
Solving quadratic multicommodity problems
through an interior-point algorithm

Jordi Castro
Department of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona (Spain)

jcastro@eio.upc.es

DR 2001-14
August 2001

Report available from http://www-eio.upc.es/~jcastro

Solving quadratic multicommodity problems

through an interior-point algorithm ∗

Jordi Castro
Department of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona

jcastro@eio.upc.es

Abstract

Standard interior-point algorithms usually show a poor performance
when applied to multicommodity network flows problems. A recent spe-
cialized interior-point algorithm for linear multicommodity network flows
overcame this drawback, and was able to efficiently solve large and dif-
ficult instances. In this work we perform a computational evaluation of
an extension of that specialized algorithm for multicommodity problems
with convex and separable quadratic objective functions. As in the linear
case, the specialized method for convex separable quadratic problems is
based on the solution of the positive definite system that appears at each
interior-point iteration through a scheme that combines direct (Cholesky)
and iterative (preconditioned conjugate gradient) solvers. The precondi-
tioner considered for linear problems, which was instrumental in the per-
formance of the method, has shown to be even more efficient for quadratic
problems. The specialized interior-point algorithm is compared with the
general barrier solver of CPLEX 6.5, and with the specialized codes PPRN
and ACCPM, using a set of convex separable quadratic multicommodity
instances of up to 500000 variables and 180000 constraints. The special-
ized interior-point method was, in average, about 10 times and two orders
of magnitude faster than the CPLEX 6.5 barrier solver and the other two
codes, respectively.

Key words: Interior-point methods, network optimization, multicommod-
ity flows, quadratic programming, large-scale optimization.

1 Introduction

Multicommodity flows are widely used as a modeling tool in many fields as,
e.g., in telecommunications and transportation problems. The multicommodity
network flow problem is a generalization of the minimum cost network flow one
where k different items—the commodities— have to be routed from a set of sup-
ply nodes to a set of demand nodes using the same underlying network. This

∗Work supported by grant CICYT TAP99-1075-C02-02.

1

kind of models are usually very large and difficult linear programming problems,
and there is a wide literature about specialized approaches for their efficient solu-
tion. However most of them only deal with the linear objective function case. In
this work we consider a specialized interior-point algorithm for multicommodity
network flow problems with convex and separable quadratic objective functions.
The algorithm has been able to solve large and difficult quadratic multicommod-
ity problems in a fraction of the time required by alternative solvers.

In the last years there has been a significant amount of research in the
field of multicommodity flows, mainly for linear problems. The new solution
strategies can be classified into four main categories: simplex-based methods [6,
15], decomposition methods [10, 12], approximation methods [13], and interior-
point methods [4, 12]. Some of these algorithms were compared in [7] for linear
problems.

The available literature for nonlinear multicommodity flows is not so ex-
tensive. For instance, of the above approaches, only the codes of [6] and [12]
(named PPRN —nonlinear primal partitioning—and ACCPM—analytic cen-
ter cutting plane method—, respectively) were extended to nonlinear (possibly
non-quadratic) objective functions. In this work we compared the specialized
interior-point algorithm with those two codes using a set of large-scale quadratic
multicommodity problems. The specialized interior-point algorithm turned out
to be the most efficient strategy for all the instances. A description and empiri-
cal evaluation of additional nonlinear multicommodity algorithms can be found
in the survey [14].

The specialized-interior point method presented here is an extension for con-
vex and separable quadratic objective functions of the algorithm introduced in
[4] for linear multicommodity flows. The solution strategy suggested for linear
problems (i.e., solving the positive definite system at each interior-point itera-
tion through a scheme that combines direct and iterative solvers) can also be
applied to convex and separable quadratic multicommodity problems. More-
over, as it will be shown in the computational results, this solution strategy
turned out to be even more efficient for quadratic than for linear problems.

