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Statistical disclosure control in tabular data !

Jordi Castro

Abstract Data disseminated by National Statistical Agencies (N®Ag)be classi-
fied as either microdata or tabular data. Tabular data isradatdrom microdata by
crossing one or more categorical variables. Although eblis provide aggregated
information, they also need to be protected. This chaptarsiort introduction to
tabular data protection. It contains three main sectiohs.first one shows the dif-
ferent types of tables that can be obtained, and how they adeled. The second
describes the practical rules for detection of sensitiis tieat are used by NSAs.
Finally, an overview of protection methods is provided,hnat particular focus on
two of them: “cell suppression problem” and “controlledukdy adjustment”.

1 Introduction

National Statistical Agencies (NSAs) store informatiooatindividuals orespon-
dents(persons, companies, etc.) in microdata files. A microdbt& fof sindividu-
als and variables is @ x t matrix wherevj; is the value of variablg for individual
i. Formally, it can be defined as a function

Vil —D(Vi) xD(V2) x--- x D(\)

that maps individuals of séto an array of values for variable¥;,. . . ,\\4, D() being

the domain of those variables. According to this domainiabdes can be classified

as numerical (e.g., “age”, “net profit”) or categorical &&eeconomy sector”).
From those microdata files, tabular data is obtained by trgssne or more

categorical variables. For instance, assuming a micrdiatavith information of
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inhabitants of some region, and considering only the categlovariable “profes-
sion”, we could get the one-dimensional table of Figure bsSing variables “pro-
fession” and “municipality” we could get the two-dimensabriable of Figure 2.
The above two tables count the number of inhabitants in eeltitleese are named
frequencytables. Instead, the table could provide information alagbird variable.
For instance, the table of Figure 3 shows the overall satargdch profession and
municipality; these are namedagnitudeables. Formally, a table is a function

T:D(V;,) x D(\;,) x --- x D(V;,) — R or N,

| being the number of categorical variables that were cro§desiresult of function
T (cells values) belongs t for a frequency table, and f& for a magnitude table.

Fig. 1 One-dimensional fre-
guency table showing number

o_f persons for each profes- P, P, P Py B TOTAL
sion- [130(73[46]90[31] 370 |

Fig. 2 Two-dimensional fre-

guency table showing number P, P P; P, B TOTAL
of persons for each profession My | 20(15|30|20{10] 95
and municipality. My | 72|20 1|30{10] 133

Mz | 38(38[1540{11] 142
TOTAL [130,73]|46(90[31| 370

Fig. 3 Two-dimensional mag-

nitude table showing overall PP B P P B TOTAL
salary (in 100€) for each My |[360]450[ 720| 400| 360| 2290
profession and municipality. M, [1440 540| 22 [ 570| 320| 2892

Mz | 722|1178 375| 800| 363| 3438
TOTAL|25222168111717701043 8620

Although tabular data show aggregated information, theeerisk of disclosing
individual information. This can be easily seen from thelg¢alof Figures 2 and
3. Any attacker knows that the salary of the unique respandiecell (Mz, ) is
2200GE. This is named aexternal attackerlt there were two respondents in that
cell, then any of them could deduce the other’s salary, beaapaminternal attacker
Even if there was a larger number of respondents, e.g. 5eibéthem had a salary
of, e.g. 18, there would be a disclosure risk. This scenarimmednternal attack
with dominance

The number of registers in a microdata filés in general much larger than the
number of cell: in a table ¢ > n > 0). It could be thought that, therefore, the
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protection of microdata is more complex, since it involvéarger number of infor-
mation. However, tabular data involve a number of linearst@intsm; this linear
constraints model the relations between inner and totkd,¢kk most usual relation
being that the sum of some inner cells is equal to some margatia Microdata
protection in general involves few (if not 0) linear congig and usuallyn > 0.
For this reason, tabular data protection methods need LiRvegramming (LP) and
Mixed Integer Linear Programming (MILP) technology, makitme protection of
complex and large tables a difficult problem.

Although it contains some references to recent literattlmis, chapter can not
be considered a comprehensive survey on statistical disaocontrol of tabular
data. Additional information can be found, for instancethia research monographs
[20, 21, 22, 33] and the recent survey [32]. Details abouttizal aspects of tabular
data protection can be found in the handbook [28].

