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Universitat Politècnica de Catalunya

Pau Gargallo 5, 08028 Barcelona
jcastro@eio.upc.es heredia@eio.upc.es

Abstract

Several network flows based methods have been suggested in the past
for the solution of the complementary suppression problem (CSP). Adding
some of those methods to the τ -Argus system is one of the tasks to be
performed in the scope of the ongoing IST CASC project. In this pa-
per the authors briefly present how modeling languages can be used for
the quick development of algorithm prototypes for CSP. This will permit
evaluating and testing different algorithmic options prior to the costly
development of an efficient exploitation code. We illustrate the use of
modeling languages with a particular network flow based method. This
method is implemented using a state-of-the-art modeling language, and
some preliminary computational results are presented.

Key words: Disclosure protection, complementary cell suppression, linear
programming, network optimization, modeling languages.

1 Introduction

Network flows models have been widely used in the past to avoid the disclosure
of sensitive cells of statistical tables (see [3] for a comprehensive description).
However, the τ -Argus system developed in a previous ESPRIT project lacks of
such a methodology. Adding it to τ -Argus is one of the tasks to be performed
in the recently started IST CASC project. This paper presents the first steps
performed to achieve this goal.

In particular, we will show that, before developing a costly implementation,
using a modeling language can be instrumental to see in practice the drawbacks
and benefits of a particular approach. We will focus on an heuristic procedure
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for multiple-cell suppression under a minimum-number-of-suppressions crite-
rion, based on an optimal method for single-cell suppression. This approach
is described in [3]. Alternative methods could be attempted and implemented
using AMPL in a similar way.

An additional benefit of using a modeling language is that trying and devel-
oping new algorithms is (usually) a straightforward task. For instance, it could
be studied the behaviour of alternative approaches based on network flows with
side constraints [6] or multicommodity flows [2], and how can they be applied
to multiple dimensional and/or hierarchically related tables.

It is worth to note that, unlike network flows based methods that only pro-
vide approximate solution, there are other approaches that solve the CSP opti-
mally. For instance in [4] a branch-and-cut based procedure was presented for
the efficient solution of large CSP instances. This methodology is already avail-
able in τ -Argus. Network flows based methods can be seen as a complementary
tool that will provide the end-user of τ -Argus the option of choosing between
different strategies.

This paper is organized as follows. Section 2 briefly describes the simple net-
work flows based method considered in this work. Section 3 presents the AMPL
implementation of the method. Finally, Section 4 presents some preliminary
results obtained in the solution of a set of 64 randomly generated instances.

2 A network flows based method for the CSP

We will focus on a simple network flows based method (see [3] for a thorough
description). The method attempts to minimize the number of secondary sup-
pression cells. When applied to a single primary suppression cell the method
is optimum. However, for multiple primary suppression cells the method is
applied iteratively, at maximum once for each primary suppression cell, and
optimality is not guaranteed (instead, an upper bound to the minimum number
of suppressions is obtained).

2.1 Protecting a single cell

Let’s consider a table [aij ], i = 1 . . . m, j = 1 . . . n, m being the number of rows
and n the number of columns. Marginal total values are denoted as am+1,j ,
ai,n+1 and am+1,n+1, where

ai,n+1 =
n∑

j=1

aij i = 1 . . . m (1)

am+1,j =
m∑

i=1

aij j = 1 . . . n (2)

am+1,n+1 =
n∑

j=1

am+1,j =
m∑

i=1

ai,n+1. (3)

The above linear relations can be modeled through a directed graph G =
(V,A), V being a set of m + n + 2 nodes and A a set of (m + 1)(n + 1) arcs.
Figure 1 shows the structure of G. There is one node for each row and column

2



Figure 1: Representation of a table as a directed graph.
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of the table (nodes 1 . . .m and 1 . . . n of Figure 1), plus two additional nodes for
the row and column totals (nodes n+1 and m+1 of Figure 1, respectively). Cells
aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are related to arcs (i, j). Row totals cells ai,n+1, 1 ≤
i ≤ m are related to arcs (n + 1, i), while column totals cells am+1,j , 1 ≤ j ≤ n
correspond to arcs j, m + 1. Total cell am+1,n+1 is related to arc (m + 1, n + 1).