Up to now most applications of multicommodity flows models dealt with
linear objective functions. Quadratic multicommodity problems are not usually
recognized as a modeling tool, mainly due to the lack of an efficient solver for
them. The specialized interior-point method can help to fill this void. The effi-
cient solution of large and difficult quadratic multicommodity problems would
open new modeling perspectives (e.g., they could be used in network design
algorithms [9]).

The structure of the document is as follows. In Section 2 we formulate the
quadratic multicommodity flow problem. In Section 3 we sketch the specialized
interior-point algorithm for multicommodity flow problems, and show that it
can also be applied to the quadratic case. Finally in Section 4 we perform
an empirical evaluation of the algorithm using a set of large-scale quadratic
multicommodity flow instances, and three alternative solvers (i.e., CPLEX 6.5,
PPRN and ACCPM).

2

2 The quadratic multicommodity flow problem

Given a network of m nodes, n arcs and k commodities, the quadratic multi-
commodity network flow problem can be formulated as

min
k∑

i=0

((ci)T xi + (xi)T Qixi)

subject to




N 0 . . . 0 0
0 N . . . 0 0
...

...
. . .

...
...

0 0 . . . N 0
1l 1l . . . 1l 1l







x1

x2

...
xk

x0




=




b1

b2

...
bk

u




0 ≤ xi ≤ ui i = 1 . . . k
0 ≤ x0 ≤ u.

(1)

Vectors xi ∈ IRn, i = 1 . . . k, are the flows for each commodity, while x0 ∈ IRn

are the slacks of the mutual capacity constraints. N ∈ IRm×n is the node-arc
incidence matrix of the underlying network, and 1l denotes the n × n identity
matrix. ci ∈ IRn are the arc linear costs for each commodity and for the slacks.
ui ∈ IRn and u ∈ IRn are respectively the individual capacities for each com-
modity and the mutual capacity for all the commodities. bi ∈ IRm are the
supply/demand vectors at the nodes of the network for each commodity. Fi-
nally Qi ∈ IRn×n are the arc quadratic costs for each commodity and for the
slacks. We will restrict to the case where Qi is a positive semidefinite diagonal
matrix, thus having a convex and separable quadratic objective function. Note
that (1) is a quadratic problem with m̃ = km + n constraints and ñ = (k + 1)n
variables.

Most of the applications of multicommodity flows in the literature only in-
volve linear costs. However, quadratic costs can be useful in the following situ-
ations:

• Adding a quadratic penalty term to the occupation of a line in a transmis-
sion/transportation network. In this case we would set Qi = 1l, i = 1 . . . k.
This would penalize saturation of lines, guaranteeing a reserve capacity to
redistribute the current pattern of flows when line failures occur.

• Replacing a convex and separable nonlinear function by its quadratic ap-
proximation.

• Finding the closest pattern of flows x to the currently used x̃, when changes
in capacities/demands are performed. In this case the quadratic term
would be (x− x̃)T (x− x̃)

• Solution of the subproblems in an augmented Lagrangian relaxation scheme
for the network design problem [9, 11]

3

3 The specialized interior-point algorithm

The multicommodity problem (1) is a quadratic program that can be written
in standard form as

min
{

cT x +
1
2
xT Qx : Ax = b, x + s = u, x, s ≥ 0

}
, (2)

where x, s, u ∈ IRñ, Q ∈ IRñ×ñ and b ∈ IRm̃. The dual of (2) is

max
{

bT y − 1
2
xT Qx− wT u : AT y −Qx + z − w = c, z, w ≥ 0

}
, (3)

where y ∈ IRm̃ and z, w ∈ IRñ. For problem (1), matrix Q is made of k+1 diag-
onal blocks; blocks Qi, i = 1 . . . k, are related to the flows for each commodity,
while Q0 are the quadratic costs of the mutual capacity slacks.