This chapter is made of three main sections, associatee tihtbe stages of the
tabular data protection process. Section 2 shows the eliftéypes of tables that can
be obtained, and how they are modeled. Section 3 introduees sensitivity rules
for detection of sensitivity cells to be protected. FinaBgction 4 introduces some
of the most widely used tabular data protection methodsnijn&cusing on two of
them, thecell suppression problemnd thecontrolled tabular adjustment

2 Tabular data: typesand modelling

The first stage of the tabular data protection process is tavkhe type of table
to be protected, and how to model it. It is an important stagese some protec-
tion methods of Section 4 can be specialized (i.e., made eifficdent) for some
particular classes of tables.

2.1 Classification of tables

Broadly, tables can be classified, according to differeiteiga as follows:

2.1.1 Accordingtothecell values

The two types of tables were already introduced in Sectidrhi&y are:

e Frequency tables, also named contingency tables. They count the number of
respondents that belong to each cell. Cell values ake in

e Magnitude tables. They provide information about each cell respondents for
another variable of the microfile. Cell values aréRin
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2.1.2 According tothe sign of cell values

Protection methods usually involve the solution of difftduP or MILP problems.
The lower bounds of the variables in those problems (eith@r 9«) are usually
related to the sign of the cell values. We have two cases:

e Positivetables: Cell values are> 0. Itis the most usual situation. For instance, all
frequency tables and most of magnitude tables, like “sal@ryprofession”x
“municipality”, are positive tables.

e General tables: Cell values can be either positive or negative. An example
of general table would be “variation of gross domestic potior “year” x
“state”.

2.1.3 Accordingtotablestructure

This is likely the most important classification. Some petitn methods can only
be applied to some of the below classes of tables.

e Singlek-dimensional table: Single table obtained by crossikgategorical vari-
ables. All the tables shown above &€limensional tablesk(= 1 for the table
of Figure 1,k = 2 for the tables of Figures 2-3). Note that the number of cells
grows very quickly (exponentially) witk.

e Hierarchical tables. Set of tables obtained by crossing some variables, and a
number of these variables have a hierarchical relation.ifgiance, consider
the three tables of Figure 4. The left subtable shows numhberspondents for
“region”x “profession”; the middle subtable, a “zoom in” of regiBp, provides
the number of respondents for “municipality” (of regi®a) x “profession”;
finally the right subtable, “zip codek “profession”, details municipalityry;.
This table belongs to a particular class named 1H2D, twcedsional tables
with one hierarchical variable.

Fig. 4 Hierarchical table
made of three subtables: “re-
gion” x “profession”, “mu-

R P C1 G G C1 G G GGG
g'rfépf‘z':tycg de'f,’rxof?srz'f‘érs‘_ R[5S 611 Ru[8 1018 Rl 6 |12
el P P Ro|10 1525 Rp|2 5|7 Ros|2 4 |6

Rs[15 2136 R, [10 1525 R, [8 1018

T1 T T3

e Linked tables: It is the most general situation. Linked tables is a set detwab
obtained from the same microdata file. In theory, the setldfhles obtained
from a microdata file should be considered together as dylikege) linked ta-
ble. Hierarchical and-dimensional tables are particular cases of linked tables.
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Note that, in theory, the only safe way for protecting all tables from a mi-
crofile, is to jointly protect them as a single linked tableftrtunately, in many
cases the size of the resulting table would be excessiveufoerat LP or MILP
technology.

2.2 Modelling tables

Since linked tables are the more general case, a model forithealid for all types
of tables. However we will exploit the particular structoféwo-dimensional, three-
dimensional and 1H2D tables.

2.2.1 Two-dimensional tables

A two-dimensional table of +1 rows andc+ 1 columns as that of Figure 5 is
modeled by the following constraints.

C

Zaijzal(c+1) i:17"'ar

e )
gjj = 1)j j=1,...,C.

i; Ar+1)j

Constraints (1) can be represented by the bipartite netebfkigure 6. This al-
lows the application of efficient network optimization atigloms, such as those for
minimum-cost network flows, or shortest-paths [1]. Thig faas originally noticed
in [2], and it has been extensively used in other works [4,9, 84, 23, 29].

