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Abstract

The purpose of the traffic assignment problem is to obtain a flow pattern, given
a set of origin-destination travel demands and flow dependent link performance func-
tions of an urban transportation network. In the general case, the traffic assignment
problem can be formulated as a variational inequality problem. Several algorithms
have been devised for its efficient solution, but only a few of them have been based
on interior-point methods. In this work we propose a new approach that uses the
analytic center cutting plane method (ACCPM). Two variants are presented. The
first variant directly applies ACCPM to the multicommodity formulation and consid-
ers several approaches for computing the Newton direction. In the second variant,
at each iteration a different cut is added for each commodity. This disaggregated
procedure accurately solved medium sized problems. Some computational experience
is also reported.

Key words. Traffic assignment problem, variational inequalities, analytic center
cutting plane method

Introduction

The traffic assignment or network equilibrium model is used to predict the steady-state
volume of traffic on urban transportation networks. It is possible to formulate the problem
as a network model that represents the physical infrastructure and aims to compute the
flows of one or more commodities on the links of the network, each commodity being related
to the flows of particular groups of origin-destination pairs.

Whenever congestion phenomena are present, the cost function associated with the links
of the network model are nonlinear and, in most applications convex or monotone. When
interactions between network links are present the problem is known as the asymmetric
traffic assignment problem and can be formulated as a variational inequality problem (see
Smith, 1979 and Dafermos, 1980).



The traffic assignment problem is of great interest; partly because of its practical im-
portance and partly due to the fact that the size of real life problems makes algorithmic
development so challenging. This interest explains the many specialized algorithms that
have been developed since LeBlanc et al., 1975 proposed an algorithm to solve the opti-
mization formulation of this problem when no interactions are present.

For the solution of the traffic assignment problem, which do not have equivalent opti-
mization problems, Dafermos, 1982 proposed the projection algorithm in the space of arc
flows while Bertsekas and Gafni, 1982 applied it in the space of path flows. Nguyen and
Dupuis, 1984 proposed the dual cutting plane method. Marcotte, 1985 also used a cutting
plane approach in developing a gap-descent method.

Another class of iterative methods which have been successfully applied to the variational
inequality problem with compact polyhedral feasible sets are the simplicial decomposition
(Lawphongpanich and Hearn, 1984) and restricted simplicial decomposition (Lawphong-
panich and Hearn, 1986) algorithms.

However, only a few of the above approaches have been based on interior-point methods.
For instance, some limited computational experience were reported by Denault and Goffin,
1999 using small-scale traffic assignment instances with an analytic center cutting plane
method (ACCPM) for variational inequalities. Rosas et al., 2002 proposed the use of
ACCPM in a simplicial decomposition algorithm for solving the master problem, which is a
reduced variational inequality in a derived simplex space. Their computational experience
is extended to the solution of real large-scale problems.

The main goal of this work is to solve the traffic assignment problem as a variational
inequality using ACCPM. In order to do this, we apply the commodity formulation, ob-
taining a multicommodity network flow model. We developed two variants. The first of
them applies ACCPM to the multicommodity formulation using different approaches for
computing Newton’s directions. The second variant adds a cut for each commodity at each
iteration of the ACCPM. At each iteration is necessary the evaluation of the total vector
flow. Observe that the problem is nonseparable. That “disaggregated” procedure turned
out to be fairly efficient and permitted the solution of medium sized problems.

The structure of the paper is as follows. Section 1 shows the formulation of the traffic
assignment as a variational inequality problem and presents a multicommodity node-arc
formulation. Section 2 outlines the ACCPM for variational inequalities taking into account
the structure of the problem. In Section 3 we present the structure of the matrix to be
factorized. In section 4 the more efficient disaggregated variant of the solution algorithm
is introduced. Section 5 shows some computational experience with an implementation of
both variants. Finally Section 6 presents our conclusions.

1 The traffic assignment problem as a
variational inequality problem

The basis of the model is the concept of user or Wardrop equilibrium This concept is a
behavioral principle which states that drivers compete noncooperatively for the network
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resources in order to minimize their travel costs. Thus, the traffic assignment model can be
considered a special case of the Nash equilibrium problem (Haurie and Marcotte, 1985).

The user equilibrium principle states that a driver will choose the minimum-cost path
between every origin-destination pair and through this process, those utilized paths will
have equal costs. Paths with costs higher than the minimum will have no flow.

The user equilibrium principle can be formulated as a nonlinear optimization problem or
nonlinear complementarity problem or as a variational inequality over a polyhedral set. The
problem considered in this work is usually referred to as the asymmetric traffic assignment
problem because cost functions are considered nonseparable and asymmetric. Thus, we will
focus on its variational inequality formulation (one of the possibilities, like the nonlinear
complementarity problem).

The traffic assignment problem can be formulated as the following variational inequality
VI(F,Y):

Find y* € Y such that F(y*)'(y —y*) >0, VyeY, (1)

y being the vector of link flows over the entire network. The function F'(y) models the
time delay and is called the volume/delay function. F(y) is monotone as a result of the
congestion, i.e. it satisfies

(F(y1) = F(y2))' (y1 — y2) > 0,

and it is assumed continuous and differentiable. Y is the nonempty, closed, convex set,
which defines the feasible flows to satisfy OD travel demand.

The following gap function g associated with VI(F,Y) is used to measure the progress
and as a stopping criterion:

9(y) = inf Fy)"(z —y). (2)

Since Y is compact and polyhedral, the “inf”can be replaced by a “min”, and ¢(y) can be
evaluated by solving a linear optimization problem. In general g(y) < 0 and in particular
y* is a solution of VI(F,Y) if and only if g(y*) = 0. In practice the point y* is considered
an e-approximate solution if y* € Y and g(y*) > —e for a given ¢ tolerance.