Given a set S = {(i1, j1), . . . , (ip, jp)} of p suppression cells, one can opti-
mally protect under the minimum-number-of-suppressions criterion a particular
target cell (it, jt), 1 ≤ t ≤ p solving a network flows problem. This problem is
defined over the graph G′ = (V,A′), where A′ = {(i, j), (j, i)|(i, j) ∈ A} (i.e., we
have in A′ a forward and reverse arc for each arc of Figure 1). For each arc in A′
we consider one variable, denoted as x+

ij if the origin arc corresponds either to a
row node or to the column total node m + 1 (i.e., (i, j), i = 1, 2, . . . , m + 1, j =
1, 2, . . . , n + 1) and x−ij if the origin arc corresponds either to a column node or
to the row total node n + 1 (i.e., (i, j), i = 1, 2, . . . , n + 1, j = 1, 2, . . . , m + 1) .
Default lower and upper bounds are respectively 0 and 1 for the 2(m+1)(n+1)
variables. Node injections are zero. Since bounds and injections are integer,
it is guaranteed that the solution of any defined network flows problem will be
integer as well [1] (in this case, it will be a pattern of 0-1 flows). Moreover,
since we consider zero injections at nodes, the optimal solution of any problem
defined over this network will be either 0 for all the variables, or —should we
forced a positive flow— a 1 flow for some arcs forming a cycle C in A′.

It can be shown that the target cell (it, jt) will be protected if the optimal
solution of the network flows problem is a nontrivial cycle C in A′ such that
(it, jt) ∈ C. By nontrivial cycles we mean cycles with a number of arcs ≥ 4,
thus avoiding spurious solutions as x+

it,jt
= x−it,jt

= 1 and 0 for the remaining
variables. This can be guaranteed by imposing an upper bound of 0 to variable
x−it,jt

. The rest of x+
ij or x−ij variables of the cycle correspond to (i, j) cells that

need to be suppressed to protect cell (it, jt). Then, in order to minimize the
number of suppressions, cells of S have to be used whenever possible before
including additional complementary ones. This is guaranteed if the following
cost vector is used during the optimization of the network flows problem:
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c+
ij =




−(C + 1) if (i, j) = (it, jt)

1 if (i, j) ∈ S, (i, j) 6= (it, jt)
|S| if (i, j) 6∈ S,

(4)

c−ij =
{

1 if (i, j) ∈ S
|S| if (i, j) 6∈ S,

(5)

where |S| is the cardinality of S, and

C =
∑

(i,j)6=(it,jt)

(c+
ij + c−ij) = 2[((m + 1)(n + 1)− |S|)|S|+ 2(|S| − 1)]. (6)

This cost vector forces to set x+
it,jt

= 1 due to its large negative cost. Vari-
ables associated with cells in S will also be used before adding any comple-
mentary suppression cell. The solution of this problem provides an optimal
solution for the protection of the single cell (it, jt) under the minimum-number-
of-suppressions criterion.

2.2 Protecting multiple cells

The protection of multiple cells can be accomplished by iteratively applying the
procedure described in previous section. This heuristic procedure will provide
an upper bound instead of the optimum number of secondary suppressions, as
noted in [3]. Figure 2 shows the main steps of a naive algorithm based on
this idea. The parameters of the algorithm are a table and a set of primary
suppressions denoted by S0, possibly ordered by descending importance. SP,
the set of protected cells, is initially equal to the empty set. At each iteration
of the algorithm we choose the next target cell of S0 not yet protected (line
3). The protection of the target cell is performed through the network flows
problem of previous subsection (line 4). The set S to be used for the defini-
tion of the costs (4) and (5) is Sk, which is modified at each iteration of the
algorithm. The cycle of the optimal solution corresponds to those cells that
were protected by the network flows problem. Some of them will already be
in Sk. The rest are complementary suppressions, which are added to Sk+1 and
the set of protected cells SP. The algorithm iterates until Sk is equal to SP,
i.e., all the primary suppressions of S0 are protected. Note that, at most, one
network flows problem needs to be performed for each primary suppression cell
of S0. Although this algorithm could be improved with additional refinements,
its current form will be enough to show how a modeling language can be used
for a quick implementation.

3 The AMPL model

We chose the AMPL modeling language [5] for the implementation of the single
and multiple-cell suppression problems of subsections 2.1 and 2.2. This is one
of the most versatile modeling languages currently available, permitting, among
other features, implementing iterative procedures (as that of Figure 2) and solv-
ing the resulting optimization problems through a high variety of packages (in-
cluding own routines). Moreover, there are specialized servers in Internet (e.g.,

4



Figure 2: Multiple-cell protection heuristic procedure.

Algorithm Multiple-cell protection(Table,S0):
1 SP := ∅, k := 0;
2 while Sk 6= SP do
3 Find next target cell (it, jt) ∈ S0 such that (it, jt) 6∈ SP;
4 Solve network flow problem of subsection 2.1 for S := Sk;
5 Obtain cycle C of the optimal solution;
6 SP := SP ∪ C;
7 Sk+1 := Sk ∪ C ;
8 k := k + 1;
9 end while
End algorithm

http://www-neos.mcs.anl.gov/neos) that freely permit the remote solution
of problems formulated in the AMPL language [8].