) a ... a a
Fig. 5 General two- H le e+
dimensional table. T
arg . 8 8r(c+1)
Ar+1)1 -+ Arane| @+ (et

2.2.2 Three-dimensional tables

The linear constraints of a three-dimensional table-pfl rows,c-+ 1 columns and
| +1 levels (levels refer to categories of third variable) are
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Fig. 6 Network representing
constraints (1).

;
ajjk = ar1nk J=1...c, k=1...1

% ()]

Zaijk:ai(c+1)k i=1...r, k=1...1 @)

=1

|

Zaiik:aij(|+1) i=1...r, j=1...c.

K=1

Note the above constraints correspond tubeof data. Rearranging (2), these
constraints can be modeled as a multicommodity network\[afiablesx;ji,i =
1,...,r,j=1,...,ck=1,...,1 are ordered according tgi.e.,x = (x,-le,...,xﬁI )T
Each group for a particulgt containsrc variables, and it corresponds to a layer
of the cube of data. Each layer is a two-dimensional tabldéchvis modeled as
the network of Figure 6. Data for each particular layer (eelgcorresponds to a
commodity. Thd commodities are linked by capacity constraints, forcirat the
sum for all the commodities (levels) is equal to the margleaél. The resulting
constraint matrix structure is

dij1 Gjj2 ... 4jj|
N fork=1
N fork=2
A= . : (3)
N |fork=I
I 1 ... 1 [|linking constraints,

N being the node-arc incidence network matrix for the two<aigional tables of
each level, antl € R™*'® being the identity matrix. Exploiting this structure, sign
icant computational savings can be obtained [7, 10].

2.2.3 Hierarchical tables

In general, hierarchical tables have to be modeled as aadiméed table. However,
for the particular case of 1H2D tables, as that of Figure i, fiiossible to obtain a



Statistical disclosure control in tabular data 7

network representation. In short, the algorithm for buigdthe network of a 1H2D
table consists of the following stages [9]:

1. Build a tree of subtables representing the structure eflth2D (i.e., for table
of Figure 4, the root node would be the left table; the middlalé¢ would be a
descendant of the root table; and the right table would besaehelant of the
middle table).

2. Search all the subtables of the tree using for instanceadt-first-search, and
build the breadth-first-list.

3. Build the networks for each subtable.

4. For all the subtables in the breadth-first-list, embechttevork of a table within
the table of its parent table.

The above procedure is done in linear time. For instancethi®rlH2D table of
Figure 4 after the first iteration we would get the network ajufe 7; after the
second and last iteration the definitive network of FiguredBiMt be obtained. This
network model was successfully used for a fast heuristiqpfotection of 1H2D
tables in [9].

Fig. 7 Intermediate network
representing 1H2D table of
Figure 4 (first iteration).

Fig. 8 Final network repre-
senting 1H2D table of Figure
4 (second iteration).
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2.2.4 Linked tables

Any table can be modeled as a setrotells g;,i = 1,...,n, which satisfy a set
of mlinear relationsAa= b, A € R™", b e R™. If the table is positive then we
may add bounds; > 0,i =1,...,n. Each row of matrbdA = (a;j),i=1,....m,j =
1,...,nis related to a table linear relation, ang € {1,0,—1}. The value—1 of
every equation is related to the marginal cell. The tableabmive subsubsections
are particular cases whefes either a node-arc incidence network flows matrix, or
a multicommaodity network flows matrix. In real world problsitihe dimension af
andm can be very large, up to millions of cells. Some huge instawesm be found

in http://www-eio.upc.es/ ~ jcastro/data.html

3 Sensitive cells and sensitivity rules

Sensitivity rules are used for detection of the set of celth wisclosure risk. For
frequency tables, thilareshold valueule is mostly used. For magnitude tables, both
the (n,k) and thep% can be used, the latter being in general preferred. The thre
rules are outlined below. More practical details can be dour{28].

3.1 The threshold rule for frequency tables

In a frequency table, a cell is considered sensitive (i®value has to be protected)
if less thant respondents contribute to this cell. An usual value could be3.
Although this rule could also be applied to magnitude tahileis is not a good
practice, since it misses the contribution of each respuairtdethe cell value.

