FUNCTION AVALUATIONS: 12
RG NORM: 1.7763568394003D-14
PI NORM: 18.173764450045
RG NORM/PI NORM: 9.7742921907182D-16
OBJECTIVE FUNCTION VALUE: 437.00000000000

22

1. VARIABLES.

....arc..commodity...status arc................flow............capacity
1 1 SUPER 8.250000 10.000000
1 2 TREE 3.750000 10.000000
2 1 TREE 3.250000 10.000000
2 2 TREE 8.750000 10.000000
3 1 TREE 6.500000 10.000000
3 2 SUPER 7.500000 10.000000
4 1 TREE 8.250000 10.000000
4 2 TREE 3.750000 10.000000
5 1 CMPLT 3.250000 10.000000
5 2 CMPLT 8.750000 10.000000

2. MUTUAL CAPACITY CONSTRAINTS.

....arc...status slack................flow...............slack.....mutual capacity
1 BASIC 12.000000 3.000000 15.000000
2 BASIC 12.000000 3.000000 15.000000
3 SUPER 14.000000 1.000000 15.000000
4 BASIC 12.000000 3.000000 15.000000
5 BASIC 12.000000 3.000000 15.000000

3. SIDE CONSTRAINTS.

....nsc...status slack.........lower bound...............value.........upper bound

1 UPPER 17.000000 17.000000 17.000000

As can be seen in the output files shown, PPRN presents first the values of some
parameters (default values or those introduced by the user in the specification file)
whose meaning was specified in previous sections. It must be stressed that when the
objective function is nonlinear there are far more parameters involved, in particular,
those related to the phase 2 algorithm. The remaining parameters are common to
linear and nonlinear functions.

The executions presented were made using a specification file with only two
keywords. The first one, “OUTPUT FREQ 1”, was used to present a line of
information per iteration. The second one, “PCT PATHS 0.9”, was required since,
with the default value of this parameter, there was not enough room to store the
paths of the complementary arcs (see the description of keyword PCT PATHS in the
previous section). This is due to the very small size of this problem (the default
values were adjusted considering larger models). Since a specification file has been
provided, PPRN did not show any warning message at the beginning of the output
file. Otherwise, the first line of the output file would have been: “WARNING: CANNOT
OPEN SPECIFICATION FILE”.

When the parameters used in the execution have been presented, the rest of
the file is divided into two main parts: first, a summary of the optimization process
(detailing phase 0, phase 1 and phase 2), and then the point achieved together with
some information about the exit status of the package, the objective function value,
etc.

23

Let us start with the first part, concerning the evolution of the optimization
process. It can be seen in the output files that the information for phases 0, 1 and 2 is
introduced by the comment lines “STARTING PHASE 0.”, “STARTING PHASE 1.” and
“STARTING PHASE 2.”. As stated above, phase 0 solves a linear network problem for
each commodity. In the output file a line of information will appear for each of these
linear network problems, indicating whether the tree achieved was only a feasible one
or the optimal solution of the single-commodity problem (depending on the value of
the parameter PHASE 0 of the specification file), and also showing the number of
iterations required (of the specialized network simplex algorithm implemented). The
appearance of one such line of information is as follows:

INITIAL FEASIBLE TREE FOUND FOR COMMODITY 1 ITERATIONS 2

At the beginning of the output of phase 1, the code shows initially the value
of the sum of infeasibilities (with the message “INFEASIBILITIES= xx”). These
infeasibilities are related only to the mutual capacity and side constraints (the
network constraints have already been satisfied in phase 0). Now the code will write
periodically (with a frequency depending on the parameter OUTPUT FREQ of the
specification file) a line in the output file disclosing the following information:

Ph....It....Nb->Bs....Bs->Nb....Fobj/Sinf....Ncmp....Rg....Alph

The first field (“Ph”) indicates the current phase of the algorithm. “It”, gives
the number of iteration. “Nb->Bs” shows which variable has left the nonbasic set to
become basic, whereas “Bs->Nb” indicates the basic variable that will be a nonbasic
one. In the last two fields, variables are coded by two integer values. If the second
value is 0, it means than the variable associated is a slack. In this case, if the first
number is positive, the slack refers to a mutual capacity constraint, and if negative
to a side constraint. On the other hand, if the second number is positive with a value
k, the variable is associated with an arc of the k-th commodity. In this case the first
number will denote the number of the arc. For instance, the pair of numbers “1, 0”
would refer to the slack of the first mutual capacity constraint, “−2, 0” would be the
slack of the second side constraint, and “1, 2” would denote the first arc of the second
commodity.