The solution of (2) and (3) by an interior-point algorithm is obtained through
the following system of nonlinear equations (see [18] for details)

rxz ≡ µe−XZe = 0
rsw ≡ µe− SWe = 0
rb ≡ b−Ax = 0
rc ≡ c− (AT y −Qx + z − w) = 0

(x, s, z, w) ≥ 0 ,

(4)

where e is a vector of 1’s of appropriate dimension, and matrices X, Z, S,W are
diagonal matrices made from vectors x, z, s, w. The set of unique solutions of (4)
for each µ value is known as the central path, and when µ → 0 these solutions
superlinearly converge to those of (2) and (3) [18]. System (4) is usually solved
by a damped version of Newton’s method, reducing the µ parameter at each
iteration. This procedure is known as the path-following algorithm [18]. Figure
1 shows the main steps of the path-following algorithm for quadratic problems.

The specialized interior-point algorithm introduced in [4] for linear multi-
commodity problems exploited the constraints matrix structure of the problem
for solving (AΘAT)∆y = b̄ (line 5 of Figure 1), which is by far the most compu-
tationally expensive step. Considering the structure of A in (1) and accordingly
partitioning the diagonal matrix Θ defined in line 3 of Figure 1, we obtain

AΘAT =
[

B C
CT D

]
=




NΘ1NT . . . 0 NΘ1

...
. . .

...
...

0 . . . NΘkNT NΘk

Θ1NT . . . ΘkNT
∑k

i=0 Θi


 , (5)

where Θi = ((Xi)−1Zi + (Si)−1W i + Qi)−1, i = 0, 1 . . . k. Note that the only
difference between the linear and quadratic case is term Qi of Θi. Moreover, as
we are assuming that Qi is a diagonal matrix, Θi can be easily computed.

Using (5), and appropriately partitioning ∆y and b̄, we can write (AΘAT)∆y =
b̄ as

[
B C
CT D

] [
∆y1

∆y2

]
=

[
b̄1

b̄2

]
. (6)

4

Figure 1: Path-following algorithm for quadratic problems.

Algorithm Path-following(A,Q, b, c, u):
1 Initialize x > 0, s > 0, y, z > 0, w > 0;
2 while (x, s, y, z, w) is not solution do
3 Θ = (X−1Z + S−1W + Q)−1;
4 r = S−1rsw + rc −X−1rxz;
5 (AΘAT)∆y = rb + AΘr;
6 ∆x = Θ(AT ∆y − r);
7 ∆w = S−1(rsw + W∆x);
8 ∆z = rc + ∆w + Q∆x−AT ∆y;
9 Compute αP ∈ (0, 1], αD ∈ (0, 1];
10 x ← x + αP ∆x;
11 (y, z, w) ← (y, z, w) + αD(∆y, ∆z, ∆w);
12 end while
End algorithm

By block multiplication, we can reduce (6) to

(D − CT B−1C)∆y2 = (b̄2 − CT B−1b̄1) (7)
B∆y1 = (b̄1 − C∆y2). (8)

System (8) is solved by performing a Cholesky factorization of each diagonal
block NΘiN, i = 1 . . . k, of B. System with matrix H = D−CT B−1C, the Schur
complement of (5), is solved by a preconditioned conjugate gradient (PCG)
method. A good preconditioner is instrumental for the performance of the
method. In [4] it was proved that if

• D is positive semidefinite, an

• D + CT B−1C is positive semidefinite,

then the inverse of the Schur complement can be computed as

H−1 =

(∞∑

i=0

(D−1(CT B−1C))i

)
D−1. (9)

The preconditioner is thus obtained by truncating the infinite power series (9)
at some term h (in practice h = 0 or h = 1; all the computational results in this
work have been obtained with h = 0). Since

Dq = Dl +
k∑

i=0

(Qi)−1,

Dq and Dl denoting the D matrix for a quadratic and linear problem respec-
tively, it is clear that for quadratic multicommodity problems the above two
conditions are also guaranteed, and then the same preconditioner can also be

5

applied. Moreover, since we are assuming diagonal Qi matrices, for h = 0 the
preconditioner is equal to H−1 = D−1, which is also diagonal, as for linear
multicommodity problems. This is instrumental in the overall performance of
the algorithm. More details about this solution strategy can be found in [4].