3.2 The(n,k) and p% rules for magnitude tables

The (n,k) rule (also namediominance rulk considers a cell is sensitive if or
less respondents contribute td% (or more) of the cell value. For instance, for a
cell 100= 30+ 30+ 20+ 10+ 10 (i.e., cell of value 100 and 5 respondents with
contributions 30, 30, 20, 10, 10),iif= 1 andk = 50 then the cell is hon-sensitive:
any respondent contribution is less than a 50% of the celleydiowever, ifn = 2
andk = 50 then the cell is sensitive since-8@0 > 100-0.5. The(n,k) rule tries to
avoid that a coalition of respondents could obtain accurate estimates of the other
respondents contributions. Some usual values are(r.g.3,k=75).

For the p% rule a cell is sensitive if some respondent may obtain amat#
of other respondent contribution withing® precision. The worse case—the one
considered in practice—is obtained when the respondehtigtsecond largest con-
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tribution tries to estimate the value of the respondent withhighest contribution.
For instance, for the cell 108 55+ 30+ 10+ 3+ 2 (i.e., cell of value 100 and 5
respondents with contributions 55, 30, 10, 3, 2), the secegpondent knows that
the value of the first respondent is at most 080 = 70; the estimate of the first
respondent done by the second is 7@ # 20%, since 70> (1+20/100) - 55= 66,
then the cell in non-sensitive. if= 30, since 70< (1+30/100) -55= 71.5, the cell
is considered sensitive. In general, for a 6l x3 +x2+ - - - + % with t respondents
andx; > xo > --- > X, the estimate 0% is X; = X — X, and the cell is sensitive if

)21 — X1 < p/100(1 S X=X —Xo < p/lOO(l. (4)

In general, thg% is preferred to thén,k) rule. Indeed thén, k) may wrongly
consider as non-sensitive sensitive cells and vice-varsa. following example,
from [30], illustrates this situation. Consider the rigfe= 1, k = 60). When applied
to the cell 100= 59+ 40+ 1, this is considered non-sensitive, since<50.6- 100.
On the other hand, the cell 100 61+ 20+ 19 is considered sensitive, since
61> 0.6-100. However, for the cell declared non-sensitive, the séa@spon-
dent gets a too tight estimation of the first one of value 6@-189 = 61. Sim-
ilarly, for the cell considered sensitive, the estimatigrsbcond respondent would
be 100- 20= 80, far from the real value.

Situations as those of the above paragraph could be avoidesitg a rulgn =
2,k), but even in this case th#b rule is preferred. This is shown by noting that the
(n=2,k) rule considers a cell as sensitive if

X1+ X2 > k/100X < X —Xo — X1 < (1—k/100)X. (5)

Comparing (4) and (5), itis seen that in both cases a celhisithee if (X —x2) — X,
i.e. the difference between the estimatiorxpimade by second respondent aad
is less than a certain percentage of either the first respondéuiex; in (4) or the
cell valueX in (5). Note that thep% rule is more natural, and that thie = 2, k)
suffers from overprotection. Indeed, for some particukugs ofp andk it can be
proved that the set of sensitive cells provided by the pdleis a subset of the set
obtained with(n = 2,k) This is clearly seen in the following result [28].
Proposition 1. For p and k such that k 10010%23[), every non-sensitive cell for the
rule (n=2,K) is also a non-sensitive cell for the rul&pbut the reverse implication
does not hold.

Proof. First we prove the direct implication. If a cefl = x; + X2 + - - - + % IS non-
sensitive for(n = 2,k) then by (5)

K 100 100 D
< _ = —m — — > — =
X% S 756X = To0r pr T KX Tz <1 100+ p) X= 1004 p
(6)
and also c 100
p p
< X = Py < .
XS 160° 100+ p 100 S 1005 p @
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Connecting inequalities (6)—(7) we have

P . P

%) —Xq > >
(X=%2) =1 = 75575 X = 7655

thus the cell is non-sensitive for the rypéo.