1.1 Commodity formulation

In terms of arc flows, the following variational inequality problem, VI(F',Y'), solves the
traffic assignment problem:

Find y5 € Y such that F(y5) (yr —y5) >0, VyreV, (3)

where yr = >0, y” € IR" is the total vector flow and y” is the vector flow corresponding
to commodity p, n, being the number of arcs and n. the number of commodities. F' is
a continuous, monotone mapping in IR". And Y is a nonempty, closed, convex subset of
IR, defined as

Y={y:r=2yp\yPEY”:{yplNy’JZd’J,yPEO}} (4)
p=1
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where N is the node-arc incidence matrix and d” the demand vector corresponding to
commodity p

Problem (3) accepts an alternative formulation, that will be used in the solution proce-
dure. For this purpose let y € IR™*" contain all the vectors for each commodity

F(yr) F(iy”)

Fyr) S
F(y) = ‘ = 'F(E:y)

F(yr) F ( "y )

Consider the alternative variational inequality VI(F,Y) problem

Find y* € Y such that F(y")'(y —y*) >0, VyeY, (5)

where the set Y of feasible flows contains upper bounds ¢ in order to avoid problems in
finding the optimal solution. Note that the original problem (4) is uncapacitated. The
choice of the particular values of ¢ is related to the magnitudes of the solution components.
Hence Y can be represented as follows

Y = {ylAy<c}
1 C
—1 0 (6)
—-B —d
with
N dt
N d?
B = ) and d = ,
N d™e



where [ is the identity matrix of dimension m, with m = n. X n,, 0 is a zero vector of
dimension m, ¢ is an arbitrarily large upper bound vector that does not restrict (4) and B
is a ¢ X m matrix with ¢ = n. X n,,, where n,, is the number of nodes. We do not work with
equality constraints in (6) to avoid computing an additional factorization of size ¢ X ¢ at
each step.

Expanding the variational inequality VI(F,Y) formulation (5) we obtain

Fiy)i(y—y) > 0 VyeY

1 1x

y2 y2
y yr

(Fyp)', ) Fun)) || . | = > 0 VyeY
ync ync*

Fyz)' (Zy” — Zy“) > 0 Vyey,
p=1 p=1

which coincides with the variational inequality VI(F,Y) formulation (3) of the asymmetric
traffic assignment problem, with
1
y2* Ne
yr=| " and yp =y
: ]

Ne*

e
2 ACCPM for variational inequalities

ACCPM, initially developed as a nondifferentiable optimization algorithm (Goffin et al.,
1992), permits solving generalized monotone variational inequalities (Goffin et al., 1997b).
The key idea is that under the assumptions that F' is a monotone and continuous mapping
and that Y is a closed, convex and nonempty set, VI(F,Y) can be formulated as a convex
feasibility problem:

Find a point y* € Y™,

where Y* is a closed, convex and bounded set. The above result comes from the following
definition and theorem, both from Lemaréchal et al., 1991.

Definition 2.1 Let F be a mapping. Let'Y be a nonempty convex subset of IR™. Then a
weak solution to the VI(F,Y) problem, is a point y* such that

Fiy)y—y)>0 VYyeY (7)

Theorem 2.1 LetY be a nonempty, closed, convex subset of IR™, with nonempty interior
and let F' be a monotone mapping with domain dom(F). Ifint(F) C dom(F) C Y then, for
the variational inequality problem VI(F,Y), any weak solution is a solution and any solution
18 a weak solution.



The theorem above justifies the formulation of the solution set Y* as the intersection of
an infinite number of half-spaces:
V'={y" €Y |F(y'ly-y)>0, VyeY} (8)

which eventually might consist of a unique point. In other words, there is a convex feasibility
formulation of VI(F,Y), with the feasible set Y* implicitly defined by the infinite family
of cutting planes (7). Y* C Y ensures that Y* is bounded, while (7) ensures both the
convexity and closedness of Y*.

2.1 Analytic centers

Analytic centers, formally introduced by Sonnevend, 1988, are defined as centers of poly-
hedrons. Given a set
V={y|Ay<c} (9)

and the associated dual potential function
p(y) =D _In(e; — Ajy),

where the index 7 refers to the components of ¢ and the rows of A!, the analytic center y°
of Y is defined as the point maximizing the dual potential function over the interior of Y

c_ , 10
y argyerg%)s@(y) (10)

Note that the feasible set for the traffic assignment problem as defined in (6) matches (9).
Problem (10) can be solved through the equivalent mathematical program

In s,
max ; n s;
subject to Aly+s=c (11)
s > 0.

The first-order KKT optimality conditions of (11) are

Az = 0 (12)
Aly+s = ¢ (13)
Xs = e (14)
z,s > 0 (15)

where x are the Lagrange multipliers associated with constraints Ay + s = ¢, (12) impose
primal feasibility, (13) impose dual feasibility, (14) are the centrality conditions, (15) are the
bounds of the variables and e denotes a vector of ones of appropriate dimension. According
to this notation, the analytic center lies in the dual space. As usual in interior-point
methods, system (12-15) can be solved using a damped Newton method. In practice, the
nonlinear complementarity conditions (14) are usually relaxed, obtaining an approximate
analytic center that satisfies ||e — Xs|| < n < 1 for a given 7 tolerance. More details about
the solution of (12-15) can be found in Denault and Goffin, 1999.
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2.2 An ACCPM algorithm for variational inequalities

The algorithm outlined in this subsection was fully described by Goffin et al., 1997b and
Denault and Goffin, 1999. The method generates a sequence of shrinking sets Yj that
converge to the solution set (8) of VI(F,Y):

YoOYV1D...0Y, DY 1 DY".

Each new set is obtained by adding a cutting plane to the current set. This cutting plane
is computed from the analytic center of the current set, and it is used to remove a region
that does not contain any solution. Algorithm 1 shows the main steps of this procedure.