The following field, “Fobj/Sinf”, gives the current value of the sum of
infeasibilites (or the current value of the objective function if we are solving phase
2 of a linear problem). “Ncmp” indicates the number of complementary arcs, which
is equivalent to the dimension of the working matrix at the current iteration. The
field “Rg” shows the value of the multiplier of the variable that has been chosen to
become a basic one. The last field, “Alph”, denotes the maximum step that can be
performed to maintain the feasibility with respect to the bounds of the basic variables
when performing the pivot operation.

When optimizing a linear objective function, the information presented in phase
2 is the same as that of phase 1, since in both cases a specialized multicommodity
simplex method is being applied. In the output file listed above, for the linear
function no iteration was required in phase 2, since the feasible point achieved was
the optimum one. It can be seen, however, that at the beginning of phase 2, besides
the message announcing its starting, the code gives the value of the objective function
at the initial feasible point (with the comment “OBJECTIVE FUNCTION= xx”).

24

On the other hand, in the nonlinear case (whose output file is listed above) the
initial feasible point was not the optimum one, so there are phase 2 iterations. The
information disclosed in phase 2 nonlinear iterations is the following:
Ph..It..Nb->Sup..Rg..Bs->Nb..Sup->Nb/Bs..Fobj..Ncmp..Nsup..Alph..Nrg..Cv

The first two fields (“Ph” and “It ”) have the same meaning as in phase 1
iterations. “Nb->Sup” shows the nonbasic variable that becomes a superbasic one
(the variables are coded by two integer values, in the same way as was put forward
when we detailed the phase 1 output information). The field “Rg” gives the value
of the multiplier associated with the nonbasic variable chosen to become superbasic.
The two last fields can be empty if in the current iteration PPRN decided not to
price any variable and to keep on optimizing in the current subspace. Field “Bs-
>Nb” shows the basic variable that will become nonbasic (this will only happen when
the basic variable reaches one of its bounds when moving along the descent direction
found; otherwise this field will be empty). The next field, “Sup->Nb/Bs”, denotes the
superbasic variable that will be made nonbasic (if, when moving along the descent
direction, the superbasic reaches a bound) or basic (when, as stated above, a basic
variable becomes nonbasic, thus having to be replaced by a superbasic one); this
field can also be empty if neither a basic nor a superbasic variable reaches its bound.
Fields “Fobj” and “Ncmp” have the same meaning as in phase 1 iterations. “Nsup”
gives the number of superbasic variables in the current iteration. “Alph” shows the
step performed in the descent direction, found by the line search routine. “Nrg” is
the infinity norm of the reduced gradient of the current subspace. Finally, the field
“Cv” shows the boolean values (T= true, F= false) of the different convergence tests
(by default, only 4 tests, but the user can activate the fifth one using the keyword
MAX T5 in the specification file). It is considered that the code has achieved the
optimum in the current subspace if either the first three values are true (a small step
has been performed, the objective function has not changed considerably, and the
projected gradient has been reduced sufficiently), or the fourth test is active (the
reduced gradient has such a small value that the optimum point can be assumed
achieved). We refer the reader to [4] for more details on the convergence tests
performed.

Once the information of the optimization process is presented, the rest of the
output file is devoted to the description of the point achieved. The first thing to
appear is a message giving the status of the point found by PPRN, or an error message
if something was wrong (the next section will describe at length the different exit and
error conditions). The following lines give a short description of some data of interest
for linear problems, such as the number of iterations performed (total and in each
phase), the final dimension of the working matrix, and the objective function value.
For nonlinear objective functions, this is extended with the number of superbasics,
the number of objective function evaluations, the norm of the reduced gradient, the
norm of the multiplier vector (pi vector), and the ratio between the last two values.