To show that the reverse implication is not true, we consideounterexample.
For p = 10% andk = 100- 100/(100+ p), a cellX = 110 withx; = 52, x, = 50
is non-sensitive for th@% rule, sincex; — x; = (110—50) — 52 = 60— 52 > 52-
p/100. However it is sensitive for thén = 2,k) rule, becausey + xp = 102 >
k/100-110=100. O

4 Tabular data protection methods

Tabular data protection methods can be classified as

e Non-perturbative: they don’t change the original datatgad they “hide” data or
change the table structure. Among them we fiecbdingandcell suppression

e Perturbative: they provide an alternative table with medifvaluesControlled
roundingandcontrolled tabular adjustmeriielong to this class.

The above four methods are introduced and outlined beloferBeces for a full
description of the solution approaches can be found withghesubsection.

4.1 Recoding

This simple procedure consists in aggregating or changntesof the categorical
variables that define the table, in order to satisfy seritsitiules. This is shown in
the example of Figure 9, whose tables report the number pbretents for “pro-
fession” and “municipality”. This method is implementedtire 7-Argus software
[27]. The main advantages of this approach are its simplisid that it works fine in
practice. The main inconvenience is that it changes the &thlicture; an excessive
aggregation may significantly reduce the utility of the fgsg table.

Original table Recoded table
P. P Py Py B TOTAL PL P+P; P4 B TOTAL
M1 [20]15]30[20]10] 95 M1 [20] 45 ]20[10] 95
M, [72]20] 1[30]10] 133 My [72] 21 [30[10] 133
Mz | 38|38|15[40{11] 142 Mz (38| 53 [40[11] 142
TOTAL|130[73[46[90[31] 370 TOTAL[130] 119 [90|31] 370

Fig. 9 Original and recoded table after aggregation of professfmsdPs.
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4.2 Cell suppression

Given a set of sensitive cells to be protected (napradary cells), the cell suppres-
sion method removes them, and an additional set of cells daswndarncells to
guarantee that the value of primary cells can not be disdloBke purpose of the
cell suppression problefCSP) is to find the set of secondary cells that minimize
some information loss criteria. Figure 10 shows an exampketwo-dimensional
table with only one primary cell in boldface; removing th&lés not enough, since
its value can be retrieved from marginals, thus forcing thgpsession of three ad-
ditional complementary cells.

Fig. 10 Original table with

rimary cell in boldface, and Original table Protected table
grotectyed table after subpres- PL P P TOTAL PL P P; TOTAL
sion of three secondary cells My [20]24]28] 72 Mz 24 72

' Mz (38|38 40| 116 Mz 38 116

Mz [40] 39(42| 121 Mz [40[ 39| 42| 121
TOTAL[98|101{110 309 | TOTAL|98{101{110 309

From the protected table of Figure 10, any attacker may deddower and upper
bound for the primary cell. Indeed, considering variablgs x13, o1, Xo3 for the
primary and secondary cells, a lower bousd and an upper boungyz for the
primary cell can be obtained by solving

83 = MiN X3 a3 = Max X3
subjecttoxy1 +x13 = 72— 24 subjecttoxi +x13= 72— 24
X214+ Xo3 =116— 38 and X214+ Xo3 =116— 38 ®)
X114+ %21 =98—40 X11+ X201 = 98—40
X13+ Xo3 = 110— 42 X13+ Xo3 = 110—42
(X11,X13, X21,%23) > 0 (X11,X13,X21,%23) > 0.

The solutions to (8) arapz = 20 andazz = 68. If, for instancejower andupper
protection levelof Ipl = upl = 10 were imposed (i.e., the protection pattern must
guarantee that no attacker can deduce a value of the sensliwvithin the range
[40—1pl, 40+ upl] = [30,50]), then this cell would be protected by this suppression
pattern sincéps = 20 < 30 andazz = 68> 50.

The above example illustrated the basics of CSP. A genemauiation is now
provided. Any instance of CSP is defined by the following pasters:

e Ageneral tabley,i = 1,...,n, with mlinear relationsha= b, a= (ay,...,an)"
being the vector of cell values.

e Upper and lower bounds and| for the cell values, which are assumed to be
known by any attackel:< a <u(e.g.,]| =0, u= +o for a positive table).

e \ector of nonnegative weights associated to the cell sgspyrsw;,i=1,...,n.
If wi = 1 the number of cells is minimized; f; = a the value suppressed is
minimized.
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e Sets C {1,...,n} of primary or sensitive cells.
e Lower and upper protection levels for each primary ¢pll andupl, p € &
(usually either a fraction o, or obtained from the sensitivity rulgs% and

(n,k)).
CSP looks for a set” of secondary cells to be removed such that fopadl &7

ap<ap—Iplp and ap=>ap+uplp, 9

ap anda being defined as

ap= min Xp GH= max X
subject toAx="b and subject toAx="b
[ <xi<u ie ZUY Iigxiguiieﬁzuy
X=g i g 2UY X=ag i€ ZUY.