Algorithm 1 ACCPM for VI(F,Y).

step 0: Initialization

Find a initial interior point and set £k =0, Yy =Y
step 1: Analytic center

Find an approximate analytic center y; of Yj
step 2: Termination Criterion

Compute gap g(yx)

if g(yr) > —e¢, then stop: yy is a solution of VI(F,Y)
step 3: New cut

Ve :=Ye N A{y | Flyo)'y < Flye)'vi}

k=k+1

Return to step 1

3 The structure of the matrix. First variant

During the process of ACCPM we find an approximate analytic center at each iteration by
solving the optimality conditions (12-15) of problem (11) using Newton’s method. Each
Newton iteration involves linear systems with

Ay = ApSy X AL

where k refers to the ACCPM iteration, A, is the constraint matrix of the current localiza-
tion set Y}, in Algorithm 1, and S, and X, are diagonal positive definite matrices derived
from s and x. Ay has dimension m X m, regardless of the large number of possible cuts
generated. Due to the density of the k new cuts added to A% the matrix Ay becomes dense.
In our first implementation of ACCPM for the variational inequality VI(F,Y) formu-
lation, we solved the linear systems by dense Cholesky’s factorization of A,. However, we
were unable to solve medium size problems, due to the high cost of these factorizations. We
improved that solution procedure by exploiting the structure of A, and using the implicit
inverse of Sherman-Morrison-Woodbury formula (SMW) (Gondzio and Sarkissian, 2000).
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Let Ag be the initial sparse inequality constraints and let Ap be the dense generated
inequalities. Thus,

Ay = (AS AD)
where
As=(In —In Bhy, —Bhy, )
with
Nt Ap,
Nt A
BT = ' and Ap = ol
Nt Ap,.

where N* € [R">" and Ap, € R"** §=1,...,n.. Matrix A; has then m = n, x n, rows
and ng = 2m + 2(n. X n,) + k columns.

Expanding the matrix A, and using an appropriate partitioning for S, and Xj, we
obtain

A = ASTiXRAL

_ S5'Xs A
= (4 AD)( SB1XD><AtD

= AsSg'XsAL + ApSptX3 AL

S71X, I
S, X, I

STX, B
St Xy -B

— (1 -1 B —Bt)

+ ApSp' X pAL

= S;Xa + Slleb + Bt(S_lXC + S;le)B + ADS;XDA?)

C

In general, notice that A, for any iteration &, has the following dual block-angular structure



A = ASTIX A

A STEX At

Ay Sy X, AL
= 22 2 . —I—ADSI_)IXDAE

A S X AL

Ne™~ne

Ag,
= = + ApSp' Xp AL,
As,.
where
As, = A,S;1X,A
= S X, + 81X, + NU(S'X., + S;' X4, )N Vp=1,.,n.
Defining

ADP = ADp (SB;XDP)UQ A P = 1, ceey Ny

the SMW formula requires the computation of the following factorizations:

As, = L,L, p=12 ..nc

P

Ap, = L'Ap, p=1,2,..,nc
M =1+ A, Ap, = LyLiy,

p=1

(16)

where [, is the identity matrix of dimension k.
The inverse of A can be expressed as follows:

A_l = (LLt + ADAtD)_I (17)
= (LLYH™' — (LLH*ApM—TAL(LLY) !

with all inversions easy to compute, where L and Ap are matrices defined from respectively

L, and Ap,. It is even possible to exploit the symmetry and simplify (17), thus obtaining

ATl = LY — IN/*lA,;;]\{*lAﬁ)L*t)L*1 (18)
LI — ADM_lA%)L_l.
To solve
Az =g, (19)

where z, g € IR™, we partitioned both vectors accordingly to the row partition of matrix A
into blocks z = (21, 22, ..., 2,) and g = (g1, g2, -+, gn, ). The solution of (19) is thus obtained



by the following sequence of multiplications and triangular systems:

Lyv, = g, p=12..n
u = Z AtDpL;tvp
LMUJ = 221 (20)
Lyyv = w
Lz, = wv,—L,'Apv, p=12, .., n

It is possible to compute M in (16) as a sum of outer products of columns of the matrices
A%p. Similarly, for the evaluation of Ap v = L 'Ap,v in (20) we compute the multiplica-
tion of Ap v first and finally a triangular system with L, is solved.

We solved the linear systems using the SMW formula in two different ways. In the first
case we used dense Cholesky factorizations. And in the second case we applied specialized
techniques for sparse systems using the SPARSPAK package (George and Lui, 1981).

4 n.cuts. Second disaggregated variant

As shown in Section 1.1 the variational inequality VI(F,Y) problem (5) can be written as
follows

Find y* € Y such that > F(y;)'(y* —y**) >0, VyeY C R (21)
p=1
where

v =3y
p=1

Defining the cost function F? : [R™**" — JR"*" as follows

0

0 !

e ,y2
Frly)=| F ( >y ) — commodity p where y = |

p=1 .

0 y"e

0

we can formulate the following set of n. variational inequalities VI(F*,Y), p=1,...,n,
Find y* € Y such that F’(y*)'(y —y*) >0, Vye€Y, p=1,..,n. (22)

Expanding the set of n, variational inequalities (22) we obtain
10



y2 2
(0, ...,0, F(y3)',0,...,0) y — y. > 0 VyeY,p=1,..,n,
ync ync*

Flyp)lt(y» — y*) > 0 Vy€eY, p=1,_..n,

where
Nec
* p*
Yp = Z y.
p=1

Proposition 4.1 Any solution of the variational inequality VI(F,Y) problem (5) written
as (21) is a solution of the set of n. variational inequalities VI(F?,Y) (22) and conversely.

