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Jordi Castro

Abstract Data disseminated by National Statistical Agencies (NSAs)can be classi-
fied as either microdata or tabular data. Tabular data is obtained from microdata by
crossing one or more categorical variables. Although cell tables provide aggregated
information, they also need to be protected. This chapter isa short introduction to
tabular data protection. It contains three main sections. The first one shows the dif-
ferent types of tables that can be obtained, and how they are modeled. The second
describes the practical rules for detection of sensitive cells that are used by NSAs.
Finally, an overview of protection methods is provided, with a particular focus on
two of them: “cell suppression problem” and “controlled tabular adjustment”.

1 Introduction

National Statistical Agencies (NSAs) store information about individuals orrespon-
dents(persons, companies, etc.) in microdata files. A microdata fileV of s individu-
als andt variables is as× t matrix whereVi j is the value of variablej for individual
i. Formally, it can be defined as a function

V : I → D(V1)×D(V2)×·· ·×D(Vt)

that maps individuals of setI to an array oft values for variablesV1,. . . ,Vt , D() being
the domain of those variables. According to this domain, variables can be classified
as numerical (e.g., “age”, “net profit”) or categorical (“sex”,“economy sector”).

From those microdata files, tabular data is obtained by crossing one or more
categorical variables. For instance, assuming a microdatafile with information of
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inhabitants of some region, and considering only the categorical variable “profes-
sion”, we could get the one-dimensional table of Figure 1. Crossing variables “pro-
fession” and “municipality” we could get the two-dimensional table of Figure 2.
The above two tables count the number of inhabitants in each cell; these are named
frequencytables. Instead, the table could provide information abouta third variable.
For instance, the table of Figure 3 shows the overall salary for each profession and
municipality; these are namedmagnitudetables. Formally, a table is a function

T : D(Vi1)×D(Vi2)×·· ·×D(Vi l ) → R or N,

l being the number of categorical variables that were crossed. The result of function
T (cells values) belongs toN for a frequency table, and toR for a magnitude table.

Fig. 1 One-dimensional fre-
quency table showing number
of persons for each profes-
sion.

P1 P2 P3 P4 P5 TOTAL
130 73 46 90 31 370

Fig. 2 Two-dimensional fre-
quency table showing number
of persons for each profession
and municipality.

P1 P2 P3 P4 P5 TOTAL
M1 20 15 30 20 10 95
M2 72 20 1 30 10 133
M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Fig. 3 Two-dimensional mag-
nitude table showing overall
salary (in 1000e) for each
profession and municipality.

P1 P2 P3 P4 P5 TOTAL
M1 360 450 720 400 360 2290
M2 1440 540 22 570 320 2892
M3 722 1178 375 800 363 3438

TOTAL 25222168111717701043 8620

Although tabular data show aggregated information, there is a risk of disclosing
individual information. This can be easily seen from the tables of Figures 2 and
3. Any attacker knows that the salary of the unique respondent of cell (M2,P3) is
22000e. This is named anexternal attacker. It there were two respondents in that
cell, then any of them could deduce the other’s salary, becoming aninternal attacker.
Even if there was a larger number of respondents, e.g. 5, if one of them had a salary
of, e.g. 18, there would be a disclosure risk. This scenario is namedinternal attack
with dominance.

The number of registers in a microdata filer is in general much larger than the
number of cellsn in a table (r ≫ n ≫ 0). It could be thought that, therefore, the
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protection of microdata is more complex, since it involves alarger number of infor-
mation. However, tabular data involve a number of linear constraintsm; this linear
constraints model the relations between inner and total cells, the most usual relation
being that the sum of some inner cells is equal to some marginal cell. Microdata
protection in general involves few (if not 0) linear constrains, and usuallym≫ 0.
For this reason, tabular data protection methods need Linear Programming (LP) and
Mixed Integer Linear Programming (MILP) technology, making the protection of
complex and large tables a difficult problem.

Although it contains some references to recent literature,this chapter can not
be considered a comprehensive survey on statistical disclosure control of tabular
data. Additional information can be found, for instance, inthe research monographs
[20, 21, 22, 33] and the recent survey [32]. Details about practical aspects of tabular
data protection can be found in the handbook [28].