(10)
The classical model for CSP was originally formulated in][29considers two sets
of variables

e yi€{0,1},i=1,...,nis 1if cell has to be suppressed, 0 otherwise.

e Fore each primary celp € 2, two auxiliary vectorsd:P ¢ R" andx:P € R",
which represent cell deviations (positive or negativehfithe originalg; values;
they are needed to guarantee the protection levels.

The resulting model is

n
min WiYi
2

subject to AP — 0
(li—a)yi < y\:p <(u-a); i=1....n
Xp S—Iplp Vpe (11)
AP =0
(li—a)yi< %P <(u-a)y i=1....n
xpP > uplp

yi€{0,1} i=1,...,n

The inequality constraints of (11) with both right- and {e&ind sides impose bounds
on x? andx"P wheny; = 1, and prevent deviations in non-suppressed cells (i.e.,
y; = 0). Clearly, the constraints of (11) guarantee that thetmuls of the linear
programs (10) will satisfy (9).

Model (11) is the basis of several solution methods, eithetin@l or heuris-
tic. Note however that it can not be used directly as fornaadtere, because (11)
gives rise to a MILP problem ofi binary variables, & 27| continuous variables,
and 2m+2n)|.2?| constraints. This problem is very large even for tables oflmo
erate size and number of primary cells. For instance, fobke taf 8000 cells, 800
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primaries, and 4000 linear relations, we obtain a MILP witld® binary variables,
12,800,000 continuous variables, and 32,000,000 congirai

The unique currently optimal solution approach decomp{kEsby means of a
Benders decomposition [3]. Initially applied to two-dinséganal tables [23], it was
later extended to general tables [24]. The main benefit sfpproach is that it guar-
antees an optimal solution. The main drawback is that thebeurof cuts needed
(i.e., iterations of Benders method) may be very large, ltieguin a prohibitive
computational time. This does not happen for two-dimeraitables (the approach
is very fast for this kind of tables), but it becomes compuotally very expensive
for more complex tables, as it will be shown below in a nunareexample. This
method is implemented in theArgus package [27].

Most heuristic approaches for (11) find a feasible, hopgfgthod point, by
network optimization algorithms (in particular, minimueost network flows, and
shortest paths [1]). Unfortunately, those heuristics ady be used in tables that ac-
cept a network representation: two-dimensional and 1HZpah¢hical tables (the
latter is however an interesting case for NSAs). Some atieimye been made for
extending them to three-dimensional tables [18], but agtimead in Section 2.2.2,
three-dimensional tables correspond to multicommodityglcand therefore “stan-
dard single-commodity” network optimization procedures ot valid (and rather
unsuccessful). Among those heuristics we find the semina 9], and [5, 14],
which rely on minimum-network cost flows. For general ta#ssuggested an
efficient procedure based on shortest paths. Some of theas wiere sensibly com-
bined in the approach of [9], based on shortest paths bul f@lipositive tables.
This approach is very efficient, but it can only be applieditbex two-dimensional
or 1H2D hierarchical tables. This method is implementedhértArgus package.

We finally mention two other heuristics, which are also ala# in ther-Argus
package. Thaypercubg?25], initially developed fok-dimensional tables, is a sim-
ple and fast procedure. For two-dimensional tables it caseka as a network flows
approach that only considers a subset of the flows (thus ¢irayiess quality so-
lutions than heuristics based on network optimizationjhéligh it is efficient, in
practice tends to oversuppress cells and, moreover, it doeguarantee a feasi-
ble solution (indeed, it finishes with some underprotectdts Some of the above
drawbacks are also shared by the other heuristic, natitad [19]. That approach
decomposes any table in a tree of smaller two-dimensiorizihbles and locally
protects them by the previously cited optimal Benders deusition approach.
Since some linking constraints between subtables are remndkie final solution
is not guaranteed to be feasible. However, the quality okthetions is in general
acceptable.