Proof: Firstly, we suppose that y**, p = 1, ..., n. solves the set of n. variational inequal-
ities VI(F*,Y) (22). If we add them together, we observe that we also find a solution of
the variational inequality VI(F,Y) problem (5) written as (21).

Next, we suppose that y* is a solution of VI(F,Y) problem (21). That means

0=gap = minF(y")'(z—y")
Zl yl*
22 y2>s<
= mig (Fp) Fen) - For) || [ =]
ch ync*

= i - Flus) (2P — yP*
rggr;/; () (z* = ™),
and by the separability structure of the commodity characterization of Y

- : *\t( p __ , p* _
> (min Fli)' (" - 7)) =0.
p=1
It must be shown that each term of the above sum is equal to zero. If a term were positive
then

min F(y5) (2" — y™) > 0,

zPeY P
which is not possible since for z# = y”*, thus, the objective function value is zero. The
nonexistence of positive terms means that negative terms are neither possible, since the
overall sum must be zero.

Therefore
. *\t p_ P _ —
min Flyr)' (" =y™) =0 Vp=1..n
which means F(y3)(y” — y**) > 0 for every p = 1,...,n., and y* = (y"*, ..., y"*")" is also a

solution of (22).
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4.1 Solving VI(F*,Y) by ACCPM
Consider the following set of n. variational inequalities VI(F?)Y)
Find y* € Y such that F(y;)'(y? —y**) >0, VyeY C R p=1,..,n,,
where
yr €Y C IR™ and Yz{yT=Zy” | y" eY?P ={y” | Ny’ =d’ y* > 0} }
p=1

The cost function F' : [R"™ — IR" is continuous and monotone. The set Y? for each
commodity can be written as

Yoo = {y Ay <}
I &
7 0 (23)
— 0 0
Y ‘ N ) < dr )
N —dr

where A is a n, X 2(n, + n,) matrix, I is the identity matrix of dimension n,, 0 is a zero
vector of dimension n, and N is the node-arc network matrix of size n,, X n,. ¢® € IR" is
an arbitrarily large upper bound vector, necessary to avoid problems in finding the optimal
solution (note that the original problem is uncapacitated), and d” is the corresponding
demand for commodity p.

This representation of the p = 1,...,n, feasible sets also matches (9) considering vari-
ables y?. Thus, it is possible to follow the same computations of Algorithm 1 to find an
approximate analytic center of each localization set in a given iteration.

Observe that the cost function depends on the total flow, that is

F(yT)ZF(i_C:y”),

hence, Algorithm 1 can not be applied independently to each commodity, due to the need
of computing the total flow before computing the new inequalities. However, with this
evaluation of the cost function, it is possible to compute n. new cuts, as follows

Flyr,)'y” < Flyr)'yg, p=1,...,n.

Algorithm 2 shows the main steps followed in order to find a solution to the set of n,
variational inequalities VI(F*,Y) (problem (22)).
As in Algorithm 1, after k iterations the sets of localization are:

Ykp:{y£|A§€pyp§C£}7 p:17"'7n0
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Algorithm 2 ACCPM for VI(F?,Y).

step 0: Initialization
Find a initial interior point and set k =0, Y =YY" p=1,...n,
step 1: Analytic center
Find n. approximate analytic centers
yh of Y p=1,....n.
step 2: Termination Criterion
Compute the primal gap g(yg, Y)
if g(yx, Y) > —e then stop
step 3: New cuts
Compute n.-cuts F(yr)'y” < Fyr,)'ye, p=1,...n¢

Ne

_ P

where yr, = Z Y
p=1

Set VI, =Y N {y | Flyn)'v” < Flyr,)'vi}, p=1...nc
k=k+1
Return to step 1

where each matrix Ay, is of dimension na x ny, and ny = n + k includes both the n =
2(ng + ny,) initial inequality constraints of (23) represented by Ag and for each p =1, ...,n,
the k generated inequalities represented by Ap,, i.e.

a Ng XN, Ng XNn,

Akp:(AS ADP), with AS:(IM ~I, N! —N! ) p=1,...n.

The main difference between Algorithm 1 and 2 is that the later adds n. cuts at step 3
and disaggregates the analytic center computation for each commodity. As already shown in
other multicommodity problems (e.g. Goffin et al., 1997a) disaggregation can significantly
improve the computational performance.

Again, we solve the optimality conditions (12-15) by Newton method, each Newton’s
iteration involves linear systems for each p = 1, ..., n, matrix

Ay, = Ay, Sy X, AL

where Ay has dimension n, X ng, regardless of the large number of possible cuts generated.

Due to the density of the k new cuts added to Aj the matrix Ay, becomes dense. As in
the first variant we solve the systems by dense Cholesky factorization of A. We also exploit
the structure of the matrix Ay, by applying the implicit inverse of Sherman-Morrison-
Woodbury formula (Gondzio and Sarkissian, 2000) and solving the sparse systems with the
SPARSPAK package (George and Lui, 1981).
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5 Computational experience

The two variants described in previous Sections were implemented in C. We also imple-
mented different approaches for computing Newton’s directions in ACCPM: dense Cholesky
factorization and the Sherman-Morrison-Woodbury formula (Gondzio and Sarkissian, 2000)
either by dense Cholesky factorization or using the SPARPAK package (George and Lui,
1981) for the sparse systems.