Finally, PPRN lists the values and status of all the variables at the point found,
first for the arcs, then for the mutual capacity constraints slacks, and finally for the
side constraint slacks. For the arcs, (besides of the number of arc and commodity)
the code gives its flow, its capacity, and the status of the arc. The different values of
the status field (with their meaning) are the following:

25

• UPPER: the arc is nonbasic at its upper bound.
• LOWER: the arc is nonbasic at its lower bound.
• TREE: the arc is basic and belongs to the tree associated with its commodity.
• CMPLT: the arc is basic, and is a complementary arc.
• SUPER: the arc is superbasic.

For the slacks, the information given is the number of slack, its status, its lower and
upper bounds, and its value. The status field can take the values UPPER (nonbasic
slack at its upper bound), LOWER (nonbasic slack at its lower bound), BASIC (basic
slack), and SUPER (superbasic slack).

6. Exit conditions.

We have postponed until this section the comprehensive list of exit conditions of
the PPRN package. The exit conditions were already introduced when we described
the two interface routines between the user and the package, pprn1 and pprn2. One
of the parameters returned by these routines was the exit value, through which
PPRN communicated the status of the solution found. This same information also
appeared in the output file written by the package.

The exit conditions can be divided into two main types: those that can be
considered as a normal exit of the problem (which will be strictly called “exit
conditions”), and those corresponding to abnormal exits or failures of the program
(referred to as “error conditions”). In some cases, however, it is not clear what kind
a given stop of the program belongs to. Thus, the classification could have been
made in another way and may be subject to future changes. In the first case (“exit
conditions”), the parameter exit of routines pprn1 and pprn2 will have a positive
value. In the second case (“error conditions”) this parameter will have a negative
value. The following is a comprehensive list with all the possible values (and their
meanings) that the exit parameter can take at the end of the execution.

EXIT CONDITIONS (normal exit).
• exit=0: Optimal solution found.
• exit=1: Infeasible problem at phase 0.
• exit=2: Infeasible problem at phase 1.
• exit=3: Working matrix is singular (the basis is thus singular). If the problem is
well defined, this error should not occur.
• exit=4: A complementary arc could not be found to replace a basic arc. This

message should not occur if the problem is well defined.
• exit=5: Too many complementary arcs. The user should increase the parameter

PCT ACTIVES in the specification file to solve this problem.
• exit=6: PPRN cannot pivot in a basic tree. This message should not occur in a

well defined problem.
• exit=7: Too many iterations. The user should increase the value of keyword

MAXITER in the specification file.
• exit=8: The problem is unbounded. If the problem is linear, it means that the

objective value can be decreased as much as desired (the problem is a minimization
one). If the problem is nonlinear, this may be because it has an extremely large step,
found in the line search routine.

26

• exit=9: A superbasic variable to replace a basic one could not be found. This
message should not occur if the problem is well defined.
• exit=10: Too many superbasic variables. The user should increase the value of

the keyword PCT SUPER in the specification file.
• exit=11: Initial feasible point found. This message will appear when the keyword
ONLY FEASIBLE is set to the value “YES” in the specification file (the user only
wants to find an initial feasible point).

ERROR CONDITIONS (abnormal exit).
• exit=−1: The input file could not be opened (when the user passed the problem
through a file, calling the routine pprn1).
• exit=−2: Some wrong data were found when the input file was read.
• exit=−3: Currently not used.
• exit=−4: Currently not used.
• exit=−5: Currently not used.
• exit=−6: Currently not used.
• exit=−7: Wrong command in the specification file.
• exit=−8: The old basis file introduced by the user with the keyword OLDBASIS
of the specification file, could not be found.
• exit=−9: The old basis file does not match the current problem.
• exit=−10: There is not enough room for storing the working matrix, or performing
its LU decomposition. The parameter PCT Q in the specification file should be
increased.
• exit=−11: There is not enough room for updating the working matrix through

eta vectors. The parameter PCT ETA in the specification file should be increased.
• exit=−12: Currently not used.
• exit=−13: There is not enough room for storing the paths of the complementary
arcs in the basic trees. The parameter PCT PATHS in the specification file should
be increased.
• exit=−14: Self-loops (arcs pointing to their source nodes) are not supported by