Briefly, to implement the CSP algorithms of previous sections through AMPL
we need:

• A .dat file with the data of the particular instance to be solved (table,
and set of primary suppression cells).

• A .run file with the description of the iterative algorithm, i.e., the multiple-
cell protection heuristic of Figure 2.

• A .mod file with the description of the network flows problems of subsection
2.2 to be solved at each iteration.

Although we won’t enter into details, it is worth to include the code of the
above files to see how straighforward is an AMPL implementation (see Figures
3–5 of Appendix A). Figure 3 shows the data for a particular instance made of
a table 3× 4 and 2 primary suppression cells —(1, 1) and (2, 2). Figures 4 and
5 show all the code required to implement respectively the iterative procedure
and the network flows problems. Note that only 72 lines of code were required.
This permits easily trying alternative algorithmic options (new heuristics, differ-
ent costs—with the inclusion of cells values—, alternative solvers, etc.) before
developing a final explotation code.

4 Computational results

We tested the AMPL implementation of the previous section with a set of
64 randomly generated problems. Each instance depends of three parameters
(m,n, p), which denote the number of rows, columns and primary suppressions,
respectively. The p primary cells were randomly distributed inside the table.
The 64 instances were obtained considering all the combinations for m,n, p ∈
{50, 100, 150, 200}.
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Table 1: Results for the 64 randomly generated problems

m n p |SP| NFP CPUNF

50 50 50 95 33 2.04
50 50 100 135 42 2.69
50 50 150 162 47 3.04
50 50 200 203 71 4.54
50 100 50 90 29 3.68
50 100 100 145 47 6.09
50 100 150 184 62 8.14
50 100 200 233 85 11.19
50 150 50 101 35 6.97
50 150 100 168 61 12.19
50 150 150 219 76 15.35
50 150 200 255 86 17.41
50 200 50 104 35 9.42
50 200 100 172 61 16.53
50 200 150 225 78 21.40
50 200 200 272 94 25.91
100 50 50 101 37 4.75
100 50 100 148 50 6.75
100 50 150 194 65 8.65
100 50 200 234 80 10.78
100 100 50 97 31 8.28
100 100 100 181 63 17.16
100 100 150 226 76 20.92
100 100 200 254 78 21.47
100 150 50 99 30 12.66
100 150 100 183 59 24.96
100 150 150 260 89 37.33
100 150 200 284 86 36.88
100 200 50 108 33 19.16
100 200 100 197 65 37.90
100 200 150 261 89 52.16
100 200 200 310 105 62.27
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Table 1(cont.): Results for the 64 randomly generated problems

m n p |SP| NFP CPUNF

150 50 50 98 33 6.50
150 50 100 160 56 11.44
150 50 150 212 76 15.51
150 50 200 260 91 18.48
150 100 50 99 30 12.48
150 100 100 180 56 23.48
150 100 150 233 75 31.91
150 100 200 278 88 38.34
150 150 50 102 31 20.85
150 150 100 189 62 41.43
150 150 150 264 91 61.00
150 150 200 317 104 73.54
150 200 50 105 32 29.16
150 200 100 196 60 54.94
150 200 150 265 87 80.64
150 200 200 342 119 13.29
200 50 50 97 32 8.73
200 50 100 176 64 17.60
200 50 150 225 78 22.12
200 50 200 279 99 28.02
200 100 50 101 30 18.03
200 100 100 181 60 36.06
200 100 150 254 87 53.28
200 100 200 304 102 66.61
200 150 50 107 34 31.74
200 150 100 204 67 62.58
200 150 150 277 91 85.49
200 150 200 335 112 107.62
200 200 50 110 32 41.30
200 200 100 214 67 86.70
200 200 150 282 88 113.93
200 200 200 354 116 151.85
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Table 1 shows the results obtained. Executions were performed on a Sun
Ultra2 200MHz workstation, of ≈68 Linpack Mflops, 14.7 Specfp95 and 7.8
Specint95 (this machine is approximately equivalent to a 350 Mhz Pentium PC).
Columns m, n and p have the meaning above described. Column |SP| gives the
final number of (primary plus secondary) suppressions obtained by the heuristic
procedure. Column NFP shows the number of network flow subproblems solved.
Finally, column CPUNF gives the CPU time spent by the code in the solution
of the network flows problems. They were solved using the state-of-the-art
network solver of the Cplex 6.5 package [7]. The execution time of the overall
procedure is not presented because it is meaningless: AMPL is not a compiled
language, thus executions are fairly large. In an efficient C implementation
the overall execution time should be close to that of the CPUNF column. No
computational results were presented in [3] for a similar approach, so the results
obtained can not be compared with those of previous implementations.