5.1 Test problems

The transportation networks used for testing purposes are: P (Montero and Barceld, 1996),
ND (Nguyen and Dupuis, 1984), Sioux Falls (LeBlanc et al., 1975), and Atlanta and Nor-
way (Gunluk, 1999); the last two instances were adapted to the traffic assignment problem.
Table 1 reports the dimension of these networks. In the first two columns we give the num-
ber of “nodes” and “links”. Column “centroids” gives the number of nodes with nonzero
demands/supplies. Column “Variables” shows the overall number of variables of the asso-

ciated multicommodity network model (note that “variables”= “links” x “Commodities”).
’ Problem \ Nodes Links Centroids Commodities Variables ‘
p 8 16 4 2 32
ND 13 19 4 2 38
Sioux Falls | 24 76 24 24 1824
Atlanta 15 44 15 15 660
Norway 27 102 27 27 2754

Table 1: Test networks description
We have developed two different categories of traffic assignment instances:

1. Diagonal problems involve a separable user equilibrium assignment. All the drivers
are identical, they do not differ from one to another in either their travel cost defini-
tions or their vehicle size or vehicle performance and there are no interaction between
network links.

The function that we used to relate journey speed or its reciprocal, journey time, per
unit distance and flow of traffic on a network, is one of the best known and most
widely used. We refer to the BPR function (Bureau of Public Roads). In this work
we use the general form of the BPR function

Fu(ya) = to (1 +a (z:>ﬁ> :

where ¢, is the capacity in the current link a and ¢, is the travel time necessary to
traverse the link at free flow speed in minutes. Free flow speed is assumed to hold at
zero link flow. Usual values for o and 3 are a = 0.15 and 3 = 4.

14



2. Asymmetric problems were artificially built by adding interactions between incom-
ing links at intersections. For link a we have

B
Fa(y) = to (1 +a (Z”EI“ w“”y”> ) ,

Ca

where I, is the set of link interacting with the current link a, wy < 1 is the weight
factor for link interactions randomly generated to guarantee diagonal dominance of
the Jacobian matrix, and w,, = 1.

5.2 Computational results

For the first variant, we solved the traffic assignment problem formulation VI(F,Y) pre-
sented in Section 2. We also implemented three different ways for solving the linear equation
systems (LS in the following tables):

1. By using dense Cholesky factorizations.

2. By applying the Sherman-Morrison-Woodbury formula and solving the linear systems
by only dense Cholesky factorizations.

3. By applying the SMW formula, solving the dense systems by dense Cholesky facto-
rizations and solving the sparse systems with the SPARSPAK package.

In the second variant, we solved the disaggregated formulation VI(F?,Y) presented in
Section 4. We implemented two different ways for solving the linear equations systems

4. By using dense Cholesky factorizations.

5. By applying the SMW formula, solving the dense systems by dense Cholesky factor-
izations and solving the sparse systems with the SPARSPAK package.

Tables 2 and 3 report the results obtained respectively, for diagonal and asymmetric
traffic assignment instances. Column “Problem” refers to the test transportation network
P, ND and SIO (Sioux Falls). Column “LS”, which takes values from 1 to 5, gives the
solution method for the linear systems, as presented above.

For each transportation network, the following information is provided. Column “Initial
gap” refers to the relative gap of the first iteration. Column “Final gap” is the desired
approximation of the solution in gap terms. Column “No. Iter.” is the number of iterations
proposed to reach the criteria of convergence. Column “CPU/(No. Iter.)” gives the average
time per iteration. Column “CPU” gives the total execution time in seconds. All the runs
were carried out on a Sun-4, SPARC-based with a 198.3 MHz CPU.

For the smallest (P) network and the slightly larger (ND) network it was possible to
find the solution with both variants and any LS value. As we observe, the variant with the
lowest execution time was the second with LS=4.
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Problem | LS Initial gap Final gap No. Iter. CPU/(No. Iter.) CPU
1 .600e-2 416e-4 100 .019 1.9

2 .600e-2 416e-4 100 037 3.7

P 3 .600e-2 416e-4 100 .038 3.8
4 .605e-2 .962e-4 100 015 1.5

5 .603e-2 .704e-4 100 .042 4.2

1 .142e+2 .993e-5 100 .024 2.4

2 .142e+2 .924e-5 100 .044 4.4

ND 3 142e+2 .924e-5 102 .046 4.7
4 142e+2 .322e-5 61 .014 0.9

5  .142e+2 .924e-5 66 .025 1.7

1 .132e+4 .113e+4 10 113.77 1137.7

2 .132e+4 A427e+3 200 14.06 2813.6

SIO 3  .132e+4 A27e+3 200 12.10 2421.5
4  132e+4 .940 133 3.37 4489

5 .132e+4 971 133 3.53  470.6

Table 2: Results for diagonal traffic assignment problems using ACCPM-VI

Problem | LS Initial gap Final gap No. Iter. CPU/(No. Iter.) CPU
1 .917e-1 465e-4 100 .019 1.9

2 917e-1 .466e-4 100 .038 3.8

P 3 917e-1 467e-4 100 .038 3.8
4  917e-1 .101e-3 100 .016 1.6

5 .917e-1 73Te-4 100 .046 4.6

1 .14le+2 .968e-5 103 .024 2.5

2 .141e42 .932e-5 103 .046 4.8

ND 3 .l4le+2 .932e-5 105 .046 4.9
4 14le+2 .720e-5 60 .015 0.9

5 .14le+2 .682e-5 69 027 1.9

1 .191le+4 .147e+4 10 111.01 1110.1

2  .191e+4 A470e+3 200 14.02 2805.1

SIO 3 .191e+4 470e+3 200 12.10 2420.2
4 191le+4 .956 132 3.30 435.9

5 .191e+4 .999 131 3.61 473.6

Table 3: Results for asymmetric traffic assignment problems using ACCPM-VI
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For the larger (SIO) network and the first variant, we see that none of the solution meth-
ods (LS=1,2 or 3) provided an acceptable solution (the gap was not sufficiently reduced)
after several thousands of execution seconds. With the second variant, we were able to
reduce the gap enough to obtain a good solution. However, observe that solving the linear
systems by dense Cholesky factorization (LS=4) requires less CPU time than when using
the SMW formula (LS=5).