PPRN.
• exit=−15: The lower bound is greater than the upper bound in some constraints.
• exit=−16: Too many coefficients in the side constraints structure.
• exit=−17: A wrong node was found when the network structure was read.
• exit=−18: A wrong arc was found when the side constraints structure was read.
• exit=−19: A wrong commodity was found when the side constraints structure

was read.
• exit=−20: A wrong side constraint was found when the side constraints structure
was read.
• exit=−21: The network has two or more disjoint graphs. This message will only
appear if the keyword CONNECTIVITY has been activated in the specification file.
• exit=−50: There is not enough memory in the system to solve the problem at

this moment.

7. Extensions and induced stops.

The current version of the PPRN package can solve a wide range of linear and
nonlinear multicommodity problems. However, some improvements and extensions

27

can clearly be made. The following is a list of possible extensions, some of which
could be considered in successive versions of the package:
• Allowing problems with lower bounds in the arcs (arcs with a minimum capacity)
to be considered.
• Adding a module for checking (through finite differences) the gradient vector

computed by the user.
• Implementing a “full dynamic assignment” of the memory, by reallocating a

vector (which has reached its maximum dimension) automatically with more room
in another part of the memory.
• Allowing the communication of some parameters or keywords through routines,

avoiding in this case the use of a specification file.
• Allowing some models to be saved in the memory, and to be modified (e.g, bounds
of the variables) for a later reexecution of the problem.
• In the case of passing the model through parameters, increasing the information

returned by PPRN (now it only gives the optimal flows achieved) with the status of
the arcs and slacks, and the multipliers associated with the slacks of the constraints
(mutual capacity and side constraints).

There are also in the code some abnormal conditions where a Fortran “STOP”
command aborts the execution. Theoretically, they should never occur but if they
come up it would be helpful to analyze the code with the problem and data where
they appear. Messages are welcome at the e-mail address:

jcastro@eio.upc.es
Any comments and suggestions will also be welcome.

28

REFERENCES
[1] Castro, J. 1993. Efficient computing and updating of the working matrix of

the multicommodity network flow problem with side constraints through primal
partitioning. DR 93/03. Statistics and Operations Research Dept., Universitat
Politècnica de Catalunya, Barcelona. (written in Catalan).

[2] Castro, J. and N. Nabona. 1994. Nonlinear multicommodity network flows
through primal partitioning and comparison with alternative methods. System
Modelling and Optimization. Proceedings of the 16th IFIP Conference. J. Henry
and J.-P. Yvon editors. pp. 875-884. Springer-Verlag.

[3] Castro, J. and N. Nabona. 1994. Computational tests of a linear
multicommodity network flow code with linear side constraints through primal
partitioning. DR 94/02. Statistics and Operations Research Dept., Universitat
Politècnica de Catalunya, Barcelona.

[4] Castro, J. and N. Nabona. 1994. Computational tests of a nonlinear
multicommodity network flow code with linear side constraints through primal
partitioning. DR 94/05. Statistics and Operations Research Dept., Universitat
Politècnica de Catalunya, Barcelona.

[5] Castro, J. and N. Nabona. 1996. An implementation of linear and nonlinear
multicommodity network flows, European Journal of Operational Research,
1996, 92, pp. 37-53.

[6] Kennington, J.L. and R.V. Helgason. 1980. Algorithms for network
programming. John Wiley & Sons, New York.

[7] Murtagh, B.A. and M.A. Saunders. 1978. Large-scale linearly constrained
optimization. Mathematical Programming, v. 14, pp. 41–72

[8] Murtagh, B.A. and M.A. Saunders. 1983. MINOS 5.0. User’s guide. Dept. of
Operations Research, Stanford University, CA 9430, USA.

29