This chapter is made of three main sections, associated to the three stages of the
tabular data protection process. Section 2 shows the different types of tables that can
be obtained, and how they are modeled. Section 3 introduces some sensitivity rules
for detection of sensitivity cells to be protected. Finally, Section 4 introduces some
of the most widely used tabular data protection methods, mainly focusing on two of
them, thecell suppression problemand thecontrolled tabular adjustment.

2 Tabular data: types and modelling

The first stage of the tabular data protection process is to know the type of table
to be protected, and how to model it. It is an important stage,since some protec-
tion methods of Section 4 can be specialized (i.e., made moreefficient) for some
particular classes of tables.

2.1 Classification of tables

Broadly, tables can be classified, according to different criteria as follows:

2.1.1 According to the cell values

The two types of tables were already introduced in Section 1.They are:

• Frequency tables, also named contingency tables. They count the number of
respondents that belong to each cell. Cell values are inN

• Magnitude tables. They provide information about each cell respondents for
another variable of the microfile. Cell values are inR.
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2.1.2 According to the sign of cell values

Protection methods usually involve the solution of difficult LP or MILP problems.
The lower bounds of the variables in those problems (either 0or −∞) are usually
related to the sign of the cell values. We have two cases:

• Positive tables: Cell values are≥ 0. It is the most usual situation. For instance, all
frequency tables and most of magnitude tables, like “salary” for “profession”×
“municipality”, are positive tables.

• General tables: Cell values can be either positive or negative. An example
of general table would be “variation of gross domestic product” for “year” ×
“state”.

2.1.3 According to table structure

This is likely the most important classification. Some protection methods can only
be applied to some of the below classes of tables.

• Single k-dimensional table: Single table obtained by crossingk categorical vari-
ables. All the tables shown above arek-dimensional tables (k = 1 for the table
of Figure 1,k = 2 for the tables of Figures 2–3). Note that the number of cells
grows very quickly (exponentially) withk.

• Hierarchical tables: Set of tables obtained by crossing some variables, and a
number of these variables have a hierarchical relation. Forinstance, consider
the three tables of Figure 4. The left subtable shows number of respondents for
“region”× “profession”; the middle subtable, a “zoom in” of regionR2, provides
the number of respondents for “municipality” (of regionR2) × “profession”;
finally the right subtable, “zip code”× “profession”, details municipalityR21.
This table belongs to a particular class named 1H2D, two-dimensional tables
with one hierarchical variable.

Fig. 4 Hierarchical table
made of three subtables: “re-
gion” × “profession”, “mu-
nicipality” × “profession”
and “zip code”× “profes-
sion”

C1 C2 C3
R1 5 6 11
R2 10 15 25
R3 15 21 36

T1

C1 C2 C3
R21 8 10 18
R22 2 5 7
R2 10 15 25

T2

C1 C2 C3
R211 6 6 12
R212 2 4 6
R21 8 10 18

T3

• Linked tables: It is the most general situation. Linked tables is a set of tables
obtained from the same microdata file. In theory, the set of all tables obtained
from a microdata file should be considered together as a (likely huge) linked ta-
ble. Hierarchical andk-dimensional tables are particular cases of linked tables.
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Note that, in theory, the only safe way for protecting all thetables from a mi-
crofile, is to jointly protect them as a single linked table. Unfortunately, in many
cases the size of the resulting table would be excessive for current LP or MILP
technology.

2.2 Modelling tables

Since linked tables are the more general case, a model for them is valid for all types
of tables. However we will exploit the particular structureof two-dimensional, three-
dimensional and 1H2D tables.

2.2.1 Two-dimensional tables

A two-dimensional table ofr + 1 rows andc+ 1 columns as that of Figure 5 is
modeled by the following constraints.

c

∑
j=1

ai j = ai(c+1) i = 1, . . . , r

r

∑
i=1

ai j = a(r+1) j j = 1, . . . ,c.
(1)

Constraints (1) can be represented by the bipartite networkof Figure 6. This al-
lows the application of efficient network optimization algorithms, such as those for
minimum-cost network flows, or shortest-paths [1]. This fact was originally noticed
in [2], and it has been extensively used in other works [4, 5, 6, 9, 14, 23, 29].

Fig. 5 General two-
dimensional table.

a11 . . . a1c a1(c+1)

. . . . . . . . . . . .
ar1 . . . arc ar(c+1)

a(r+1)1 . . . a(r+1)c a(r+1)(c+1)

2.2.2 Three-dimensional tables

The linear constraints of a three-dimensional table ofr +1 rows,c+1 columns and
l +1 levels (levels refer to categories of third variable) are
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Fig. 6 Network representing
constraints (1).