From Tables 2 and 3 it can be concluded that disaggregation is instrumental for the
solution of the (SIO) network. This is due to the dimension of the dense systems (LS=1).
Even when we use the SMW formula (LS=2,3), note that the dense systems increase at
each iteration.

We now present the results obtained with different origin-destination (OD) matrices.
That is, for the same transportation network, we multiply the OD matrix by different
constants, in order to increase the difficulty of the problem.

Due to our previous computational experience. We only considered the second variant of
Section 4. We also compared the two different techniques implemented for the solution of the
linear systems, (LS=4,5) with the implementation of the simplicial decomposition method
for variational inequalities (called RSDVI) described by Montero and Barcel6, 1996. For
that purpose we considered the transportation networks of Sioux Falls, Atlanta and Norway.
Their dimensions are presented in Table 1.

We report in Tables 4, 5 and 6 the results obtained respectively for, Sioux Falls, Atlanta
and Norway using the diagonal traffic assignment problem with four different OD matrices.
Column “Method” provides the method used to solve the traffic assignment problem, such
as, ACCPM with LS=4,5 and RSDVI. Column “No. Iter.” is the number of iterations
performed to reach the criteria of convergence. Column “gap” is the desired approximation
of the solution in gap terms. Column “Obj(yx)” shows the objective function value of the
equivalent mathematical programming formulation. Column “CPU/(No. Iter.)” gives the
average time for iteration. Column “CPU” gives the total execution time in seconds. For
each method the three different lines in the tables present the results for the first iteration
computed, when the gap is less than one and for the last iteration computed respectively.
All the runs were carried out on a Sun-4, SPARC-based with a 198.3 MHz CPU.

We also report in Tables 7, 8 and 9 the computational results obtained respectively for,
Sioux Falls, Atlanta and Norway networks for the asymmetric traffic assignment problem
using four different OD matrices. For comparison purposes and because asymmetric prob-
lems do not have an equivalent mathematical programming, we show the value of the first
volume variable in these columns.

From the results reported in Tables 4-9 it can be concluded that for medium sized
networks, the solutions of the linear systems with dense Cholesky’s factorization (LS=4)
is more efficient than with the SMW formula (LS=5). In general both methods require
a similar number of iterations to reach the solution. However, for the first iterations the
SMW formula is more efficient, due to the reduced sized of the dense linear systems. This
size successively increases at each iteration, significantly reducing its initial efficiency.

For all the different OD matrices, we observe that ACCPM takes in general the same
amount of time to solve the different problems. Using the RSDVI the number of itera-
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OD matrix H Method No. Tter. gap Obj(yx) CPU/(No. Iter.) ~ CPU ‘

1 132e+4 .9219053e+13 .70 7

4. 133 .940 .3862184e+-08 3.37  448.9

231 .T78e-3  .3698446e+08 9.14 2112.1

1 .132e+4  .9219053e+13 40 4

1xOD D. 133 971 .3867407e+4-08 3.53  470.6
231  .409e-3  .3698389e+-08 17.02  3933.5

1 .182e+3 .1591003e4-09 .00 .0

RSDVI 29 875 .3742640e+-08 .02 .6

117 .332e-3  .3699634e+08 15 17.5

1 .132e+4 .2949585e+15 .70 e

4. 133 .976 .1235962e+10 3.41 4547

236 .566e-2  .1181840e+10 9.43 2225.9

1 .132e+4  .2949585e+15 3 3

2x0D d. 133 .956 .1236042e+-10 3.56  473.7
238 .196e-2  .1181680E+10 18.58 4423.6

1 .182e+3 .5089085e+10 .00 .0

RSDVI 28 .863 .1198149e+-10 .01 )

131 .149e-3  .1182115e+10 22 29.0

1 .132e+4 .2880169e+17 .80 .8

4. 134 977 1207323e+4-12 3.44  462.0

262 .354e-3  .1154145e+12 10.87 2849.3

1 .132e+4 .2880169e+17 40 4

5x0D d. 134 .939 .1205071e+-12 3.64  488.5
262 .259e-3  .1154139e+12 23.89 6261.4

1 182e+3  .4969675e+12 .00 .0

RSDVI 28 .863 .1169954e+-12 .02 .6

129 .104e-3  .1154297e+12 23 29.1

1 .132e+4 .9216465¢+18 .80 .8

4. 134 .950 .3859816e+13 3.48  466.4

274 .661le-3  .3693499¢+13 1172 3213.3

1 .132e+4 .9216465e+18 40 4

10xOD D. 133 951 .3860152e+-13 3.57 475.1
274 386e-3  .3693472e+13 27.05 7T413.7

1 .182e+43 .1590295e+14 .00 .0

RSDVI 28 .863 .3743845e+13 .02 .6

129 .275e-3  .3693743e+13 24 30.7

Table 4: Results for diagonal traffic assignment Sioux Falls instance, with different OD
matrices
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OD matrix H Method No. Tter. gap Obj(yx) CPU/(No. Iter.) CPU ‘