The effectiveness of the preconditioner is governed by the spectral radius
of D−1(CT B−1C)), which is always in [0, 1). The farthest from 1, the better
the preconditioner. According to the computational results obtained, this value
seems to be less for quadratic problems than for the equivalent linear problems
without the quadratic term, since fewer conjugate gradient iterations are per-
formed for solving (7). Moreover, the number of interior-point iterations also
decreases in some instances. This can be observed in Figures 2, 3 and 4. Figures
2 and 3 show the overall number of PCG and IP iterations for the linear and
quadratic versions of the Mnetgen problems in Table 1 of Section 4. Both ver-
sions only differ in the Q matrix. Clearly, for the quadratic problems fewer IP
and PCG iterations are performed. The number of PCG iterations per IP iter-
ation has also been observed to decrease for quadratic problems. For instance,
Figure 4 shows the number of PCG iterations per IP iteration for the linear
and quadratic versions of problem PDS20 in Table 2 of Section 4. We chose
this instance because it can be considered a good representative of the general
behavior observed and, in addition, the number of IP iterations is similar for
the linear and quadratic problems. A better understanding of the relationship
between the spectral radius of D−1(CT B−1C)) for the linear and quadratic
problems is part of the further work to be done.

Figure 2: Overall number of PCG iterations for the quadratic and linear Mnet-
gen instances.

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 P

C
G

 it
er

at
io

ns
 (

lo
g

sc
al

e)

Instance number

Linear
Quadratic

4 Computational results

The specialized algorithm of the previous section was tested using two sets of
quadratic multicommodity instances. As far as we know, there is no standard set
of quadratic multicommodity problems. Thus we developed a meta-generator

6

Figure 3: Overall number of IP iterations for the quadratic and linear Mnetgen
instances.

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 I

P
ite

ra
tio

ns

Instance number

Linear
Quadratic

Figure 4: Number of PCG iterations per interior-point iteration, for the
quadratic and linear PDS20 instance.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

IP iteration

Linear
Quadratic

that adds the quadratic term

k∑

i=1

n∑

j=1

qi
j(x

i
j)

2

to the objective function of a linear multicommodity problem. Coefficients qi
j

are randomly obtained from an uniform distribution U [0, C], where

C =

√√√√
∣∣∣∣∣

∑k
i=1

∑n
j=1 ci

j

kn

∣∣∣∣∣,

in an attempt to guarantee that linear and quadratic terms are of the same
order.

We applied our meta-generator to two sets of linear multicommodity in-
stances obtained with the well-known Mnetgen [1] and PDS [3] generators. Ta-
bles 1 and 2 show the dimensions of the instances. Columns “m”, “n”, and “k”
give the number of nodes, arcs and commodities of the network. Columns ‘ñ”

7

Table 1: Dimensions of the quadratic Mnetgen instances.
Instance m n k ñ m̃
M64−4 64 524 4 2620 780
M64−8 64 532 8 4788 1044
M64−16 64 497 16 8449 1521
M64−32 64 509 32 16797 2557
M64−64 64 511 64 33215 4607
M128−4 128 997 4 4985 1509
M128−8 128 1089 8 9801 2113
M128−16 128 1114 16 18938 3162
M128−32 128 1141 32 37653 5237
M128−64 128 1171 64 76115 9363
M128−128 128 1204 128 155316 17588
M256−4 256 2023 4 10115 3047
M256−8 256 2165 8 19485 4213
M256−16 256 2308 16 39236 6404
M256−32 256 2314 32 76362 10506
M256−64 256 2320 64 150800 18704
M256−128 256 2358 128 304182 35126
M256−256 256 2204 256 566428 67740

and “m̃” give the number of variables and constraints of the quadratic problem.
The Mnetgen and PDS generators can be downloaded from

http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

We solved both sets with an implementation of the specialized interior-point
algorithm, referred to as IPM [4], and with CPLEX 6.5 [8], a state-of-the-art
interior-point code for quadratic problems. The IPM code, as well as a parallel
version [5], can be downloaded for research purposes from

http://www-eio.upc.es/~jcastro.