.  
.  

.

1

2

.  
.  

.

2

c

r+1c+1

1

r

r

∑
i=1

ai jk = a(r+1) jk j = 1. . .c, k = 1. . . l

c

∑
j=1

ai jk = ai(c+1)k i = 1. . . r, k = 1. . . l

l

∑
k=1

ai jk = ai j (l+1) i = 1. . . r, j = 1. . .c.

(2)

Note the above constraints correspond to acubeof data. Rearranging (2), these
constraints can be modeled as a multicommodity network [5].Variablesxi jk , i =
1, . . . , r, j = 1, . . . ,c,k = 1, . . . , l are ordered according tok, i.e.,x = (xT

i j1, . . . ,x
T
i jl )

T .
Each group for a particulark containsrc variables, and it corresponds to a layer
of the cube of data. Each layer is a two-dimensional table, which is modeled as
the network of Figure 6. Data for each particular layer (or level) corresponds to a
commodity. Thel commodities are linked by capacity constraints, forcing that the
sum for all the commodities (levels) is equal to the marginallevel. The resulting
constraint matrix structure is

A =

ai j1 ai j2 . . . ai jl

N for k = 1
N for k = 2

...
...

N for k = l
I I . . . I linking constraints,

(3)

N being the node-arc incidence network matrix for the two-dimensional tables of
each level, andI ∈R

rc×rc being the identity matrix. Exploiting this structure, signif-
icant computational savings can be obtained [7, 10].

2.2.3 Hierarchical tables

In general, hierarchical tables have to be modeled as a general linked table. However,
for the particular case of 1H2D tables, as that of Figure 4, itis possible to obtain a
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network representation. In short, the algorithm for building the network of a 1H2D
table consists of the following stages [9]:

1. Build a tree of subtables representing the structure of the 1H2D (i.e., for table
of Figure 4, the root node would be the left table; the middle table would be a
descendant of the root table; and the right table would be a descendant of the
middle table).

2. Search all the subtables of the tree using for instance a breadth-first-search, and
build the breadth-first-list.

3. Build the networks for each subtable.
4. For all the subtables in the breadth-first-list, embed thenetwork of a table within

the table of its parent table.

The above procedure is done in linear time. For instance, forthe 1H2D table of
Figure 4 after the first iteration we would get the network of Figure 7; after the
second and last iteration the definitive network of Figure 8 would be obtained. This
network model was successfully used for a fast heuristic forprotection of 1H2D
tables in [9].

Fig. 7 Intermediate network
representing 1H2D table of
Figure 4 (first iteration).
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Fig. 8 Final network repre-
senting 1H2D table of Figure
4 (second iteration).
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2.2.4 Linked tables

Any table can be modeled as a set ofn cells ai , i = 1, . . . ,n, which satisfy a set
of m linear relationsAa = b, A ∈ R

m×n, b ∈ R
m. If the table is positive then we

may add boundsai ≥ 0, i = 1, . . . ,n. Each row of matrixA = (ai j ), i = 1, . . . ,m, j =
1, . . . ,n is related to a table linear relation, andai j ∈ {1,0,−1}. The value−1 of
every equation is related to the marginal cell. The tables ofabove subsubsections
are particular cases whereA is either a node-arc incidence network flows matrix, or
a multicommodity network flows matrix. In real world problems the dimension ofn
andm can be very large, up to millions of cells. Some huge instances can be found
in http://www-eio.upc.es/ ˜ jcastro/data.html .

3 Sensitive cells and sensitivity rules

Sensitivity rules are used for detection of the set of cells with disclosure risk. For
frequency tables, thethreshold valuerule is mostly used. For magnitude tables, both
the (n,k) and thep% can be used, the latter being in general preferred. The three
rules are outlined below. More practical details can be found in [28].

3.1 The threshold rule for frequency tables

In a frequency table, a cell is considered sensitive (i.e., its value has to be protected)
if less thant respondents contribute to this cell. An usual value could bet = 3.
Although this rule could also be applied to magnitude tables, this is not a good
practice, since it misses the contribution of each respondent to the cell value.