It is not easy to compare the above procedures computdiipsialce the source
code is not available. However, they can be run with the sahbke tfrom thet-
Argus package, which implements four of them: the optimglraach of [24], the
shortest paths heuristic of [9], and the two (infeasiblejrtetics of [19] and [25]. To
compare them, in [26] a toy table 1H2D was generated wiffrgus. This table was
obtained from the microdata file accompanying tha&rgus distribution, crossing
categorical variables “industry code” and “size”, and gsiaar2” as explanatory
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variable. The results are reported in Table 1. Columns “¢Sud “#val. supp.”
provide information about the solution reported (numbesugipressions, and total
value suppressed, respectively). The total value supguasshe objective function
to be minimized. Column “CPU sec” provides the CPU time. Timets of 2 and
10 minutes were set for the optimal procedure. Even such d Brstance is very
difficult for the Benders decomposition approach, but ityies a better objective.
The shortest paths heuristic provides better results thawother heuristics (and it
is guaranteed to provide a feasible solution). In additiorquires less than 1% of
the CPU time of the optimal approach for a solution with areotiye value only a
20% worse. However, if the table was more complex (insteddH@D) the shortest
paths heuristic could not be used.

Table 1 Results for table “IndustryCode Size — Var2”, from microdata file ofr-Argus distri-
bution.

Method #supp. #val. supp. CPU dec
Hypercube 637 15494253 9
HiTas 528 9016562 15
Shortest paths 538 8795130 4
Benders decomposition 557 7830730 120
Benders decomposition 483 7216286 622
T Results on a PC with one AMD Athlon 44 00+ 64 bits dual core
* Time limit

4.3 Controlled rounding

The method ofoundingachieves protection by rounding all cell tables to a mutipl
of a certain base numberFigure 11 shows an example of a two-dimensional table
using a base number= 5. Note that the total cell could not be rounded to the closest
multiple of 5, otherwise the resulting table would not beitidel This variant that
guarantees additivity is namedntrolled roundinginstead of rounding.

Original table Rounded table
P P, P3 TOTAL P P P TOTAL
M; [20]24[28] 72 M; [20]25[30] 75
Mz [38/38[40[ 116 Mz [40]40[40] 120
Mz [40[39[42] 121 Mz [40[40[40] 120
TOTAL([98[101]110] 309 | TOTAL|[100[105/110] 315

Fig. 11 Original and rounded
table using a base number
r=>5.

Although controlled rounding was already in use two decades[15], some re-
cent extensions using lower and upper protection levels baen considered [31].
The complexity of the resulting model is similar to that ofl seppression, resulting
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in alarge MILP which is solved by Benders decomposition T8Jis model is imple-
mented in ther-Argus package. One of the main drawbacks of controlleddimgn
is that it forces deviations for all the cells that are nogorally a multiple of the
baser, reducing the utility of the resulting table. In addition,duarantee additiv-
ity, total cells have also to be rounded, likely to a multipleich can be far from
the original value. The method of next subsection, whicb gksrturbs cell values,
avoids some of these inconveniences of controlled rounding

4.4 Controlled tabular adjustment

Given a table, a set of sensitive cells, and some lower andrupptection lev-
els, the purpose afontrolled tabular adjustmer{tlso known asninimum-distance
controlled tabular adjustmerdr simply CTA) is to find the closest safe table to the
original one (i.e., the closest table that meets the priotetgvels). Figure 12 shows
an example for a small two-dimensional table with one semsdell in boldface,
with lower and upper protection levels equal to five (lefii¢adf the Figure). If the
protection sense is “lower”, then the value published fergansitive cell should be
less or equal than 35; the optimal adjusted table for this ashown in the middle
table of Figure 12. If the protection sense is “upper”, tHemvalue must be greater
or equal than 45, as shown in the right table of Figure 12.