Table 2: Dimensions of the quadratic PDS instances.
Instance m n k ñ m̃
PDS1 126 372 11 4464 1758
PDS10 1399 4792 11 57504 20181
PDS20 2857 10858 11 130296 42285
PDS30 4223 16148 11 193776 62601
PDS40 5652 22059 11 264708 84231
PDS50 7031 27668 11 332016 105009
PDS60 8423 33388 11 400656 126041
PDS70 9750 38396 11 460752 145646
PDS80 10989 42472 11 509664 163351
PDS90 12186 46161 11 553932 180207

8

Table 3: Results for the quadratic Mnetgen problems
CPLEX 6.5 IPM

Instance CPU n.it. CPU n.it
f∗CP LEX−f∗IPM

1+f∗
CP LEX

M64−4 0.7 12 0.3 18 −2.0e−6
M64−8 3.1 12 0.8 20 5.6e−7
M64−16 10.7 15 1.6 21 −1.6e−6
M64−32 20.8 16 4.3 25 1.9e−6
M64−64 46.8 14 10.7 31 −1.1e-6
M128−4 2.8 11 0.8 17 1.2e−7
M128−8 12.6 11 2.1 21 2.5e−6
M128−16 80.5 13 5.9 28 6.9e−6
M128−32 153.6 14 15.7 35 2.8e−6
M128−64 305.5 14 35.3 36 −1.4e−6
M128−128 741.9 15 98.8 48 −5.7e−7
M256−4 13.1 13 2.7 20 −7.9e−6
M256−8 73.8 14 6.7 22 2.4e−5
M256−16 634.1 15 22.5 34 2.3e−5
M256−32 1105.2 16 49.9 36 2.4e−6
M256−64 2102.2 16 140.0 53 4.9e−7
M256−128 4507.3 17 327.6 62 5.0e−6
M256−256 11761.3 24 835.3 85 7.0e−6

Table 4: Results for the quadratic PDS problems
CPLEX 6.5 IPM

Instance CPU n.it. CPU n.it
f∗CP LEX−f∗IPM

1+f∗
CP LEX

PDS1 1.6 23 1.3 29 −2.7e−7
PDS10 234.8 43 78.6 62 −6.6e−7
PDS20 1425.6 55 271.0 69 1.9e−6
PDS30 5309.8 76 938.3 96 −6.0e−6
PDS40 10712.3 79 1965.2 105 −4.1e−6
PDS50 14049.7 80 3163.3 114 −4.1e−7
PDS60 17133.4 71 3644.2 95 3.6e−6
PDS70 25158.3 74 5548.7 101 −1.9e−7
PDS80 26232.1 74 7029.9 100 −1.3e−6
PDS90 32412.9 77 9786.7 109 −1.2e−6

9

For each instance, Tables 3 and 4 give the CPU time in seconds required by
IPM and CPLEX 6.5 (columns “CPU”), the number of interior-point iterations
performed by IPM and CPLEX 6.5 (columns “n.it.”), and the relative error
f∗CP LEX−f∗IPM

1+f∗
CP LEX

of the solution obtained with IPM (assuming CPLEX 6.5 pro-
vides the exact optimum). Executions were carried out on a Sun Ultra2 2200
workstation with 200MHz, 1Gb of main memory, and ≈45 Linpack Mflops.

Figures 5–8 summarize the information of Tables 3 and 4. Figures 5 and 6
show respectively the ratio between the CPU times of CPLEX 6.5 and IPM,
and the number of interior-point iterations performed by CPLEX 6.5 and IPM,
with respect to the dimension of the problem (i.e., number of variables), for the
Mnetgen instances. The same information is shown in Figures 7 and 8 for the
PDS problems.