3.2 The(n,k) and p% rules for magnitude tables

The (n,k) rule (also nameddominance rule) considers a cell is sensitive ifn or
less respondents contribute to ak% (or more) of the cell value. For instance, for a
cell 100= 30+ 30+ 20+ 10+ 10 (i.e., cell of value 100 and 5 respondents with
contributions 30, 30, 20, 10, 10), ifn = 1 andk = 50 then the cell is non-sensitive:
any respondent contribution is less than a 50% of the cell value; however, ifn = 2
andk = 50 then the cell is sensitive since 30+30> 100·0.5. The(n,k) rule tries to
avoid that a coalition ofn respondents could obtain accurate estimates of the other
respondents contributions. Some usual values are, e.g.,(n = 3,k = 75).

For the p% rule a cell is sensitive if some respondent may obtain an estimate
of other respondent contribution within ap% precision. The worse case—the one
considered in practice–is obtained when the respondent with the second largest con-
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tribution tries to estimate the value of the respondent withthe highest contribution.
For instance, for the cell 100= 55+ 30+ 10+ 3+ 2 (i.e., cell of value 100 and 5
respondents with contributions 55, 30, 10, 3, 2), the secondrespondent knows that
the value of the first respondent is at most 100−30= 70; the estimate of the first
respondent done by the second is 70. Ifp= 20%, since 70> (1+20/100) ·55= 66,
then the cell in non-sensitive. Ifp= 30, since 70< (1+30/100) ·55= 71.5, the cell
is considered sensitive. In general, for a cellX = x1+x2+ · · ·+xt with t respondents
andx1 ≥ x2 ≥ ·· · ≥ xt , the estimate ofx1 is x̂1 = X−x2, and the cell is sensitive if

x̂1−x1 < p/100x1 ⇔ X−x1−x2 < p/100x1. (4)

In general, thep% is preferred to the(n,k) rule. Indeed the(n,k) may wrongly
consider as non-sensitive sensitive cells and vice-versa.The following example,
from [30], illustrates this situation. Consider the rule(n = 1,k = 60). When applied
to the cell 100= 59+40+1, this is considered non-sensitive, since 59< 0.6 ·100.
On the other hand, the cell 100= 61+ 20+ 19 is considered sensitive, since
61 > 0.6 · 100. However, for the cell declared non-sensitive, the second respon-
dent gets a too tight estimation of the first one of value 60: 100− 59 = 61. Sim-
ilarly, for the cell considered sensitive, the estimation by second respondent would
be 100−20= 80, far from the real value.

Situations as those of the above paragraph could be avoided by using a rule(n =
2,k), but even in this case thep% rule is preferred. This is shown by noting that the
(n = 2,k) rule considers a cell as sensitive if

x1 +x2 > k/100X ⇔ X−x2−x1 < (1−k/100)X. (5)

Comparing (4) and (5), it is seen that in both cases a cell is sensitive if (X−x2)−x1,
i.e. the difference between the estimation ofx1 made by second respondent andx1,
is less than a certain percentage of either the first respondent valuex1 in (4) or the
cell valueX in (5). Note that thep% rule is more natural, and that the(n = 2,k)
suffers from overprotection. Indeed, for some particular values ofp andk it can be
proved that the set of sensitive cells provided by the rulep% is a subset of the set
obtained with(n = 2,k) This is clearly seen in the following result [28].

Proposition 1. For p and k such that k= 100 100
100+p, every non-sensitive cell for the

rule (n= 2,k) is also a non-sensitive cell for the rule p%; but the reverse implication
does not hold.

Proof. First we prove the direct implication. If a cellX = x1 +x2 + · · ·+xt is non-
sensitive for(n = 2,k) then by (5)

x1 +x2 ≤
k

100
X =

100
100+ p

X ⇒ (X−x2)−x1 ≥

(

1−
100

100+ p

)

X =
p

100+ p
X,

(6)
and also

x1 ≤
k

100
X =

100
100+ p

X ⇒
p

100
x1 ≤

p
100+ p

X. (7)
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Connecting inequalities (6)–(7) we have

(X−x2)−x1 ≥
p

100+ p
X ≥

p
100

x1,

thus the cell is non-sensitive for the rulep%.
To show that the reverse implication is not true, we considera counterexample.