It is worth to note that these results have been obtained with a naive heuristic
procedure, thus it should be possible to improve them. However, although the
number of network flow problems solved is fairly less than p —the number of
primary cells—, their solution still requires a significant computational effort.
Moreover, this effort increases with p. Even with alternative network solvers [9],
for large instances, this procedure could be very expensive. In this case, a quickly
developed AMPL model has been enough to understand the main drawbacks of
this approach, avoiding a costly C implementation of the algorithm.

5 Conclusions

The main concern of this paper has been to show how modeling languages as
AMPL could be used to obtain easy and quick (although not efficient) prototype
implementations. As an example, the AMPL code for the heuristic procedure of
Cox [3] for CSP has been presented. This prototype implementation has been
used to solve a set of randomly generated problems ranging from m = 50, n = 50
and 50 primary cells to m = 200, n = 200 and 200 primary cells. Developing
and testing additional networks based methods, and implementing for τ -Argus
those that eventually appear to be efficient, is part of the further work to be
done.
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A AMPL files

Figure 3: AMPL .dat code for a particular instance.

param m := 3;
param n := 4;
param p := 2;
param: p_r p_c :=
1 1 1
2 2 2 ;
param a :

1 2 3 4 5 :=
1 1 111 172 165 449
2 500 1 9 256 766
3 297 143 212 184 836
4 798 255 393 605 2051 ;
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Figure 4: AMPL .run code for the iterative procedure.

model csp.mod;
data csp_instance.dat;
option solver cplex65;
param i_p;
let S0 := {};
for {i in 1..p}{

let S0:= S0 union {(p_r[i],p_c[i])};
}
let S := S0;
let i_p := 1;
let TARGET := {(p_r[i_p],p_c[i_p])};
let Sprot :={};
let CYCLE :={};
problem Nc: Num_CS, Xpos, Xneg, Row, Column;
repeat
{

solve Nc;
let CYCLE := {};
for {(i,j) in (LINKS)}
{

if Xpos[i,j]>0.99 or Xneg[i,j]>0.99 then{
let CYCLE := CYCLE union {(i,j)};

}
}
let S := S union CYCLE;
let Sprot := Sprot union CYCLE;
if card(S) != card(Sprot) then {

repeat {
let i_p:= i_p + 1;

} until (p_r[i_p],p_c[i_p]) not in Sprot;
let TARGET := {(p_r[i_p],p_c[i_p])};

} else {
let TARGET:={};
let i_p := 0;

}
} until card(Sprot) == card(S);
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Figure 5: AMPL .mod code for the network flows problems.

param m integer >0 ; #number of rows (without totals row)
param n integer >0 ; #number of columns (without totals column)
param p integer >0; #number of primary suppression cells
param p_r{1..p} integer, >=1, <=m; #row of each primary suppression
param p_c{1..p} integer, >=1, <=n; #column of each primary suppression
set ROWS := {1..m+1};
set COLUMNS := {1..n+1};
set LINKS :={ROWS, COLUMNS};
param a {LINKS}; #(m+1)*(n+1) table values (including totals)
#
set CYCLE within LINKS;
set TARGET within LINKS;
set S0 within LINKS; #primary suppressed cells
set S within LINKS; #current primary and secondary suppressed cells
set Sprot within S; #protected cells
#
param cneg {(i,j) in LINKS} := if (i,j) in S then 1 else card(S) ;
param cpos {(i,j) in LINKS} :=

if (i,j) in TARGET then
-( 2*(card(LINKS)-card(S))*card(S) + 2*(card(S)-1) + 1)

else if (i,j) in S then
1

else # (i,j) not in S
card(S);

#
# Definition of networks flow problem
#
minimize Num_CS;
node Row {k in ROWS}: net_in = 0;
node Column {k in COLUMNS}: net_in = 0;
arc Xpos {(i,j) in LINKS} >= (if (i,j) in TARGET then 1 else 0),

<= (if a[i,j]== 0 then 0 else 1),
from Row[i] to Column[j], obj Num_CS cpos[i,j];

arc Xneg {(i,j) in LINKS} >=0, <= (if (i,j) in TARGET or a[i,j]==0
then 0 else 1), from Column[j] to Row[i] , obj Num_CS cneg[i,j];
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