Figure 5: Ratio of the execution times of CPLEX 6.5 and IPM for the quadratic
Mnetgen problems.

0

5

10

15

20

25

30

10000 100000 1e+06
Number of variables (log scale)

CPU CPLEX 6.5/CPU IPM

C
PU

 r
at

io
 ti

m
e

Figure 6: Number of IP iterations performed by CPLEX 6.5 and IPM for the
quadratic Mnetgen problems.

10

20

30

40

50

60

70

80

90

10000 100000 1e+06

N
um

be
r

of
 it

er
at

io
ns

Number of variables (log scale)

N.it. CPLEX 6.5

N.it. IPM

From Figures 5 and 7, IPM was in all the cases more efficient than CPLEX
6.5 (the ratio time was always greater than 1.0). For some Mnetgen and PDS
instances IPM was about 20 and 5 times faster, respectively. It is important to
note that IPM makes use of standard Cholesky routines [16], whereas CPLEX

10

Figure 7: Ratio of the execution times of CPLEX 6.5 and IPM for the quadratic
PDS problems.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 100000 200000 300000 400000 500000 600000

C
PU

 r
at

io
 ti

m
e

CPU CPLEX 6.5/ CPU IPM

Number of variables

Figure 8: Number of IP iterations performed by CPLEX 6.5 and IPM for the
quadratic PDS problems.

20

30

40

50

60

70

80

90

100

110

120

0 100000 200000 300000 400000 500000 600000

N
um

be
r

of
 it

er
at

io
ns

N.it. CPLEX 6.5
N.it. IPM

Number of variables

6.5 includes a highly tuned and optimized factorization code [2]. Therefore, in
principle, the performance of IPM could even be improved. Looking at Figures
6 and 8 it can be seen that IPM performed many more interior-point iterations
than CPLEX 6.5. This is because, unlike CPLEX 6.5, the current version of
IPM does not implement Mehrotra’s predictor-corrector heuristic. In [4] it was
shown that Mehrotra’s heuristic was not appropriate for linear multicommodity
problems. However, for quadratic problems, and because of the good behavior of
the preconditioner, it could be an efficient option. Adding Mehrotra’s strategy
to IPM is part of the additional tasks to be performed.

Finally, we compared IPM and CPLEX 6.5 with PPRN [6] and with an im-
plementation of the ACCPM [12] that we developed using the standard ACCPM
library distribution [17]. For this purpose we chose some of the smallest Mnet-
gen and PDS instances, whose dimensions are shown in Tables 5 and 6 (columns
m, n, k, m̃ and ñ, with the same meaning as before). These Tables also give the
execution time in seconds (columns “CPU”) for each solver. Clearly, CPLEX
6.5 and IPM outperformed both PPRN and ACCPM. Moreover, PPRN and
ACCPM seemed not to be competitive approaches for quadratic multicommod-

11

ity flows. (On the other hand, unlike CPLEX 6.5 and IPM, they can deal with
nonlinear objective functions.)

Table 5: Dimensions and results for the small quadratic Mnetgen problems.

CPU
Instance m n k ñ m̃ CPLEX IPM PPRN ACCPM
M64−4 64 524 4 2620 780 0.7 0.3 6.0 158.0
M64−8 64 532 8 4788 1044 3.1 0.8 38.0 2116.9
M64−16 64 497 16 8449 1521 10.7 1.6 184.6 5683.4
M64−32 64 509 32 16797 2557 20.8 4.3 failed 15753.4
M64−64 64 511 64 33215 4607 46.8 10.7 12710.1 34027.3

Table 6: Dimensions and results for the small quadratic PDS problems.