For p = 10% andk = 100·100/(100+ p), a cellX = 110 with x1 = 52, x2 = 50
is non-sensitive for thep% rule, since ˆx1− x1 = (110−50)−52= 60−52> 52·
p/100. However it is sensitive for the(n = 2,k) rule, becausex1 + x2 = 102>
k/100·110= 100. ⊓⊔

4 Tabular data protection methods

Tabular data protection methods can be classified as

• Non-perturbative: they don’t change the original data, instead they “hide” data or
change the table structure. Among them we findrecodingandcell suppression.

• Perturbative: they provide an alternative table with modified values.Controlled
roundingandcontrolled tabular adjustmentbelong to this class.

The above four methods are introduced and outlined below. References for a full
description of the solution approaches can be found within each subsection.

4.1 Recoding

This simple procedure consists in aggregating or changing some of the categorical
variables that define the table, in order to satisfy sensitivity rules. This is shown in
the example of Figure 9, whose tables report the number of respondents for “pro-
fession” and “municipality”. This method is implemented intheτ-Argus software
[27]. The main advantages of this approach are its simplicity and that it works fine in
practice. The main inconvenience is that it changes the table structure; an excessive
aggregation may significantly reduce the utility of the resulting table.

Original table
P1 P2 P3 P4 P5 TOTAL

M1 20 15 30 20 10 95
M2 72 20 1 30 10 133
M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Recoded table
P1 P2 +P3 P4 P5 TOTAL

M1 20 45 20 10 95
M2 72 21 30 10 133
M3 38 53 40 11 142

TOTAL 130 119 90 31 370

Fig. 9 Original and recoded table after aggregation of professionsP2 andP3.
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4.2 Cell suppression

Given a set of sensitive cells to be protected (namedprimarycells), the cell suppres-
sion method removes them, and an additional set of cells named secondarycells to
guarantee that the value of primary cells can not be disclosed. The purpose of the
cell suppression problem(CSP) is to find the set of secondary cells that minimize
some information loss criteria. Figure 10 shows an example of a two-dimensional
table with only one primary cell in boldface; removing this cell is not enough, since
its value can be retrieved from marginals, thus forcing the suppression of three ad-
ditional complementary cells.

Fig. 10 Original table with
primary cell in boldface, and
protected table after suppres-
sion of three secondary cells.

Original table
P1 P2 P3 TOTAL

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

TOTAL 98 101 110 309

Protected table
P1 P2 P3 TOTAL

M1 24 72
M2 38 116
M3 40 39 42 121

TOTAL 98 101 110 309

From the protected table of Figure 10, any attacker may deduce a lower and upper
bound for the primary cell. Indeed, considering variablesx11, x13, x21, x23 for the
primary and secondary cells, a lower bounda23 and an upper bounda23 for the
primary cell can be obtained by solving

a23 = min x23

subjecttox11+x13 = 72−24
x21+x23 = 116−38
x11+x21 = 98−40
x13+x23 = 110−42
(x11,x13,x21,x23) ≥ 0

and

a23 = maxx23

subjecttox11+x13 = 72−24
x21+x23 = 116−38
x11+x21 = 98−40
x13+x23 = 110−42
(x11,x13,x21,x23) ≥ 0.

(8)

The solutions to (8) area23 = 20 anda23 = 68. If, for instance,lower andupper
protection levelsof l pl = upl = 10 were imposed (i.e., the protection pattern must
guarantee that no attacker can deduce a value of the sensitive cell within the range
[40− l pl ,40+upl] = [30,50]), then this cell would be protected by this suppression
pattern sincea23 = 20< 30 anda23 = 68> 50.

The above example illustrated the basics of CSP. A general formulation is now
provided. Any instance of CSP is defined by the following parameters:

• A general tableai , i = 1, . . . ,n, with m linear relationsAa= b, a = (a1, . . . ,an)
T

being the vector of cell values.
• Upper and lower boundsu and l for the cell values, which are assumed to be

known by any attacker:l ≤ a≤ u (e.g.,l = 0, u = +∞ for a positive table).
• Vector of nonnegative weights associated to the cell suppressionswi , i = 1, . . . ,n.

If wi = 1 the number of cells is minimized; ifwi = ai the value suppressed is
minimized.
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• SetP ⊆ {1, . . . ,n} of primary or sensitive cells.
• Lower and upper protection levels for each primary celll plp anduplp p ∈ P

(usually either a fraction ofap or obtained from the sensitivity rulesp% and
(n,k)).