- Adjusted table, Adjusted table,
Original table 3 .
P, P, Py TOTAL lower protection sense upper protection sense
L P P P TOTAL PL P, P3 TOTAL

M. [20[24]28] 72
M, [3838[40| 116
Ms [40[39[42] 121

TOTAL [98/101/110, 309

My 15[ 24|33 72 My (25| 24|23 72
Mo |43 38[35| 116 My (33/38[45| 116
Mz |40[39[42| 121 Mz (40| 39| 42| 121
TOTAL|98/101)110] 309 | TOTAL|98{101j110] 309

Fig. 12 Original table with sensitive cell in boldface, of lower andpep protection levels equal
to five. Protected tables with “lower protection sense” ando&rprotection sense” (i.e., value of
sensitive is respectively reduced and increased by five units).

CTA was introduced in the manuscript [17] and, indepengeaitid in an ex-
tended form, in [8] (in the latter they were named minimurstaince controlled
perturbation methods). The parameters that define any C3tarice are the same
than for the cell suppression problem (see, Subsectioni4?2)

e Ageneral tabley,i =1,...,n, with mlinear relationsAa= b.

e Upper and lower boundsandl for the cell values, assumed to be known by any
attacker! <a<u.

e \ector of nonnegative weights associated to the cell peationsw;, i =1,...,n.

e SetZ C {1,...,n} of sensitive cells.
Lower and upper protection levels for each primary belly andupl, p€ &.
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CTA finds the safe table closest taa, using some distandsy:

miny ||X—al||w)
subject toAx="b
Iy <x<uyk
Xp<ap—Iplporxp>ap+upl, pe .

(12)

Definingz=x—a, l; =Ix—aandu, = ux— a, (12) can be recast in terms of devia-
tions:
minz ||2f[Lw)
subject toAz=0
,<z<u,
zp < —lplporzy>uply, pe 2.

(13)

To model the “or” constraints it is necessary to consideatyivariables, € {0,1},
pe &, such thay, =1 if cell is “upper protected” (i.ezp > uplp), andy, = O if
it is “lower protected” g, < —Iplp). For the particular case of distankeg it is also
needed a pair of variables andz, such that; =z" —z and|z| =Z" +7 . The
resulting MILP model is

subjecttoA(z" —z7) =0
0<z <u; ¢
0<z <l i¢g>r
uplyi <z <uyy; ie2
Ipli(l—y) <z <—l;(1-y;) ieZ?
yi€{0,1} ie 2.

Qp;w@+?)

(14)

Problem (14) has??| binary variables, 2 continuous variables and+ 4|.#?| con-
straints. The size of (14) is much less than that of the thlesog@lpression formu-
lation (11). For instance, for a table of 8000 cells, 800 priks, and 4000 linear
relations, CTA formulates a MILP of 800 binary variablesP@6 continuous vari-
ables and 7200 constraints (these figures were 8000, 12@@Dand 32,000,000 for
CSP).

Because of the smaller size of CTA compared to other appesadlis possible to
apply state-of-the-art MILP solvers. Such an implemeatatvas developed using
both CPLEX and XPRESS in a package to be used by Eurostat HHi®}ever,
real world large and complex instances are still difficult $och generic solvers,
and some preliminary work has been started using optimaloagpes based on
Benders reformulation [11], and heuristics [26]. The besefi CTA are not limited
to a smaller size of the resulting MILP problem. CTA can bdlgaxtended with
constraints to meet some data quality criteria [16]. It Hae heen experimentally
observed that the quality of CTA solution is comparable @me instances even
better) than that of CSP [12]: indeed the number of cells wigmificantly large
deviations is much smaller than the number of cells remoye@$P.
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5 Conclusions

This chapter introduced some of the currently most usedtgabs for tabular data
protection. All of them share, at different degrees, the essaomputational draw-
backs: they result in large difficult MILP optimization pilems. Current research
for improving the solution of these MILP problems is beingdartaken, mainly
for the most recent method, controlled tabular adjustnigmit research makes use
of recent advances in mathematical optimization. Therealieznative protection
methods, likeinterval protectionor partial cell suppressionvhich result in a very
large, even massive, linear programming problem. Somepappes based on Ben-
ders decomposition were suggested in the literature. Beicgntinuous optimiza-
tion problem, specialized interior-point methods for staned problems can also be
a very efficient alternative. This is research to be condlict¢he near future in this
challenging field.
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