CPU
Instance m n k ñ m̃ CPLEX IPM PPRN ACCPM
PDS1 126 372 11 4464 1758 1.6 1.3 75.5 failed
PDS2 252 746 11 8952 3518 5.2 7.9 293.3 failed
PDS3 390 1218 11 14616 5508 10.2 10.5 903.4 failed
PDS4 541 1790 11 21480 7741 22.4 33.9 1702.8 failed
PDS5 686 2325 11 27900 9871 53.2 44.7 2631.3 failed

5 Conclusions and future tasks

From the computational experience reported, it can be stated that the special-
ized interior-point algorithm is a promising approach for separable quadratic
multicommodity problems. Among the future tasks to be performed we find
a deep study of the behavior of the spectral radius of D−1(CT B−1C), the ad-
dition of Mehrotra’s predictor-corrector method, and using the algorithm in a
network design framework.

References

[1] A. Ali and J.L. Kennington. (1977). Mnetgen program documentation,
Technical Report 77003, Dept. of Ind. Eng. and Operations Research,
Southern Methodist University, Dallas.

[2] R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling. (2000).
MIP: Theory and practice—Closing the gap, in: System Modelling and
Optimization. Methods, Theory and Applications, eds. M.J.D. Powell and
S. Scholtes, Kluwer, 19–49.

12

[3] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi and S.J. Wichmann.
(1990). An empirical evaluation of the KORBX algorithms for military
airlift applications, Operations Research, 38, 240–248.

[4] J. Castro. (2000). A specialized interior-point algorithm for multicommod-
ity network flows, SIAM J. on Optimization, 10(3), 852–877.

[5] J. Castro. (2000). Computational experience with a parallel implementation
of an interior-point algorithm for multicommodity flows, in: System Mod-
elling and Optimization. Methods, Theory and Applications, eds. M.J.D.
Powell and S. Scholtes, Kluwer, 75–95.

[6] J. Castro and N. Nabona. (1996). An implementation of linear and nonlin-
ear multicommodity network flows, European J. of Operational Research,
92, 37–53.

[7] P. Chardaire and A. Lisser. (1999). Simplex and interior point specialized
algorithms for solving non-oriented multicommodity flow problems, Oper-
ations Research (to appear).

[8] ILOG CPLEX. (1999). ILOG CPLEX 6.5 Reference Manual Library,
ILOG.

[9] A. Frangioni. (2000). Personal communication.

[10] A. Frangioni and G. Gallo. (1999). A bundle type dual-ascent approach to
linear multicommodity min cost flow problems, INFORMS J. on Comp.,
11(4), 370–393.

[11] B. Gendron, T.G. Crainic, A. Frangioni. (1999). Multicommodity capaci-
tated network design, in Telecommunications Network Planning, B. Sansó
and P. Soriano (Eds.), Kluwer Academics Publishers, 1–19.

[12] J.-L. Goffin, J. Gondzio, R. Sarkissian and J.-P. Vial. (1996). Solving non-
linear multicommodity flow problems by the analytic center cutting plane
method, Math. Programming, 76, 131–154.

[13] Andrew V. Goldberg, Jeffrey D. Oldham, Serge Plotkin and Cliff Stein.
(1998). An implementation of a combinatorial approximation algorithm
for minimum-cost multicommodity flow, in: Lecture Notes in Computer
Sciences. Proceedings of the 6th International Integer Programming and
Combinatorial Optimization Conference, eds. R.E. Bixby, E.A. Boyd and
R.Z. Rı́os-Mercado, Springer.

[14] A. Ourou, P. Mahey and J.-Ph. Vial. (2000). A survey of algorithms for
convex multicommodity flow problems. Management Science, 46(1), 126–
147.

[15] R.D. McBride. (1998). Progress made in solving the multicommodity flow
problem, SIAM J. on Opt., 8, 947–955.

[16] E. Ng and B.W. Peyton. (1993). Block sparse Cholesky algorithms on ad-
vanced uniprocessor computers, SIAM J. Sci. Comput., 14, 1034–1056.

13

[17] O. Péton and J.-Ph. Vial. (2000). A tutorial on ACCPM, Technical Report,
HEC/Logilab, University of Geneva.

[18] S.J. Wright. (1997). Primal-Dual Interior-Point Methods, SIAM, Philadel-
phia, PA.

14