CSP looks for a setS of secondary cells to be removed such that for allp∈ P

ap ≤ ap− l plp and ap ≥ ap +uplp, (9)

ap andap being defined as

ap = min xp

subject toAx= b
l i ≤ xi ≤ ui i ∈ P ∪S

xi = ai i 6∈ P ∪S

and

ap = max xp

subject toAx= b
l i ≤ xi ≤ ui i ∈ P ∪S

xi = ai i 6∈ P ∪S .
(10)

The classical model for CSP was originally formulated in [29]. It considers two sets
of variables

• yi ∈ {0,1}, i = 1, . . . ,n is 1 if cell has to be suppressed, 0 otherwise.
• Fore each primary cellp ∈ P, two auxiliary vectorsxl ,p ∈ R

n andxu,p ∈ R
n,

which represent cell deviations (positive or negative) from the originalai values;
they are needed to guarantee the protection levels.

The resulting model is

min
n

∑
i=1

wiyi

subject to
Axl ,p = 0

(l i −ai)yi ≤ xl ,p
i ≤ (ui −ai)yi i = 1, . . . ,n

xl ,p
p ≤−l plp

Axu,p = 0
(l i −ai)yi ≤ xu,p

i ≤ (ui −ai)yi i = 1, . . . ,n
xu,p

p ≥ uplp







































∀ p∈ P

yi ∈ {0,1} i = 1, . . . ,n.

(11)

The inequality constraints of (11) with both right- and left-hand sides impose bounds
on xl ,p

i andxu,p
i whenyi = 1, and prevent deviations in non-suppressed cells (i.e.,

yi = 0). Clearly, the constraints of (11) guarantee that the solutions of the linear
programs (10) will satisfy (9).

Model (11) is the basis of several solution methods, either optimal or heuris-
tic. Note however that it can not be used directly as formulated here, because (11)
gives rise to a MILP problem ofn binary variables, 2n|P| continuous variables,
and 2(m+ 2n)|P| constraints. This problem is very large even for tables of mod-
erate size and number of primary cells. For instance, for a table of 8000 cells, 800
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primaries, and 4000 linear relations, we obtain a MILP with 8000 binary variables,
12,800,000 continuous variables, and 32,000,000 constraints.

The unique currently optimal solution approach decomposes(11) by means of a
Benders decomposition [3]. Initially applied to two-dimensional tables [23], it was
later extended to general tables [24]. The main benefit of this approach is that it guar-
antees an optimal solution. The main drawback is that the number of cuts needed
(i.e., iterations of Benders method) may be very large, resulting in a prohibitive
computational time. This does not happen for two-dimensional tables (the approach
is very fast for this kind of tables), but it becomes computationally very expensive
for more complex tables, as it will be shown below in a numerical example. This
method is implemented in theτ-Argus package [27].

Most heuristic approaches for (11) find a feasible, hopefully good point, by
network optimization algorithms (in particular, minimum-cost network flows, and
shortest paths [1]). Unfortunately, those heuristics can only be used in tables that ac-
cept a network representation: two-dimensional and 1H2D hierarchical tables (the
latter is however an interesting case for NSAs). Some attempts have been made for
extending them to three-dimensional tables [18], but as mentioned in Section 2.2.2,
three-dimensional tables correspond to multicommodity flows, and therefore “stan-
dard single-commodity” network optimization procedures are not valid (and rather
unsuccessful). Among those heuristics we find the seminal paper [29], and [5, 14],
which rely on minimum-network cost flows. For general tables[4] suggested an
efficient procedure based on shortest paths. Some of those ideas were sensibly com-
bined in the approach of [9], based on shortest paths but valid for positive tables.
This approach is very efficient, but it can only be applied to either two-dimensional
or 1H2D hierarchical tables. This method is implemented in theτ-Argus package.

We finally mention two other heuristics, which are also available in theτ-Argus
package. Thehypercube[25], initially developed fork-dimensional tables, is a sim-
ple and fast procedure. For two-dimensional tables it can beseen as a network flows
approach that only considers a subset of the flows (thus providing less quality so-
lutions than heuristics based on network optimization). Although it is efficient, in
practice tends to oversuppress cells and, moreover, it doesnot guarantee a feasi-
ble solution (indeed, it finishes with some underprotected cells). Some of the above
drawbacks are also shared by the other heuristic, namedHitas [19]. That approach
decomposes any table in a tree of smaller two-dimensional subtables and locally
protects them by the previously cited optimal Benders decomposition approach.
Since some linking constraints between subtables are removed, the final solution
is not guaranteed to be feasible. However, the quality of thesolutions is in general
acceptable.