1 .249e+5 .1138975e+12 200 2

4. 105 .954 .2344665e+-03 526 55.3

168 .457e-3  .2316421e+03 798 134.1

1 .249e+5 .1138975e+12 .100 1

1x0OD D. 105 .956 .2344768e+-03 762 80.1
168 .760e-3  .2316421e+03 2.710 455.3

1 .38le+1 .2390976e4-03 .000 .0

RSDVI 5 .466 .2319535e+03 .000 .0

17 5lle-2  .2316425e+03 .005 1

1 .249e+5 .3644733e+13 .200 2

4. 109 .979 .9925889¢e+-03 535 584

179 .351e-3  .9633613e+03 842 150.8

1 .249e+45 .3644733e+13 .100 1

2x0D d. 109 915 .9912072e+-03 818 89.2
180  .663e-3  .9633381e+03 3.304 594.8

1 317e4+2 .1348940e+-04 .000 .0

RSDVI 15 .850 .9772048e+-03 .006 1

40 .449e-3  .9633841e4-03 .015 .6

1 .249e+5 .3559231e+15 .200 2

4. 109 .998 .5549700e+4-05 H34  58.3

180  .352e-2  .5298702e¢+-05 841 151.5

1 .249e+5 .3559231e+15 .100 1

5x0D D. 110 .922 .5534325e+-05 835 919
179  .557e-3  .5299080e4-05 3.231 5784

1 .334e+2 .8800627e4-05 .00 .0

RSDVI 11 .988 .5359837e+05 .01 1

36 .897e-3  .5299858e+05 .02 .6

1 .249e+5 .1138892e+17 200 2

4. 110 .923 .1738394e+07 539 99.3

174 .247e-3  .1663349e+07 824 143.5

1 .249e+5 1138892417 .100 1

10x0OD D. 109 .969 1742876e4-07 819  89.3
173 971e-3  .1663392e+07 2942 509.0

1 .337e+2  .2794643e+07 .000 .0

RSDVI 19 .670 .1678854e+07 .010 2

49 37le-2  .1663557TE4-07 .026 1.3

Table 5: Results for diagonal traffic assignment Atlanta instance, with different OD matrices
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OD matrix H Method No. Tter. gap Obj(yx) CPU/(No. Tter.) CPU ‘

1 17be+4  .2688172e+8 1.90 1.9

4. 184 985 .1740918e+4 14.17  2608.8

339 .350e-3 1722349e+-4 31.99 10845.0

1 175e+4  .2688172e+8 .70 0.7

1x0OD D. 184 .980 1740779e+4 13.66  2515.5
338 .509e-3 1722353e+4 67.46 22804.8

1 .438e+1  .1743579e+4 .00 .0

RSDVI 3 .837 1732292e+-4 .00 .0

64 .124e-3 1722358e+4 .07 4.4

1 .175e+4  .8592915e+09 1.70 1.7

4. 205 .980 4842330E+04 16.40  3363.4

363 .4ble-3  .4748415e+04 39.91 12674.4

1 175e+4 .8592915e+-09 .60 .6

2x0D d. 204 981 .4842126e+-04 17.98  3668.7
364 .690e-3  .4748356e+04 80.04 291374

1 .557e+2 .5759233e+-04 .00 .0

RSDVI 24 915 AT75728e+-04 .02 4

131 .215e-3  .4748705e+04 A7 21.9

1 175e+4 .8390840e+11 1.40 1.4

4. 193 .964 .1388900e+-06 15.15  2924.0

359 .250e-3  .1334976e+06 34.49 12383.7

1 .175e+4 .8390840e+11 .50 )

5x0D D. 192 977 .1390205e+-06 15.40  2958.6
354 .65le-3  .1335211e+4-06 75.27 26646.8

1 .241e+3 .2657788E406 .00 .0

RSDVI 36 .986 1342624E+06 .03 1.1

150 .235e-3  .1335691E+06 33 49.7

1 175e+4 .2684619e+13 1.40 1.4

4. 191 984 4173724407 14.87  2841.2

360 .194e-2  .4001678e4-07 34.64 124724

1 .175e+4 .2684619e+13 .50 5

10xOD D. 191  .985 A4177534e4-07 15.07  2880.1
364 .191e-2  .4001254e4-07 79.89 29080.1

1 .242e+3  .8392274e+07 .00 .0

RSDVI 43 844 .4017448e+-07 .04 1.9

141  .615e-3  .4002987e+07 37 51.6

Table 6: Results for diagonal traffic assignment Norway instance, with different OD matrices
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OD matrix H Method No. Tter. gap Obj(yx) cpPu/(No. Tter)  CPU ‘
1 .191e+4  1068.02517 .70 7
4. 132 .956 58.11928 3.30  435.9
211 .826e-3 57.93587 8.03 1695.2
1 .191e+4  1068.02562 40 A4
1x0OD 5. 131 .999 58.19730 3.43  450.3
211 .117e-3 57.94149 13.38 2824.2
1 .427e+2 41.542936 10 1
RSDVI 12 887 54.934993 .10 1.2
23 .654e-1 58.221992 18 4.2
1 .192e+4  2133.94572 .70 7
4. 132 .954 116.37132 3.37 4459
214 .895e-3 115.93951 8.25 1775.5
1 .192e+4  2133.94523 .30 3
2x0D 5. 131 .996 116.27136 3.42  448.7
214 .140e-3 115.97691 13.90 2976.1
1 .427e+2 83.08635 .00 .0
RSDVI 12 .887 102.62620 .02 2
41  .300e-2 114.49680 .33 13.6
1 .192e+4  5339.77793 .70 7
4. 132 .959 290.95380 3.33 439.8
232 .285e-3 289.98963 9.17 2128.0
1 .192e+4  5339.64268 40 4
5x 0D 5. 132 .955 290.62945 3.45  455.5
231  .518e-3 289.91724 17.09 3948.7
1 .427e+2 207.71596 .00 .0
RSDVI 12 .887 274.67786 .04 D
38  .4l1le-2 287.33569 12 4.7
1 .192e+4 10679.29541 .80 8
4. 132 .964 581.95184 3.75  445.6
242 .445e-3 579.98093 9.81 2374.3
1 .192e+4 10678.99369 .40 A4
10xOD 5. 132 .962 581.32612 3.53  465.3
240 .984e-3 579.93029 19.10 4585.5
1 .427e+2 415.43192 .10 1
RSDVI 12 887 549.35574 .10 1.2
38  4lle-2 574.67046 .32 12.0

Table 7: Results for asymmetric traffic assignment Sioux Falls instance, with different OD

matrices
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OD matrix H Method No. Tter. gap Obj(yx) crPu/No. Tter) CPU ‘