It is not easy to compare the above procedures computationally, since the source
code is not available. However, they can be run with the same table from theτ-
Argus package, which implements four of them: the optimal approach of [24], the
shortest paths heuristic of [9], and the two (infeasible) heuristics of [19] and [25]. To
compare them, in [26] a toy table 1H2D was generated withτ-Argus. This table was
obtained from the microdata file accompanying theτ-Argus distribution, crossing
categorical variables “industry code” and “size”, and using “var2” as explanatory
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variable. The results are reported in Table 1. Columns “#supp.” and “#val. supp.”
provide information about the solution reported (number ofsuppressions, and total
value suppressed, respectively). The total value suppressed is the objective function
to be minimized. Column “CPU sec” provides the CPU time. Timelimits of 2 and
10 minutes were set for the optimal procedure. Even such a small instance is very
difficult for the Benders decomposition approach, but it provides a better objective.
The shortest paths heuristic provides better results than the other heuristics (and it
is guaranteed to provide a feasible solution). In addition it requires less than 1% of
the CPU time of the optimal approach for a solution with an objective value only a
20% worse. However, if the table was more complex (instead of1H2D) the shortest
paths heuristic could not be used.

Table 1 Results for table “IndustryCode× Size→ Var2”, from microdata file ofτ-Argus distri-
bution.

Method #supp. #val. supp. CPU sec†

Hypercube 637 15494253 9
HiTas 528 9016562 15
Shortest paths 538 8795130 4
Benders decomposition 557 7830730 120∗

Benders decomposition 483 7216286 622∗

† Results on a PC with one AMD Athlon 44 00+ 64 bits dual core
∗ Time limit

4.3 Controlled rounding

The method ofroundingachieves protection by rounding all cell tables to a multiple
of a certain base numberr. Figure 11 shows an example of a two-dimensional table
using a base numberr = 5. Note that the total cell could not be rounded to the closest
multiple of 5, otherwise the resulting table would not be additive. This variant that
guarantees additivity is namedcontrolled rounding, instead of rounding.

Fig. 11 Original and rounded
table using a base number
r = 5.

Original table
P1 P2 P3 TOTAL

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

TOTAL 98 101 110 309

Rounded table
P1 P2 P3 TOTAL

M1 20 25 30 75
M2 40 40 40 120
M3 40 40 40 120

TOTAL 100 105 110 315

Although controlled rounding was already in use two decadesago [15], some re-
cent extensions using lower and upper protection levels have been considered [31].
The complexity of the resulting model is similar to that of cell suppression, resulting
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in a large MILP which is solved by Benders decomposition [3].This model is imple-
mented in theτ-Argus package. One of the main drawbacks of controlled rounding
is that it forces deviations for all the cells that are not originally a multiple of the
baser, reducing the utility of the resulting table. In addition, to guarantee additiv-
ity, total cells have also to be rounded, likely to a multiplewhich can be far from
the original value. The method of next subsection, which also perturbs cell values,
avoids some of these inconveniences of controlled rounding.

4.4 Controlled tabular adjustment

Given a table, a set of sensitive cells, and some lower and upper protection lev-
els, the purpose ofcontrolled tabular adjustment(also known asminimum-distance
controlled tabular adjustmentor simplyCTA) is to find the closest safe table to the
original one (i.e., the closest table that meets the protection levels). Figure 12 shows
an example for a small two-dimensional table with one sensitive cell in boldface,
with lower and upper protection levels equal to five (left table of the Figure). If the
protection sense is “lower”, then the value published for the sensitive cell should be
less or equal than 35; the optimal adjusted table for this case is shown in the middle
table of Figure 12. If the protection sense is “upper”, then the value must be greater
or equal than 45, as shown in the right table of Figure 12.