1 .234e+5  187.57412 200 2

4. 106 .939 13.66117 525 Hd.7

174 .920e-3 13.60099 821 143.0

1 .234e+5  187.57246 200 2

1x0OD D. 106 .939 13.66117 772 819
173 .961e-3 13.60099 2918 504.9

1 .405e+1 13.40050 .000 .0

RSDVI 4 914 13.72748 025 1

19 .912e-3 13.60392 .026 )

1 .234e+5  937.86698 200 2

4. 108 .992 27.20369 533 57.6

173 .280e-2 26.90308 815 141.0

1 .234e+5  937.86546 100 1

2x0D d. 108 .992 27.20369 797 86.1
173 .917e-3 26.90529 2916 504.5

1 .327e+2 30.14088 .000 .0

RSDVI 16 .652 27.24317 031 5

34 .100e-2 26.90760 .068 2.3

1 .234e+5  937.86698 200 2

4. 109 .951 68.02605 D38 B8.7

171 .467e-2 67.28044 816 139.7

1 .234e+5  937.86546 100 1

5x0D d. 109 951 68.02603 812 88.6
171 .466e-2 67.28042 2,799 478.7

1 .370e+2 75.47850 .000 .0

RSDVI 14 .900 69.32901 014 2

41  .684e-2 67.28119 027 1.1

1 .234e+5 1875.71089 200 2

4. 109 951 136.03977 540 58.9

167 .950e-3 134.56454 792 132.3

1 .234e+5 1875.71350 100 1

10x0OD D. 109 951 136.03981 811 884
167 .271e-2 134.55764 2.624 438.3

1 37le+2  150.96596 .000 .0

RSDVI 14 .901 138.65834 .036 )

39 .232e-2 134.56420 100 3.9

Table 8: Results for asymmetric traffic assignment Atlanta instance, with different OD
matrices
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OD matrix H Method No. Tter. gap Obj(yx) cPU/(No. Tter.) CPU ‘
1 .205e+4  242.75270 1.90 1.9
4. 178 .982 3.03302 13.44  2393.3
316 .262e-3 2.90253 29.16  9214.8
1 .205e+4  242.75410 .70 0.7
1x0OD 5. 179  .968 3.03071 13.69  2451.8
316 .688e-3 2.90261 56.27 17782.5
1 .369e+1 3.99751 10 1
RSDVI 3 .881 2.90000 .07 2
30 .478e-2 2.90000 .25 7.5
1 .205e+4 1213.74678 1.70 1.7
4. 186 .971 6.59905 14.28  2656.9
329 .321e-3 5.82283 30.60 10069.8
1 .205e+4 1213.74677 .60 .6
2x0D D. 186 .972 6.60431 14.08  2619.6
329  .398e-3 5.82315 62.99 20726.1
1 .123e+2 11.17582 .10 1
RSDVI 11 .842 5.800000 10 1.1
46 .812e-3 5.800000 42 19.5
1 .205e+4 1213.74678 1.40 14
4. 185 .994 17.29706 14.15  2618.9
308 .961e-3 14.64116 28.14  8667.8
1 .205e+4 1213.74677 .60 .6
5x 0D 5. 185 .992 17.27361 13.70  2534.6
307 .148e-2 14.64249 52.65 16166.0
1 .645e+2 41.73746 .10 1
RSDVI 13 .949 13.35894 .08 1.1
54 .895e-3 14.50000 .32 17.1
1 .205e+4 2428.85386 1.30 1.3
4. 185 .992 34.56697 14.11  2611.9
312 .427e-3 29.24969 28.71  8959.1
1 .205e+4 2428.85253 .60 .6
10xOD 5. 185 .995 34.58760 13.84  2560.9
312 .88le-3 29.25538 04.75 17085.1
1 .648e+2 90.09222 .00 1
RSDVI 12 817 29.00000 10 1.2
62 .454e-3 29.00000 .64 39.5

Table 9: Results for asymmetric traffic assignment Norway instance, with different OD

matrices
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tions slightly increases as the OD matrix is multiplied by 2, 5 or 10. For the asymmetric
Sioux Falls instance we encountered some convergence problems using RSDVI. However,

for all instances the simplicial decomposition method was significantly more efficient than
ACCPM.
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6 Conclusions

The performance of the direct application of ACCPM to the solution of the variational
inequality formulation of the traffic assignment problem has been evaluated using two dif-
ferent proposed variants. For both of them different techniques were considered to solve
the necessary linear systems. According to the obtained results, it can be concluded that
for the first iterations of ACCPM, the SMW formula (LS=5) is more efficient than dense
Cholesky’s factorization (LS=4). Nevertheless, during the process of ACCPM, when using
the SMW formula, there is an increase in the dimension of the dense system. This increase
means a rise in the cost per iteration and therefore, dense Cholesky’s factorization becomes
more competitive than the SMW formula.

Using the first variant we were only able to solve small sized instances. This is not
surprising since the multicommodity formulation increases the dimension of the problem,
which is the “number of arcs” multiplied by the “number of commodities”. In general,
ACCPM requires the generation of many cuts in order to find a solution. Therefore, the
direct application of ACCPM is not as competitive as other specialized methods for the
traffic assignment problem as simplicial decomposition.

However, we believe that the second disaggregated variant, which adds at each iteration
a different cut for each commodity is of considerable importance. According to the com-
putational results, it achieves substancial improvements in the solution of medium sized
instances. In our opinion, this is an interesting issue in the direct application of ACCPM
in solving the traffic assignment problem. Furthermore, these results could be significantly
improved by developing a parallel algorithm for this second disaggregated variant. Another
possible extension could be the use of quadratic cuts in ACCPM to improve the speed of
convergence (Denault and Goffin, 1998).
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