Original table
P1 P2 P3 TOTAL

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

TOTAL 98 101 110 309

Adjusted table,
lower protection sense

P1 P2 P3 TOTAL
M1 15 24 33 72
M2 43 38 35 116
M3 40 39 42 121

TOTAL 98 101 110 309

Adjusted table,
upper protection sense

P1 P2 P3 TOTAL
M1 25 24 23 72
M2 33 38 45 116
M3 40 39 42 121

TOTAL 98 101 110 309

Fig. 12 Original table with sensitive cell in boldface, of lower and upper protection levels equal
to five. Protected tables with “lower protection sense” and “upper protection sense” (i.e., value of
sensitive is respectively reduced and increased by five units).

CTA was introduced in the manuscript [17] and, independently and in an ex-
tended form, in [8] (in the latter they were named minimum-distance controlled
perturbation methods). The parameters that define any CTA instance are the same
than for the cell suppression problem (see, Subsection 4.2), i.e.:

• A general tableai , i = 1, . . . ,n, with m linear relationsAa= b.
• Upper and lower boundsu andl for the cell values, assumed to be known by any

attacker:l ≤ a≤ u.
• Vector of nonnegative weights associated to the cell perturbationswi , i = 1, . . . ,n.
• SetP ⊆ {1, . . . ,n} of sensitive cells.
• Lower and upper protection levels for each primary celll plp anduplp p∈ P.
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CTA finds the safe tablex closest toa, using some distanceLw:

minx ||x−a||L(w)

subject toAx= b
lx ≤ x≤ ux

xp ≤ ap− l plp or xp ≥ ap +uplp p∈ P.

(12)

Definingz= x−a, lz = lx−a anduz = ux−a, (12) can be recast in terms of devia-
tions:

minz ||z||L(w)

subject toAz= 0
lz ≤ z≤ uz

zp ≤−l plp or zp ≥ uplp p∈ P.

(13)

To model the “or” constraints it is necessary to consider binary variablesyp ∈ {0,1},
p∈ P , such thatyp = 1 if cell is “upper protected” (i.e,zp ≥ uplp), andyp = 0 if
it is “lower protected” (zp ≤−l plp). For the particular case of distanceL1, it is also
needed a pair of variablesz+

i andz−i , such thatzi = z+
i −z−i and|zi | = z+

i +z−i . The
resulting MILP model is

min
z+,z−

n

∑
i=1

wi(z
+
i +z−i )

subject toA(z+ −z−) = 0
0≤ z+

i ≤ uzi i 6∈ P

0≤ z−i ≤−lzi i 6∈ P

upliyi ≤ z+
i ≤ uzi yi i ∈ P

l pl i(1−yi) ≤ z−i ≤−lzi (1−yi) i ∈ P

yi ∈ {0,1} i ∈ P.

(14)

Problem (14) has|P| binary variables, 2n continuous variables andm+4|P| con-
straints. The size of (14) is much less than that of the the cell suppression formu-
lation (11). For instance, for a table of 8000 cells, 800 primaries, and 4000 linear
relations, CTA formulates a MILP of 800 binary variables, 16000 continuous vari-
ables and 7200 constraints (these figures were 8000, 12,800,000 and 32,000,000 for
CSP).

Because of the smaller size of CTA compared to other approaches, it is possible to
apply state-of-the-art MILP solvers. Such an implementation was developed using
both CPLEX and XPRESS in a package to be used by Eurostat [13].However,
real world large and complex instances are still difficult for such generic solvers,
and some preliminary work has been started using optimal approaches based on
Benders reformulation [11], and heuristics [26]. The benefits of CTA are not limited
to a smaller size of the resulting MILP problem. CTA can be easily extended with
constraints to meet some data quality criteria [16]. It has also been experimentally
observed that the quality of CTA solution is comparable (in some instances even
better) than that of CSP [12]: indeed the number of cells withsignificantly large
deviations is much smaller than the number of cells removed by CSP.
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5 Conclusions

This chapter introduced some of the currently most used techniques for tabular data
protection. All of them share, at different degrees, the same computational draw-
backs: they result in large difficult MILP optimization problems. Current research
for improving the solution of these MILP problems is being undertaken, mainly
for the most recent method, controlled tabular adjustment.That research makes use
of recent advances in mathematical optimization. There arealternative protection
methods, likeinterval protectionor partial cell suppressionwhich result in a very
large, even massive, linear programming problem. Some approaches based on Ben-
ders decomposition were suggested in the literature. Beinga continuous optimiza-
tion problem, specialized interior-point methods for structured problems can also be
a very efficient alternative. This is research to be conducted in the near future in this
challenging field.
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